TECHNICAL DATA TROUBLE SHOOTING FOR TURNING.Q002 CHIP CONTROL FOR TURNING.Q004 EFFECTS OF CUTTING CONDITIONS FOR TURNING.Q018 END MILL TERMINOLOGY

Similar documents
C007E TECHNICAL DATA SPECIFICATION, FUNCTION OF TOOL FEATURES,TROUBLE SHOOTING, FORMULAE

TECHNICAL DATA TROUBLE SHOOTING FOR TURNING.Q002 CHIP CONTROL FOR TURNING.Q004 EFFECTS OF CUTTING CONDITIONS FOR TURNING.Q018 END MILL TERMINOLOGY

TECHNICAL DATA TROUBLE SHOOTING FOR TURNING. N002 CHIP CONTROL FOR TURNING. N004 EFFECTS OF CUTTING CONDITIONS FOR TURNING. N007 FORMULAS FOR CUTTING

SPX Offers low cutting resistance for heavy machining & deep shoulder milling

Update B158J New Chip Breaker Inserts for Turning Expanded Inserts

''Violet'' drill series.

TOOLS NEWS CRN ENDMILL FOR COPPER ELECTRODE

The worlds smallest ball nose.* 1 Ultra high precision type.* 2. R0.02mm, a world first! * 1. Expansion. ULTRA HIGH PRECISION [±0.

New Milling Series. Metric type is added for all line up!! Tough edge GT chip breaker MSE45-SF MTE90-SF. Wiper insert is added for MSE45-SF type.

MFAH. Minimizes Burrs for High Quality Machining Results. Low Cutting Force Design

DIN ANSI Shark Line Material specific application taps. New products 2017

MSRS90. Hi efficiency Notched and No-hand insert for MSRS90

Offers low cutting resistance for deep shoulder milling y WH breaker with wavy cutting edge

MSRS90. Notched Inserts Reduce Cutting Forces When Entering the Workpiece Stable Machining without Chattering

TECHNISCHE INFORMATIONEN TECHNICAL

Roller chains. Roller chains

Milling Series. New MSE45-SF MTE90-SF. Wiper insert is added for MSE45-SF type. New MSO90. New MSE45. Octagonal MOF mill MOF. Easy edge adjustment

DIN/ANSI Shark Line Material Specific Application Taps. New Products 2017

ABB STOTZ-KONTAKT. ABB i-bus EIB Current Module SM/S Intelligent Installation Systems. User Manual SM/S In = 16 A AC Un = 230 V AC

MISSION Our mission is to provide China manufacturing solutions that create competitive advantages for our customers.

Synchronous Machine Parameter Measurement

Effect of High-speed Milling tool path strategies on the surface roughness of Stavax ESR mold insert machining

The Discussion of this exercise covers the following points:

Exercise 1-1. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION

We can supply the following Types of Tap with All STANDARD s like ISO, BS, DIN, JIS, ANSI etc. Spiral Point. Right & Left Hand Slow helix 0 0

ARX. Small Diameter Radius End Mill

A621A MEDICAL APPLICATIONS

Synchronous Machine Parameter Measurement

PB-735 HD DP. Industrial Line. Automatic punch and bind machine for books and calendars

MC5020 Breakthrough for cast iron machining.

High Precision Violet Series Drills for Counter Boring VA-PDS-CB Exclusive design for counter boring.

High percision clamping system Cutting edge produces good surface finishes. Holder with superb durability TPDB. Top Solid Piercing Drill Blade

A613G AEROSPACE APPLICATIONS

TRAINING MANUAL. Part INTRODUCTION TO TWIST DRILLS

Optimum tool for finish machining

Product handbook. Drilling & Threading. The perfect thread

Three-Phase Synchronous Machines The synchronous machine can be used to operate as: 1. Synchronous motors 2. Synchronous generators (Alternator)

A612A AEROSPACE APPLICATIONS

DRV DRV. MagicDrill. High Efficiency Indexable Insert Drill

TOOLS NEWS B228G. Ceramic End Mills. CERAMIC Corner Radius End Mills. Ultra high productivity for nickel based heat resistant alloys CERAMIC

Module 9. DC Machines. Version 2 EE IIT, Kharagpur

A Development of Earthing-Resistance-Estimation Instrument

Features. Excellent Repeatability >> Applications >>

Improved Efficiency for Slot Milling with Deep Depths of Cut

Incremental encoders Solid shaft with clamping or synchro flange pulses per revolution

Rectangular type APS-10 to 15 Series

CHAPTER 2 LITERATURE STUDY

DRA DRA. MagicDrill. High Efficiency Modular Drill. Excellent hole accuracy with a low cutting force design. High Efficiency Modular Drill

Indexable Milling Tools

FATIGUE BEHAVIOUR OF COMPOSITE JOINTS WITH HEXAGON BOLTS

Think efficiency, Think HSS MILLING

4/5/6RFH 4/5/6RFH NEW. High Efficiency Roughing End Mill for Difficult-to-Cut Material

Grade/Chip breaker. Contents. Grades. Chip breakers A02 A03 A04. Korloy grades system Grade selection system The feature of korloy grades A06 A08 A09

FMAX. Feed Maximum (FMAX) milling cutter for ultra efficient and accurate finishing. TOOLS NEWS. High Feed Finish Milling Cutter for Aluminum Alloys

KomGuide Technical Manual

Experiment 3: Non-Ideal Operational Amplifiers

CONTENTS WELCOME TO THE WORLD OF HIGH-SPEED INNOVATION

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7.

Experiment 3: Non-Ideal Operational Amplifiers

Extremely small "footprint" and the highest circuit density available AK550. Front Wire Entry

Compared to generators DC MOTORS. Back e.m.f. Back e.m.f. Example. Example. The construction of a d.c. motor is the same as a d.c. generator.

Depth of cut(mm) Cutting condition. Insert : CNMG LW, VW Cutting speed : 200m/min Depth of cut : 1.5mm Workpiece : SCM440

CHAPTER 23 Machining Processes Used to Produce Various Shapes Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1

Lecture 15. Chapter 23 Machining Processes Used to Produce Round Shapes. Turning

DP400 / DM350. Inverter. Total Solutions from the Single Source Provider DP400 PULSED MAG - PULSED MIG CO2 - MAG - MIG - FCAW

Ionizer. Series IZS31. RoHS

Geometric quantities for polar curves

Features. Special forms are possible

A620G MEDICAL APPLICATIONS

NEW INDEXABLE DRILL FOR HOLE MAKING

Incremental encoders Solid shaft with clamping or synchro flange pulses per revolution programmable (interpolated system)

Contents 1. Cutting and Cutting Tools 2. Processing by End Mills 3. Cutting Action and Phenomena during Cutting

Chapter 24 Machining Processes Used to Produce Various Shapes.

