Printed Electronic Design

Similar documents
Via Stitching. Contents

Published on Online Documentation for Altium Products (

Published on Online Documentation for Altium Products (

5 TIPS FOR SPECIFYING PCB HOLE SIZE TOLERANCE

PCB Layout. Date : 22 Dec 05. Prepare by : HK Sim Prepare by : HK Sim

Published on Online Documentation for Altium Products (

Impedance-Controlled Routing. Contents

Gerber Setup. Summary. Access. Options/Controls. General Tab. Modified by on 13-Sep Parent page: WorkspaceManager Dialogs

Gerber Setup. Modified by Susan Riege on 4-Aug Parent page: WorkspaceManager Dialogs

Release Highlights for BluePrint-PCB Product Version 1.8

PADS Layout for an Integrated Project. Student Workbook

Supported Self-Capacitance Type Sensors

Plated Through Hole Components. Padstack. Curso Prof. Andrés Roldán Aranda. 4º Curso Grado en Ingeniería de Tecnologías de Telecomunicación

Designing in the context of an assembly

Module 1C: Adding Dovetail Seams to Curved Edges on A Flat Sheet-Metal Piece

Design For Manufacture

instructions for use For Type 2 Fix sets

Radial dimension objects are available for placement in the PCB Editor only. Use one of the following methods to access a placement command:

TECHNICAL REPORT: CVEL Parasitic Inductance Cancellation for Filtering to Chassis Ground Using Surface Mount Capacitors

Processing Gerber Files in CircuitPro

Adobe Photoshop Chapter 2 Study Questions /50 Total Points

Generic Multilayer Specifications for Rigid PCB s

Figure 1: NC EDM menu

How to Transform your 3D Printer in a CNC MILLING MACHINE

EAGLE: Using the computer for circuit layout

EXERCISE 1: CREATE LINE SPARKLINES

PCB Layout in the Xpedition Flow. Student Workbook

Module 1E: Parallel-Line Flat Pattern Development of Sheet- Metal Folded Model Wrapping the 3D Space of An Oblique Circular Cylinder

Module 1G: Creating a Circle-Based Cylindrical Sheet-metal Lateral Piece with an Overlaying Lateral Edge Seam And Dove-Tail Seams on the Top Edge

EECAD s MUST List. Requests for drawing numbers MUST be submitted via the EECAD job request form at

Support for Atmel Touch Controls

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Blum Space Corner User Guide.

Creating and Editing Plot Style Tables

RF circuit fabrication rules

Allegro New Products - DFM / Rule Checkers

Altium I (Circuit Design + Layout)

PCB Design (with EAGLE tutorial) TA: Robert Likamwa ELEC 424, Fall 2010

Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards

Lesson 6 2D Sketch Panel Tools

High Frequency Single & Multi-chip Modules based on LCP Substrates

Creating and Editing Plot Style Tables

Release Highlights for BluePrint-PCB Product Version 2.0.1

Intro PCBs. Jonathan Bachrach. September 8, EECS UC Berkeley

Wheatstone Bridge. M16C Microcontroller Strain Gauge (temperature compensation)

DESIGN FOR MANUFACTURABILITY (DFM)

PCB Fundamentals Quiz

High efficient heat dissipation on printed circuit boards

courtesy Wikipedia user Wikinaut

PCB Fundamentals Quiz

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1

Module 1H: Creating an Ellipse-Based Cylindrical Sheet-metal Lateral Piece

Plastic Welding Experiences

Co-Planar Waveguide (Driven Terminal)

IEEE #: March 24, Rev. A

SolidWorks Part I - Basic Tools SDC. Includes. Parts, Assemblies and Drawings. Paul Tran CSWE, CSWI

FOCUS ON REAL DESIGN AUTOMATE THE REST CUSTOMTOOLS BATCH CONVERTING YOUR SOLIDWORKS FILES

Learning Objectives. Description. Your AU Experts: Gabriel Hernandez Applied Software. David Ronson Applied Software

EEE 161 Applied Electromagnetics Laboratory 7 Microstrip Lines and PCB fabrication

FAQ: Microwave PCB Materials

Application Bulletin 240

1 Sketching. Introduction

Blum Movento Visual User Guide.