PRODUCT INFORMATION CBN-SXR CBN-LN-SXR CBN-SXB CBN-LN-SXB. CBN End Mill Series

Quality, tradition and progress for over 200 years

Array chip resistors size ARC241/ARC242 ARV241/ARV242

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

Double-Side 45 Face Milling

Available online at ScienceDirect. 6th CIRP International Conference on High Performance Cutting, HPC2014

Design And Implementation Of Luo Converter For Electric Vehicle Applications

CHAPTER 3 AMPLIFIER DESIGN TECHNIQUES

MEASURE THE CHARACTERISTIC CURVES RELEVANT TO AN NPN TRANSISTOR

Large Commercial Trunking

New Item & New Concept Tools Aqua EX Flat Drill

From Off-The-Shelf to Market-Ready New Age Enclosures is your Single Source Solution. Let us quote modifiying our Stock Enclosures to meet your

Flexible tool overhang lengths possible by combining the modular extension arbor and shank with insert run-out adjustment mechanism

Chapter 23: Machining Processes: Turning and Hole Making

A COMPLETELY BALANCED DRILLING SYSTEM FOR OVERBURDEN DRILLING SUPER MAXBIT

Workshop Practice TA 102 Lec 6 & 7 :Theory of Metal Cutting. By Prof.A.Chandrashekhar

SHOWA TOOL. GENERAL CATALOG SHOWA TOOL

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate

Drill for Wheel Hubs. Solid Carbide Drill MHE

Polar Coordinates. July 30, 2014

IPA FITTINGS FOR REHAU NORDIC

Non-chattering Side Cutter

From Off-The-Shelf to Market-Ready New Age Enclosures is your Single Source Solution. Let us quote modifiying our Stock Enclosures to meet your

Experimental evaluation of polycrystalline diamond tool geometries while drilling carbon fiber-reinforced plastics

MIROKU MACHINE TOOL, INC.

CIC 200TM QUAD POINT DRILLSTM

A Novel Back EMF Zero Crossing Detection of Brushless DC Motor Based on PWM

Transcription:

TROUBLE SHOOTING FOR TURNING... Q2 CHIP CONTROL FOR TURNING... Q4 EFFECTS OF CUTTING CONDITIONS FOR TURNING... Q5 FUNCTION OF TOOL FEATURES FOR TURNING... Q7 FORMULAE FOR CUTTING POWER... Q11 TROUBLE SHOOTING FOR FACE MILLING... Q12 FUNCTION OF TOOL FEATURES FOR FACE MILLING... Q13 FORMULAE FOR FACE MILLING... Q16 TROUBLE SHOOTING FOR END MILLING... Q18 END MILL TERMINOLOGY... Q19 TYPES AND SHAPES OF END MILLS... Q2 PITCH SELECTION OF PICK FEED... Q21 TROUBLE SHOOTING FOR DRILLING... Q22 DRILL WEAR AND CUTTING EDGE DAMAGE... Q23 DRILL TERMINOLOGY AND CUTTING CHARACTERISTICS... Q24 FORMULAE FOR DRILLING... Q27 METALLIC MATERIALS CROSS REFERENCE LIST... Q28 DIE STEELS... Q32 SURFACE ROUGHNESS... Q34 HARDNESS COMPARISON TABLE... Q35 JIS FIT TOLERANCE HOLE... Q36 JIS FIT TOLERANCE SHAFT... Q38 DRILL DIAMETERS FOR PREPARED HOLES... Q4 HEXAGON SOCKET HEAD BOLT HOLE SIZE... Q41 TAPER STANDARD... Q42 INTERNATIONAL SYSTEM OF UNITS... Q43 SYSTEM OF UNITSTOOL WEAR AND DAMAGE... Q44 CUTTING TOOL MATERIALS... Q45 GRADE CHAIN... Q46 GRADES COMPARISON TABLE... Q47 INSERT CHIP BREAKER COMPARISON TABLE... Q53 Q1

TROUBLE SHOOTING FOR TURNING Solution Insert Grde Selection Cutting Conditions Style nd Design of the Tool Mchine, Instlltion of Tool Trouble Fctors Select hrder grde Select tougher grde Select grde with better therml shock resistnce Select grde with better dhesion resistnce Cutting speed Feed Up Down Depth of cut Coolnt Do not use wtersoluble cutting fluid Determine dry or wet cutting Select chip breker Rke Corner rdius Led ngle Up Down Honing strengthens the cutting edge Clss of insert Improve tool holder rigidity Increse clmping rigidity of the tool nd workpiece Decrese holder overhng Decrese power nd mchine bcklsh tool grde Insert wer quickly generted cutting edge geometry Deteriortion of Tool Life Chipping or frcturing of cutting edge cutting speed tool grde Lck of cutting edge strength. Therml crck occurs Wet Dry Build-up edge occurs Wet Lck of rigidity Out of Tolernce Dimensions re not constnt Necessry to djust often becuse of over-size Poor insert ccurcy Lrge cutting resistnce nd cutting edge flnk tool grde Deteriortion of Surfce Finish Poor finished surfce Welding occurs cutting edge geometry Chttering Wet Genertion of Het Workpiece over heting cn cuse poor ccurcy nd short life of insert cutting edge geometry Q2

Solution Insert Grde Selection Cutting Conditions Style nd Design of the Tool Mchine, Instlltion of Tool Trouble Fctors Select hrder grde Select tougher grde Select grde with better therml shock resistnce Select grde with better dhesion resistnce Cutting speed Feed Up Down Depth of cut Coolnt Do not use wtersoluble cutting fluid Determine dry or wet cutting Select chip breker Rke Corner rdius Led ngle Up Down Honing strengthens the cutting edge Clss of insert Improve tool holder rigidity Increse clmping rigidity of the tool nd workpiece Decrese holder overhng Decrese power nd mchine bcklsh Notch wer Burrs (steel, luminium) Wet cutting edge geometry Burrs, Chipping etc. Workpiece chipping (cst iron) cutting edge geometry Vibrtion occurs tool grde Burrs (mild steel) cutting edge geometry Wet Vibrtion occurs Wet Poor Chip Dispersl long chips Chips re short nd scttered Lrge chip control rnge cutting edge geometry Smll chip control rnge cutting edge geometry Dry Q3

CHIP CONTROL FOR TURNING ychip BREAKING CONDITIONS IN STEEL TURNING Type A Type B Type C Type D Type E Type Smll Depth of Cut d < 7mm Smll Depth of Cut d=7 15mm Curl Length l Curless l > 5mm l < 5mm 1 5 Curl i 1 Curl Less Thn 1 Curl Hlf Curl Note Irregulr continuous shpe Tngle round tool nd workpiece Regulr continuous shpe Long chips Good Good Chip scttering Chttering Poor fi nished surfce Mximum Cutting speed nd chip control rnge of chip breker In generl, when cutting speed increses, the chip control rnge tends to become nrrower..6 vc=5m/min.6 vc=1m/min.6 vc=15m/min.5 E.5 E.5 E Feed (mm/rev).4 B.3.2 C D Feed (mm/rev).4 B.3.2 C D Feed (mm/rev).4 B.3.2 C D.1 A.1 A.1 A 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 Depth of Cut (mm) Depth of Cut (mm) Depth of Cut (mm) Workpiece : S45C(18HB) Tool : MTJNR2525M16N Insert : TNMG1648 Dry Cutting Grde : P1Cemented Crbide Effects of coolnt on the chip control rnge of chip breker If the cutting speed is the sme, the rnge of chip control differs ccording to whether coolnt is used or not..6 Coolnt : Dry.6 Coolnt : Wet (Emulsion).5 E.5 E Feed (mm/rev).4.3.2.1 B C D A Feed (mm/rev).4.3 B D C.2.1 A 1 2 3 4 5 6 Depth of Cut (mm) 1 2 3 4 5 6 Depth of Cut (mm) Workpiece : S45C Cutting Conditions : vc=1m/min Q4

EFFECTS OF CUTTING CONDITIONS FOR TURNING yeffects OF CUTTING CONDITIONS Idel conditions for cutting re short cutting time, long tool life, nd high cutting ccurcy. In order to obtin these conditions, selection of effi cient nd tools, bsed on work mteril, hrdness, shpe nd mchine cpbility is necessry. ycutting SPEED Cutting speed effects tool life gretly. Incresing cutting speed increses cutting temperture nd results in shortening tool life. Cutting speed vries depending on the type nd hrdness of the work mteril. Selecting tool grde suitble for the cutting speed is necessry. Cutting Speed (m/min) 5 4 3 2 AP25N NX2525 UE615 MC625 MP325 VP15TF MC615 NX335 Workpiece : JIS S45C 18HB Tool Life Stndrd : VB =.3mm Depth of Cut : 1.5mm Feed :.3mm/rev Holder : PCLNR2525M12 Insert : CNMG1248 Dry Cutting UE635 1 1 2 3 4 5 6 7 8 9 1 Tool Life (min) P Clss Grde Tool Life Cutting Speed (m/min) 5 4 3 2 15 1 8 MC725 US735 MP735 UTi2T MC715 US72 Workpiece : JIS SUS34 2HB Tool Life Stndrd : VB =.3mm Depth of Cut : 1.5mm Feed :.3mm/rev Holder : PCLNR2525M12 Insert : CNMG1248-MA Dry Cutting 6 1 2 3 4 6 1 Tool Life (min) M Clss Grde Tool Life Cutting Speed (m/min) 5 4 3 2 15 1 8 6 MC515 UE611 AP25N UTi2T MC55 UC5115 NX2525 UC515 HTi1 Workpiece : JIS FC3 18HB Tool Life Stndrd : VB =.3mm Depth of Cut : 1.5mm Feed :.3mm/rev Holder : PCLNR2525M12 Insert : CNMG1248 Dry Cutting 1 2 3 4 6 1 Tool Life (min) K Clss Grde Tool Life Effects of Cutting Speed 1. Incresing cutting speed by 2% decreses tool life by 5%. Incresing cutting speed by 5% decreses tool life by 8%. 2. Cutting t low cutting speed (2 4m/min) tends to cuse chttering. Thus, tool life is shortened. Q5

EFFECTS OF CUTTING CONDITIONS FOR TURNING yfeed When cutting with generl type holder, feed is the distnce holder moves per workpiece revolution. When milling, feed is the distnce mchine tble moves per cutter revolution divided by the number of inserts. Thus, it is indicted s feed per tooth. Feed rte reltes to finished surfce roughness. Effects of Feed 1. Decresing feed rte results in fl nk wer nd shortens tool life. 2. Incresing feed rte increses cutting temperture nd fl nk wer. However, effects on the tool life is miniml compred to cutting speed. 3. Incresing feed rte improves mchining effi ciency. Flnk Wer (mm).4.3.2.1.3.6.8.1.2.3.6 Feed (mm/rev) Cutting Conditions Workpiece : JIS SNCM431 Grde : STi1T Insert : --5-5-35-35-.3mm Depth of Cut p=1.mm Cutting Speed vc=2m/min Cutting Time Tc=1min Feed nd Flnk Wer Reltionship in Steel Turning ydepth OF CUT Depth of cut is determined ccording to the required stock removl, shpe of workpiece, power nd rigidity of the mchine nd tool rigidity. Effects of Depth of Cut 1. Chnging depth of cut doesn't effect tool life gretly. 2. Smll depths of cut result in friction when cutting the hrdened lyer of workpiece. Thus tool life is shortened. 3. When cutting uncut surfces or cst iron surfces, the depth of cut needs to be incresed s much s the mchine power llows in order to void cutting impure hrd lyers with the tip of cutting edge to prevent chipping nd bnorml wer. Flnk Wer (mm).4.3.2.1.3.5.1.2.5 1. 2. 3. Depth of Cut (mm) Cutting Conditions Workpiece : JIS SNCM431 Grde : STi1T Insert : --5-5-35-35-.3mm Feed f=.2mm/rev Cutting Speed vc=2m/min Cutting Time Tc=1min Depth of Cut nd Flnk Wer Reltionship in Steel Turning Depth of Cut Uncut Surfce Roughing of Surfce Lyer tht Includes Uncut Surfce Q6