Rotary Fixture M/V/X CLASS LASER SYSTEMS. Installation and Operation Instructions

Adobe Photoshop CS5 Tutorial

Inventor Activity 5: Lofted Vase

CAPABILITIES Specifications Vary By Manufacturing Locations

TCLAD: TOOLS FOR AN OPTIMAL DESIGN

RDworks and Basic Rabbit Laser Operation Tutorial

Getting Started. with Easy Blue Print

Adobe Photoshop CC 2018 Tutorial

Introduction 1. Download socket (the cable plugs in here so that the GENIE microcontroller can talk to the computer)

Advanced Measurements

Fertigungsdaten aufbereiten mit GerbTool und VisualCAM

Gain Slope issues in Microwave modules?

PCB layout tutorial MultiSim/Ultiboard

Note: Adjustment layers are available only in Photo Explosion Deluxe.

Tutorial 1 getting started with the CNCSimulator Pro

CHAPTER1: QUICK START...3 CAMERA INSTALLATION... 3 SOFTWARE AND DRIVER INSTALLATION... 3 START TCAPTURE...4 TCAPTURE PARAMETER SETTINGS... 5 CHAPTER2:

Own Your Technology Presents Workshop on

MICROPROCESSOR TECHNOLOGY

SPORTCRAFT ANTENNAS. INSTALLATION INSTRUCTIONS for FLUSH WINGTIP COM ANTENNAS

Stratigraphy Modeling Boreholes and Cross. Become familiar with boreholes and borehole cross sections in GMS

Assembly Instructions: Bencher Skylark

Professional Photograph Restoration 50 Points

Page 1

Generations Automatic Stand-Alone Lace By Bernie Griffith Generations Software

Activity 1 Modeling a Plastic Part

Standard Kit #1 (3-way switch)

Lecture - 01 Introduction to Integrated Circuits (IC) Technology

1. Create a 2D sketch 2. Create geometry in a sketch 3. Use constraints to position geometry 4. Use dimensions to set the size of geometry

Line-Following Robot

Contents

ADVANCED MACHINING BETP 3584 MULTIPLE HOLES DRILLING OPERATION. Syahrul Azwan bin Suandi

OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER

Exploring Photoshop Tutorial

Creating another Printed Circuit Board

Introduction to NI Multisim & Ultiboard Software version 14.1

Standard Kit #1 (5-way switch)

Transcription:

Published on Online Documentation for Altium Products (https://www.altium.com/documentation) Home > Printed Electronics Using Altium Documentation Modified by Phil Loughhead on Dec 11, 2018 Printed Electronic Design An exciting evolution in the design and development of electronic products is the ability to print the electronic circuit directly onto a substrate, such as a plastic molding that becomes a part of the product. This surface-oriented implementation technique is referred to as Printed Electronics. While the term Printed Electronics is not a precise description of the technology, as printing is not the only technique used to create it, the term has broad industry acceptance and will be used on this page. There are a number of approaches being developed to create printed electronics, including: 3D printing with conductive inks; stamping techniques that can create conductors as well as simple circuit elements, such as transistors; and laser deposition techniques that can build up conduction paths at very small scales, with ultra-high precision. Printed electronics will become a pivotal technology, allowing the integration of electronics into new markets. Printed electronics allow an intimate connection between the circuit and the product. From a flexible sensor that attaches directly to the body, through to a multi-sensor, finger tip-shaped molding