FUNCTION OF TOOL FEATURES FOR TURNING yrake ANGLE Rke ngle is cutting edge ngle tht hs lrge effect on cutting resistnce, chip disposl, cutting temperture nd tool life. Positive Rke Angle (+) Negtive Rke Angle (-) Positive Insert Chip Disposl nd Rke Angle Negtive Insert Tool Life (min) 2 1 8 5 3 2 1 Rke Angle 6 Tool Life Stndrd VB =.4 mm Rke Angle 15 6 5 1 2 Cutting Speed (m/min) Cutting Speed (m/min) Verticl Force (N) Cutting Temperture ( C) 14 12 1 14 12 1 6 5 Tool Life Stndrd : VB =.4mm Depth of Cut : 1mm Feed =.32mm/rev Rke Angle -1 Cutting Resistnce Cutting Conditions Grde : STi1 Depth of Cut : 1mm Feed :.32mm/rev Workpiece : JIS SK5 Rke Angle nd Tool Life Verticl Force Depth of Cut : 2mm Feed :.2mm/rev Cutting Speed : 1m/min Depth of Cut : 2mm Feed :.2mm/rev Cutting Speed : 1m/min Rke Fce Men Temperture -15-1 -5 5 1 15 2 25 Rke Angle ( ) Cutting Conditions Workpiece : JIS SK5 Grde : STi1T Insert : -Vr-5-5-2-2-.5mm Dry Cutting Effects of Rke Angle on Cutting Speed, Verticl Force, nd Cutting Temperture Effects of Rke Angle 1. Incresing rke ngle in the positive (+) direction improves shrpness. 2. Incresing rke ngle by 1 in the positive (+) direction decreses cutting power by bout 1%. 3. Incresing rke ngle in the positive (+) direction lowers cutting edge strength nd in the negtive (-) direction increses cutting resistnce. When to Increse Rke Angle in the Negtive (-) Direction u Hrd workpieces. u When the cutting edge strength is required such s for uncut surfces nd interrupted cutting. When to Increse Rke Angle in the Positive (+) Direction u Soft workpieces. u Workpiece is esily mchined. u When the workpiece or the mchine hve poor rigidity. yflank ANGLE Flnk ngle prevents friction between fl nk fce nd workpiece resulting in smooth feed. Rke Angle 6 Wer Depth Lrge Flnk Wer Wer Depth Smll Flnk Wer Flnk Wer (mm).3.2.1.5 vc = 2 vc = 1 vc = 5 Frcture $ Flnk Angle $ D.O.C. (Sme) % % Smll Flnk Angle Lrge Flnk Angle Effects of Rke Angle 1. Incresing fl nk ngle decreses fl nk wer occurrence. 2. Incresing fl nk ngle lowers cutting edge strength. D.O.C. (Sme) Flnk ngle cretes spce between tool nd workpiece. Flnk ngle reltes to flnk wer. Cutting Conditions When to Decrese Flnk Angle u Hrd workpieces. u When cutting edge strength is required. 3 6 8 1 12 15 2 Flnk Angle ($) Workpiece : JIS SNCM431 (2HB) Grde : STi2 Insert : -6-$-$-2-2-.5mm Depth of Cut : 1mm Feed :.32mm/rev Cutting Time : 2min Flnk Angle nd Flnk Wer Reltionship When to Increse Flnk Angle u Soft workpieces. u Workpieces suffer from work hrdening esily. Q7

FUNCTION OF TOOL FEATURES FOR TURNING yside CUTTING EDGE ANGLE (LEAD ANGLE) The side cutting edge ngle reduces impct lod nd effects the mount of feed force, bck force nd chip thickness. B h f = Sme f = Sme f = Sme 1.4B.97h Effects of Side Cutting Edge Angle (Led Angle) 1. At the sme feed rte, incresing the side cutting edge ngle increses the chip contct length nd decreses chip thickness. As result, the cutting force is dispersed on longer cutting edge nd tool life is prolonged. (Refer to the chrt.) 2. Incresing the side cutting edge ngle increses force '. Thus, thin, long workpieces suffer from bending in some cses. 3. Incresing the side cutting edge ngle decreses chip control. 4. Incresing the side cutting edge ngle decreses the chip thickness nd increses chip width. Thus, breking chips is diffi cult..87h kr = kr = 15 kr = 3 Side Cutting Edge Angle nd Chip Thickness 1.15B B : Chip Width f : Feed h : Chip Thickness kr : Side Cutting Edge Angle Tool Life (min) 8 6 4 3 2 1 8 6 5 4 3 Workpiece : JIS SCM44 Grde : STi12 Depth of Cut : 3mm Feed :.2mm/rev Dry Cutting Side Cutting Edge Angle 15 Side Cutting Edge Angle 1 15 2 3 Cutting Speed (m/min) Side Cutting Edge nd Tool Life When to Decrese Led Angle u Finishing with smll depth of cut. u Thin, long workpieces. u When the mchine hs poor rigidity. When to Increse Led Angle u Hrd workpieces which produce high cutting temperture. u When roughing workpiece with lrge dimeter. u When the mchine hs high rigidity. A Receive force A. A ' Force A is divided into nd '. yend CUTTING EDGE ANGLE The end cutting edge ngle voids interference between the mchined surfce nd the tool (end cutting edge). Usully 5 15. Effects of End Cutting Edge Angle 1. Decresing the end cutting edge ngle increses cutting edge strength, but it lso increses cutting edge temperture. 2. Decresing the end cutting edge ngle increses the bck force nd cn result in chttering nd vibrtion while mchining. 3. Smll end cutting edge ngle for roughing nd lrge ngle for fi nishing re recommended. Bck Relief Angle End Cutting Edge Angle Side Flnk Angle ycutting EDGE INCLINATION Cutting edge inclintion indictes inclintion of the rke fce. During hevy cutting, the cutting edge receives n extremely lrge shock t the beginning of ech cut. Cutting edge inclintion keeps the cutting edge from receiving this shock nd prevents frcturing. 3 5 in turning nd 1 15 in milling re recommended. Effects of Cutting Edge Inclintion 1. Negtive ( ) cutting edge inclintion disposes chips in the workpiece direction, nd positive (+) disposes chips in the opposite direction. 2. Negtive ( ) cutting edge inclintion increses cutting edge strength, but it lso increses the bck force of cutting resistnce. Thus, chttering cn esily occur. ( ) Cutting Edge Inclintion Min Cutting Edge Side Cutting Edge Angle True Rke Angle End Cutting Edge Angle Corner Rdius Q8

yhoning AND LAND Honing nd lnd re cutting edge shpes tht mintin cutting edge strength. Honing cn be round or chmfer type. The optiml honing width is pproximtely 1/2 of the feed. Lnd is the nrrow fl t re on the rke or fl nk fce. Honing Width EDR Honing Angle Honing Width Lnd Width Round Honing Chmfer Honing Flt Lnd Tool Life (Number of Impcts) 5 1 5 1 R Honing C Honing.2.5.1.2.5 Honing Size (mm) Workpiece : JIS SNCM439 (28HB) Grde : P1 Cutting Conditions : vc=2m/min p=1.5mm f=.335mm/rev Honing Size nd Tool Life Due to Frcturing Tool Life (min) 1 5 2 1 R Honing C Honing VB KT 5.2.5.1.2.5 Honing Size (mm) Workpiece : JIS SNCM439 (22HB) Grde : P1 Cutting Conditions : vc=16m/min p=1.5mm f=.45mm/rev Honing Size nd Tool Life Due to Wer Principl Force (N) Feed Force (N) Bck Force (N) 17 16 15 14 14 9 8 7 6 8 7 6 5 R Honing C Honing 4.2.5.1.2.5 Honing Size (mm) Workpiece : JIS SNCM439 (22HB) Grde : P1 Cutting Conditions : vc=1m/min p=1.5mm f=.425mm/rev Honing Size nd Cutting Resistnce Effects of Honing 1. Enlrging the honing increses cutting edge strength, tool life nd reduces frcturing. 2. Enlrging the honing increses fl nk wer occurrence nd shortens tool life. Honing size doesn't ffect rke wer. 3. Enlrging the honing increses cutting resistnce nd chttering. When to Decrese Honing Size u When fi nishing with smll depth of cut nd smll feed. u Soft workpieces. u When the workpiece or the mchine hve poor rigidity. When to Increse Honing Size u Hrd workpieces. u When the cutting edge strength is required such s for uncut surfces nd interrupted cutting. u When the mchine hs high rigidity. Cemented crbide, coted dimond, nd indexble cermet inserts hve round honing s stndrd. Q9

FUNCTION OF TOOL FEATURES FOR TURNING yradius Rdius effects the cutting edge strength nd fi nished surfce. In generl, corner rdius 2 3 times the feed is recommended. Depth of Cut Feed Feed Theoreticl Finished Surfce Roughness Finished Surfce (!) 4 3 2 1 Feed (mm/rev).75.16.15.212.3 Depth of Cut Theoreticl Finished Surfce Roughness.4.8 1.2 1.6 2. Corner Rdius (mm) Workpiece : JIS SNCM439 (2HB) Grde : P2 Cutting Speed : vc=12m/min p=.5mm Corner Rdius nd Finished Surfce Tool Life (Number of Impcts) 2 1.5 1. 1.5 2. Corner Rdius (mm) Workpiece : JIS SNCM44 (28HB) Grde : P1 Cutting Conditions : vc=1m/min p=2mm f=.335mm/rev Flnk Wer Width (mm).4.2 Flnk Wer Crter Wer (Crter Depth).5 1. 1.5 2. Corner Rdius (mm).8.4 Crter Wer Depth (mm) Workpiece : JIS SNCM439 (2HB) Grde : P1 Cutting Conditions : vc=14m/min p=2mm f=.212mm/rev Tc=1min Corner Rdius Size nd Tool Life Due to Frcturing Corner Rdius Size nd Tool Wer Effects of Corner Rdius 1. Incresing the corner rdius improves the surfce fi nish. 2. Incresing the corner rdius improves cutting edge strength. 3. Incresing the corner rdius too much increses the cutting resistnce nd cuses chttering. 4. Incresing the corner rdius decreses fl nk nd rke wer. 5. Incresing the corner rdius too much results in poor chip control. When to Decrese Corner Rdius u Finishing with smll depth of cut. u Thin, long workpieces. u When the mchine hs poor rigidity. When to Increse Corner Rdius u When the cutting edge strength is required such s in intrrupted cutting nd uncut surfce cutting. u When roughing workpiece with lrge dimeter. u When the mchine hs high rigidity. Corner Rdius nd Chip Control Rnge.6 1.8 Feed (mm/rev).5.4.3.2.1 B C E D A :.4R(TNGG1644R) :.8R(TNGG1648R) : 1.2R(TNGG16412R) 1 2 3 4 5 Depth of Cut (mm).2 R1 15 Workpiece : JIS S45C (18HB) Insert : TNGG1644R TNGG1648R TNGG16412R (STi1T) Holder : ETJNR33K16 (Side Cutting Edge ngle 3 ) Cutting Speed : vc=1m/min Dry Cutting (Note) Plese refer to pge Q4 for chip shpes (A, B, C, D, E). Q1