that allows a robotic hand to hold a soft plastic cup as liquid is poured into it, printed electronics will allow innovative new solutions to be developed across many market segments. The Technology In terms of what the technology delivers, the game remains the same - electronic components are connected together via conductive pathways, forming an electronic circuit that performs a useful function. What differs is the approach used to build up the circuit. The layer-oriented fabrication technology used to make a traditional PCB is a reductive process. Each conductive layer starts as a continuous sheet of conductive material, such as copper, which is then etched away, leaving only the copper that forms the required conductive pathways. It is also a multistaged process, as the individual conductive layers are sandwiched together with alternating layers of insulation, and various drilling and post-plating processes applied. Printed electronics is an additive process, the signal pathways are printed directly onto a substrate. If a subsequent signal pathway needs to cross an existing pathway, a small patch of insulation is printed directly in the required location. Acting like a tiny bridge, it allows the new signal pathway to be printed across the existing pathway, without connecting to it. As an example, if the design is using the DuPont InMold technology, the circuit is first printed onto a flat plastic substrate, which is then thermoformed and injection molded into the final product shape. Using printed electronics, the humble rigid fiberglass printed circuit board substrate is no longer required. Instead the circuit is formed directly as a part of the product, the conductors ultimately following the shape and contours of the product's surface. As there is less material used and less waste, printed electronics will ultimately become a more cost effective approach than a traditional PCB, in many situations. NOTE - at this stage only flat substrate surfaces are supported. Altium's developers will continue to work closely with companies that develop products using printed electronics, enhancing the feature set over future releases of the software. Designing Printed Electronics in Altium Designer Apart from the substrate that the design is printed on, there are no physical layers in a printed electronics product - conductive pathways are printed directly onto the substrate. Where the design requires pathways to cross over each other a small patch of dielectric material is printed in that location, sufficiently expanded beyond the crossover to achieve the required level of isolation between the different signals.

The outputs required to drive the printing process are generated using a standard output format, such as Gerber. The outputs will include a file for: Each conductive printing pass - essentially the same as a copper routing layer in a traditional PCB Each dielectric printing pass - since dielectric patches are printed, their shapes are also specified in an output file, such as a Gerber file. Defining the Layer Stack So how are these multiple printing passes defined in the PCB editor? In printed electronics, each printing pass requires an output file, so rather than thinking of it as a series of copper layers separated by dielectric layers, think of it as a set of printing passes, with each pass either being a conductive layer of ink, or a non-conductive layer of ink. To create a printed electronics design, first create a new PCB (File» New» PCB). copper layers, separated by a dielectric layer, as shown in the Layer Stack Manager. A new PCB defaults to 2

A new board is configured as a printed electronics design in the Layer Stack Manager using the button, or by selecting the Tools» Features» Printed Electronics command. Electronics feature is enabled, the dielectric layer is removed. When the Printed When this is done the dielectric layer between the 2 copper layers disappears. Why? because printed electronics requires an output file for every layer, so dielectric layers are not used as they are not used to generate output files. Instead, non-conductive layers are added. Dielectric shapes, referred to as patches, can be manually or automatically defined on these layers where ever signal paths need to cross each other on the conductive layers. Non-Conductive layers can be inserted between the Conductive layers, and dielectric patches defined on them. Right-click on a layer to: insert a layer above or below; move a layer up or down; delete a layer. Printed electronics do not use the Bottom Solder or Bottom overlay, these have been removed. Once the layers have been added, set the properties of the material for each layer.

select the material to use for each printed layer. Use the elipsis button to Material Selection The material used in both traditional PCB design and printed electronic design are selected in the Layer Stack Manager's Material Library. When the Layer Stack Manager is open, use the Tools» Material Library command to open the Altium Material Library dialog. The Material Library includes materials for both conductive and non-conductive layers. New materials can be defined in the library, click the New button at the bottom of the dialog. If user-defined materials are created, they can be saved to and loaded from a user-defined materials library. To select a material for a specific layer, click the ellipsis control ( ) in the Material cell for that layer in the Layer Stack Manager. The Select Material dialog will open, displaying only the materials that are suitable for that layer Type. Select the required material and click OK.