FORMULAE FOR CUTTING POWER ycutting POWER (Pc) Pc = Kc p f vc Kc 6 1 3 ( Work Mteril Mild Steel Medium Steel Hrd Steel Tool Steel Tool Steel Chrome Mngnese Steel Chrome Mngnese Steel Chrome Molybdenum Steel Chrome Molybdenum Steel Nickel Chrome Molybdenum Steel Nickel Chrome Molybdenum Steel Hrd Cst Iron Meehnite Cst Iron Grey Cst Iron (kw) (Problem) Wht is the cutting power required for mchining mild steel t cutting speed 12m/min with depth of cut 3mm nd feed.2mm/rev (Mchine coeffi cient 8%)? Pc (kw) : Actul Cutting Power p (mm) : Depth of Cut f (mm/rev) : Feed per Revolution vc (m/min) : Cutting Speed Kc (MP) : Specifi c Cutting Force ( : (Mchine Coeffi cient) Tensile Strength(MP) nd Hrdness (Answer) Substitute the specifi c cutting force Kc=31MP into the formul. Pc = 3.2 12 31 = 4.65 6 1 3.8 (kw) Specifi c Cutting Force Kc (MP).1 (mm/rev).2 (mm/rev).3 (mm/rev).4 (mm/rev).6 (mm/rev) 52 361 31 272 25 228 62 38 27 257 245 23 72 45 36 325 295 264 67 34 28 263 25 24 77 315 285 262 245 234 77 383 325 29 265 24 63 451 39 324 29 263 73 45 39 34 315 285 6 361 32 288 27 25 9 37 265 235 22 198 352HB 331 29 258 24 22 46HRC 319 28 26 245 227 36 23 193 173 16 145 2HB 211 18 16 14 133 ycutting SPEED (vc) vc = ) Dm n 1 (m/min) vc (m/min) : Cutting Speed Dm (mm) : Workpiece Dimeter ) (3.14) : Pi n (min -1 ) : Min Axis Spindle Speed Divide by 1 to chnge to m from mm. (Problem) Wht is the cutting speed when min xis spindle speed is 7min -1 nd externl dimeter is &5? (Answer) Substitute )=3.14, Dm=5, n=7 into the formul. vc = ) Dm n = 3.14 5 7 = 11m/min 1 1 Cutting speed is 11m/min. yfeed (f) f = l n (mm/rev) (Problem) Wht is the feed per revolution when min xis spindle speed is 5min -1 nd cutting length per minute is 12mm/min? (Answer) Substitute n=5, I=12 into the formul. f = l = 12 =.24mm/rev n 5 The nswer is.24mm/rev. f (mm/rev) : Feed per Revolution I (mm/min) : Cutting Length per Min. n (min -1 ) : Min Axis Spindle Speed f l ødm n n ycutting TIME (Tc) ytheoretical FINISHED SURFACE ROUGHNESS (h) Tc= Im l (min) Tc (min) : Cutting Time Im (mm) : Workpiece Length I (mm/min): Cutting Length per Min. h= f 2 8RE 1(!m) h (!m) : Finished Surfce Roughness f (mm/rev) : Feed per Revolution RE(mm) : Insert Corner Rdius (Problem) Wht is the cutting time when 1mm workpiece is mchined t 1min -1 with feed =.2mm/rev? (Answer) First, clculte the cutting length per min. from the feed nd spindle speed. I = f n =.2 1 = 2mm/min Substitute the nswer bove into the formul. (Problem) Wht is the theoreticl fi nished surfce roughness when the insert corner rdius is.8mm nd feed is.2mm/rev? (Answer) Substitute f=.2mm/rev, RE=.8 into the formul. h =.22 1 = 6.25!m 8.8 The theoreticl fi nished surfce roughness is 6!m. Tc = Im = 1 =.5min l 2.5 x 6=3 (sec.) The nswer is 3 sec. Feed Feed Depth of Cut Theoreticl Finished Surfce Roughness Depth of Cut Theoreticl Finished Surfce Roughness Q11

TROUBLE SHOOTING FOR FACE MILLING Deteriortion of Tool Life Deteriortion of Surfce Finish Burr, Workpiece Chipping Chip Control Trouble Insert wer quickly generted Chipping or frcturing of cutting edge Poor finished surfce Not prllel or irregulr surfce Burrs, chipping Workpiece edge chipping Poor chip dispersl, chip jmming nd chip pcking Solution Fctors tool grde cutting edge geometry cutting speed tool grde Lck of cutting edge strength. Therml crck occurs Build-up edge occurs Lck of rigidity Welding occurs Poor run-out ccurcy Chttering Workpiece bending Tool clernce Lrge bck force Chip thickness is too lrge Cutter dimeter is too lrge Low shrpness A lrge corner ngle Low shrpness A smll corner ngle Chttering Welding occurs Chip thickness is too thin Cutter dimeter is too smll Poor chip disposl Insert Grde Selection Select hrder grde Select tougher grde Select grde with better therml shock resistnce Select grde with better dhesion resistnce Cutting speed Wet Dry Wet Wet Feed Cutting Conditions Up Down Depth of cut Engge ngle Up Coolnt Do not use wtersoluble cutting fluid Determine dry or wet cutting Rke Corner ngle Style nd Design of the Tool Honing strengthens the cutting edge Up Down Cutter dimeter Wet Number of teeth Smller Lrger Wider chip pocket Use of wiper insert Improve run-out ccurcy Cutter rigidity Mchine, Instlltion of Tool Increse clmping rigidity of the tool nd workpiece Decrese overhng Decrese power nd mchine bcklsh Q12

FUNCTION OF TOOL FEATURES FOR FACE MILLING yfunction OF EACH CUTTING EDGE ANGLE IN FACE MILLING True Rke Angle (T) Wiper Insert Rdil Rke Angle (GAMF) Axil Rke Angle Led (GAMP) Angle (KAPR) Min Cutting Edge Ech Cutting Edge Angle in Fce Milling Cutting Edge Inclintion (I) Type of Angle Symbol Function Effect Axil Rke Angle GAMP Rdil Rke Angle GAMF Led Angle True Rke Angle Cutting Edge Inclintion KAPR T I Determines chip disposl direction. Determines shrpness. Determines chip thickness. Determines ctul shrpness. Determines chip disposl direction. Positive : Excellent mchinbility. Negtive : Excellent chip disposl. Smll : Thin chips nd smll cutting impct. Lrge bck force. Positive (lrge) : Excellent mchinbility. Miniml welding. Negtive (lrge) : Poor mchinbility. Strong cutting edge. Positive (lrge) : Excellent chip disposl. Low cutting edge strength. ystandard INSERTS Positive nd Negtive Rke Angle Stndrd Cutting Edge Shpe Negtive Rke Angle Neutrl Rke Angle Positive Rke Angle (-) (+ ) (+ ) Axil Rke Angle (-) Axil Rke Angle (+ ) Axil Rke Angle Stndrd Cutting Edge Combintions Rdil Rke Angle Rdil Rke Angle Rdil Rke Angle (+ ) (-) (-) Insert shpe whose cutting edge precedes is positive rke ngle. Insert shpe whose cutting edge follows is negtive rke ngle. Double Positive (DP Edge Type) Double Negtive (DN Edge Type) Negtive/Positive (NP Edge Type) Axil Rke Angle (GAMP) Positive ( + ) Negtive ( ) Positive ( + ) Rdil Rke Angle (GAMF) Positive ( + ) Negtive ( ) Negtive ( ) Insert Used Positive Insert (One Sided Use) Negtive Insert (Double Sided Use) Positive Insert (One Sided Use) Work Mteril Steel Cst Iron Aluminium Alloy Difficult-to-Cut Mteril ylead ANGLE (KAPR) AND CUTTING CHARACTERISTICS Cutting Resistnce (N) 3 25 2 15 1 5-5 Led Angle : 9 Led Angle : 75 Led Angle : 45 Principl Force Feed Force Principl Force Feed Force Principl Force.1.2.3 Bck Force Bck Force.1.2.3.1.2.3 Bck Force fz (mm/t.) fz (mm/t.) fz (mm/t.) p Feed Force Workpiece : JIS SCM44 (281HB) Tool : ø125mm Single Insert Cutting Conditions : vc=125.6m/min p=4mm e=11mm Cutting Resistnce Comprison between Different Insert Shpes Principl Force Feed Force Bck Force Tble Feed Three Cutting Resistnce Forces in Milling e Led Angle 9 Bck force is in the minus direction. Lifts the workpiece when workpiece clmp rigidity is low. Led Angle 75 Led ngle 75 is recommended for fce milling of workpieces with low rigidity such s thin workpieces. Led Angle 45 The lrgest bck force. Bends thin workpieces nd lowers cutting ccurcy. Prevents workpiece edge chipping when cst iron cutting. Led Angle 9 Led Angle 75 Led Angle 45 Principl force : Force is in the opposite direction of fce milling rottion. Bck force : Force tht pushes in the xil direction. Feed force : Force is in the feed direction nd is cused by tble feed. Q13

FUNCTION OF TOOL FEATURES FOR FACE MILLING yapproach ANGLE AND THE TOOL LIFE Approch Angle nd Chip Thickness When the depth of cut nd feed per tooth, fz, re fixed, the smller the corner ngle (KAPR) is, then the thinner the chip thickness (h) becomes (for 45 KAPR, it is pprox. 75% tht of 9 KAPR). This cn be seen in below. Therefore s the KAPR increses, the cutting resistnce decreses resulting in longer tool life. Note however, if the chip thickness is too lrge then the cutting resistnce cn increse leding to vibrtions nd shortened tool life. KAPR:9 KAPR:75 KAPR:45 h=fz 9 h=.96fz 75 45 h=.75fz fz fz fz Effects on chip thickness due to the vrition of led ngles Approch Angle nd Fce Wer Below shows wer ptterns for different led ngles. When compring crter wer for 9 nd 45 led ngles, it cn be clerly seen tht the ctter wer for 9 led ngle is lrger. Led Angle 9 Led Angle 75 Led Angle 45 vc=1m/min Tc=69min vc=125m/min Tc=55min vc=16m/min Tc=31min Workpiece : SNCM439 287HB Tools : DC=125mm Insert : M2Cemented Crbide Cutting Conditions : p=3.mm e=11mm fz=.2mm/t. Dry Cutting yup AND DOWN CUT (CLIMB) MILLING When choosing method to mchine, up cutting or down cut milling (climb milling) is decided by the conditions of the mchine tool, the milling cutter nd the ppliction. However, it is sid tht in terms of tool life, down cut (climb) milling is more dvntgeous. Up Cut Down Cut Tool rottion Workpiece movement direction Portion mchined Tool rottion Workpiece movement direction Milling cutter inserts Milling cutter inserts Portion mchined Q14

yfinished SURFACE Cutting Edge Run-out Accurcy Cutting edge run-out ccurcy of indexble inserts on the cutter body gretly ffects the surfce fi nish nd tool life. Peripherl Cutting Edge Minor Cutting Edge Run-out Lrge Smll Poor Finished Surfce Good Finished Surfce Chipping Due to Vibrtion Rpid Wer Growth Stble Tool Life Shorten Tool Life Cutting Edge Run-out nd Accurcy in Fce Milling Improve Finished Surfce Roughness 1 2 3 4 5 6 1 f fz : Feed per Tooth f : Feed per Revolution Tble Feed Cutting Edge No. fz Sub Cutting Edge Run-out nd Finished Surfce D.O.C Since Mitsubishi Mterils' norml sub cutting edge width is 1.4mm, nd the sub cutting edges re set prllel to the fce of milling cutter, theoreticlly the fi nished surfce ccurcy should be mintined even if run-out ccurcy is low. Actul Problems Cutting edge run-out. Sub cutting edge inclintion. Milling cutter body ccurcy. Spre prts ccurcy. Welding, vibrtion, chttering. Countermesure Wiper Insert Mchine surfce tht hs lredy been per-mchined in order to produce smooth fi nished surfce. 1.3.1mm Replce one or two norml inserts with wiper inserts. Wiper inserts be set to protrude by Wiper Insert Stndrd Insert.3.1mm from the stndrd inserts. 1. Vlue depends on the cutting edge nd insert combintion. How to Set Wiper Insert Body Loctor () One Corner Type Replce norml insert. Body Loctor (b) Two Corner Type Replce norml insert. Body (c) Two Corner Type Use loctor for wiper insert. Loctor Sub cutting edge length hs to be longer thn the feed per revolution. Too long sub cutting edge cuses chttering. When the cutter dimeter is lrge nd feed per revolution is longer thn the sub cutting edge of the wiper insert, use two or three wiper inserts. When using more thn 1 wiper inserts, eliminte run-out of wiper inserts. Use high hrdness grde (high wer resistnce) for wiper inserts. Q15