Routing the Nets The nets in a printed electronics design are routed in the same way as a traditional PCB, using the Interactive Routing command. Conductive layer transitions are performed using the + and - keys on the numeric keypad, or the Ctrl+Shift+Wheelroll shortcut. When you change layers during routing a via is added, the via properties are determined by the applicable Routing Via Style design rule. Why are vias needed? The software needs to place a via to maintain the connectivity of the net during routing, and also to manage the connectivity when the routing is modified by pushing or dragging. Vias are also needed for net analysis during design rule checking. The vias can have their diameter set to the same size as the routing width. Increasing the Route Thickness The route thickness can be built up if required, for example to implement a structure such as a printed antenna. This is achieved by placing multiple routes on top of one another, on different conductive layers. Adding Dielectric Shapes Once the nets have been routed, the next step is to create the dielectric patches needed to separate any different-net cross overs. Dielectric shapes are defined on non-conductive layers. They can be defined manually, or automatically created using the Dielectric Shapes Generator. Manual shapes can be created from Arcs, Lines, Fills or Solid Regions. Solid Region objects offer the greatest flexibility, as their edges can be adjusted to create virtually any shape. The software also includes an automatic dielectric shape generator. The concept here is to first

complete the routing as required on conductive layers, placing vias to switch between layers (requirements?). When the routing is complete, run the Tools» Printed Electronics» Generate Dielectric Patterns command to open the Dielectric Shapes Generator dialog. The Dielectric Shapes Generator will identify all cross overs and add dielectric patches, in accordance with the settings in the Layers region of the dialog. If no dielectric layer is selected in the Select Dielectric Layer dropdown, dielectric shapes will be created for all cross overs between all layers, on appropriate dielectric layers. In Auto mode, the dielectric shape is automatically expanded to satisfy the requirement of the applicable Clearance Constraint design rule. Use the Fill Gaps option to merge adjacent dielectric patches into larger patches. In Manual mode the generator builds a shape to match the shape formed by the crossed-over objects, then expands that shape out by the distance entered. Clearance constraint design rules are not considered in this mode, for example if two conductive pathways are within the distance allowed by the clearance constraint but do not cross over, no dielectric shape will be created in that location. The Dielectric Shape Generator requires the Patterns Generator extension to be installed. Check the Dielectric Shapes Generator dialog page for more information. When the Generator is run it will remove all shapes on the target layer(s), then recreate them. If shapes have been defined manually, lock them before running the Shape Generator.

Net Connectivity and Design Rule Checks Online DRC is not supported when the layerstack is configured as Printed Electronics because of the different logic used to define violation conditions; such as nets crossing on different layers being flagged as a short circuit. Once the routing is complete and the isolation patches have been defined, click the Run Design Rule Check button in the Design Rule Checker dialog (Tools» Design Rule Check) to perform a batch DRC. Notes about net connectivity and Design Rule Checks: When a net needs to switch to another conductive layer, insert a via. Touching / crossing tracks that are on different layers, are considered connected. If they are in the same net this is flagged as a broken net, if they are in different nets this is flagged as a short circuit. A dielectric shape is required to isolate touching / crossing tracks, this shape is placed on a nonconductive layer. The dielectric shape can be placed manually, or by the Dielectric Shape Generator. The dielectric shape must extend beyond the edges of the crossing tracks sufficiently to satisfy the applicable clearance constraint design rule. For a printed electronic design, design rule checks for short-circuits, clearance violations and unrouted nets behave as described below. Short Circuit Design Rule In a Printed Electronics design, when different nets cross over on different layers, they are flagged as a short circuit. These cross-overs are isolated by placing a dielectric patch on a non-conductive layer. Clearance Design Rule

Net to net clearances are tested on all layers, not just the same layer. Unrouted Net Layer transitions require a via for the net analyzer to recognize that the net is not broken. Source URL: https://www.altium.com/documentation/display/ades/((printed+electronics))_ad