FORMULAE FOR FACE MILLING ycutting SPEED (vc) vc = ) DC n 1 DC n (m/min) Divide by 1 to chnge to m from mm. vc (m/min) : Cutting Speed DC(mm) : Cutter Dimeter ) (3.14) : Pi n (min -1 ) : Min Axis Spindle Speed (Problem) Wht is the cutting speed when min xis spindle speed is 35min -1 nd the cutter dimeter is &125? (Answer) Substitute )=3.14, DC=125, n=35 into the formul. vc = ) DC n = 3.14 125 35 = 137.4m/min 1 1 The cutting speed is 137.4m/min. yfeed PER TOOTH (fz) fz = vf z n Feed per Tooth (fz) (mm/tooth) Feed Direction Wiper Edge Angle Tooth Mrk fz (mm/tooth): Feed per Tooth z: Insert Number vf (mm/min) : Tble Feed per Min. n (min -1 ) : Min Axis Spindle Speed (Feed per Revolution f = z x fz) (Problem) Wht is the feed per tooth when the min xis spindle speed is 5min -1, number of insert is 1, nd tble feed is 5mm/min? (Answer) Substitute the bove fi gures into the formul. fz = vf 5 = =.1mm/tooth z n 1 5 The nswer is.1mm/tooth. ytable FEED (vf) vf = fz z n (mm/min) n vf (mm/min) : Tble Feed per Min. z: Insert Number fz (mm/tooth): Feed per Tooth n (min -1 ) : Min Axis Spindle Speed (Problem) Wht is the tble feed when feed per tooth is.1mm/tooth, number of insert is 1, nd min xis spindle speed is 5min -1? (Answer) Substitute the bove fi gures into the formul. vf = fz z n =.1 1 5 = 5mm/min The tble feed is 5mm/min. ycutting TIME (Tc) Tc= DC L vf L (min) l Tc (min) : Cutting Time vf (mm/min) : Tble Feed per Min. L (mm) : Totl Tble Feed Length (Workpiece Length: (l)+cutter Dimeter : (DC)) (Problem) Wht is the cutting time required for finishing 1mm width nd 3mm length surfce of cst iron (JIS FC2) block when the cutter dimeter is &2mm, the number of inserts is 16, the cutting speed is 125m/min, nd feed per tooth is.25mm. (spindle speed is 2min -1 ) (Answer) Clculte tble feed per min vf=.25 16 2=8mm/min Clculte totl tble feed length. L=3+2=5mm Substitute the bove nswers into the formul. Tc = 5 =.625 8 (min).625 6=37.5 (sec). The nswer is 37.5 sec. Q16

ycutting POWER (Pc) Pc = p e vf Kc 6 1 6 ( Pc (kw) : Actul Cutting Power p (mm) : Depth of Cut e (mm) : Cutting Width vf (mm/min) : Tble Feed per Min. Kc (MP) : Specifi c Cutting Force ( : (Mchine Coeffi cient) (Problem) Wht is the cutting power required for milling tool steel t cutting speed of 8m/min. With depth of cut 2mm, cutting width 8mm, nd tble feed 28mm/min by &25 cutter with 12 inserts. Mchine coeffi cient 8%. Kc Mild Steel Work Mteril Tensile Strength (MP) nd Hrdness (Answer) First, clculte the spindle speed in order to obtin feed per tooth. n = 1vc 1 8 = = 11.91 min ) DC 3.14 25-1 fz = vf 28 Feed per Tooth = =.228mm/tooth z n 12 11.9 Substitute the specifi c cutting force into the formul. Pc = 2 8 28 18 6 1 6.8 = 1.68 kw Specifi c Cutting Force Kc (MP).1mm/tooth.2mm/tooth.3mm/tooth.4mm/tooth.6mm/tooth 52 22 195 182 17 158 Medium Steel Hrd Steel Tool Steel Tool Steel Chrome Mngnese Steel Chrome Mngnese Steel Chrome Molybdenum Steel Chrome Molybdenum Steel Nickel Chrome Molybdenum Steel Nickel Chrome Molybdenum Steel Austenitic Stinless Steel Cst Iron Hrd Cst Iron Meehnite Cst Iron Grey Cst Iron Brss Light Alloy (Al-Mg) Light Alloy (Al-Si) Light Alloy (Al-Zn-Mg-Cu) 62 198 18 173 16 157 72 252 22 24 185 174 67 198 18 173 17 16 77 23 18 175 17 158 77 23 2 188 175 166 63 275 23 26 18 178 73 254 225 214 2 18 6 218 2 186 18 167 94 2 18 168 16 15 352HB 21 19 176 17 153 155HB 23 197 19 177 171 52 28 25 232 22 24 46HRC 3 27 25 24 22 36 218 2 175 16 147 2HB 175 14 124 15 97 5 115 95 8 7 63 16 58 48 4 35 32 2 7 6 49 45 39 57 88 84 84 81 72 Q17

TROUBLE SHOOTING FOR END MILLING Deteriortion of Tool Life Deteriortion of Surfce Finish Burrs, Chipping, etc. Poor Chip Dispersl Trouble Lrge peripherl cutting edge wer Severe chipping Brekge during cutting Vibrtion during cutting Poor surfce finish on wlls Poor surfce finish on fces Out of verticl Poor dimensionl ccurcy Burr or chipping occurs Quick bur formtion Chip pcking Solution Fctors Non-coted end mill is used A smll number of cutting edges Up cut milling is used Frgile cutting edge Insufficient clmping force Low clmping rigidity Low end mill rigidity Overhng longer thn necessry Chip jmming Low end mill rigidity Low clmping rigidity Lrge cutting edge wer Chip pcking. The end cutting edge does not hve concve ngle Lrge pick feed Lrge cutting edge wer Lck of end mill rigidty Low clmping rigidity Lrge helix ngle Notch wer Metl removl too lrge Lck of chip pocket Insert Grde Selection Coted tool Cutting speed Wet Feed Cutting Conditions Up Down Depth of cut Pick feed Down Down cut Down Cut Use ir blow Coolnt Increse coolnt quntity Do not use wtersoluble cutting fluid Determine dry or wet cutting Style nd Design of the Tool Helix ngle Insert number Up Down Concvity ngle of end cutting edge Tool dimeter Lrger Smller Cutter rigidity Wider chip pocket Mchine, Instlltion of Tool Shorten tool overhng Increse tool instlltion ccurcy Increse spindle collet run-out ccurcy Collet inspection nd exchnge Increse chuck clmping power Increse work clmping rigidity Q18

END MILL TERMINOLOGY yend MILL TERMINOLOGY Cutter-sweep Neck Flute Shnk Dimeter Shnk dimeter Length of cut Overll length Lnd width (Groove width) Primry clernce lnd (Relief width) Primry clernce ngle Secondry clernce ngle Rdil rke ngle Corner End cutting edge End gsh Axil rke ngle Concvity ngle of end cutting edge Peripherl cutting edge Helix ngle Axil primry relief ngle Axil secondry clernce ngle ycomparison OF SECTIONAL SHAPE AREA OF CHIP POCKET 2-fl utes 5% 3-fl utes 45% 4-fl utes 4% 6-fl utes 2% ycharacteristics AND APPLICATIONS OF DIFFERENT-NUMBER-OF-FLUTE END MILLS Feture Advntge Fult 2-fl utes 3-fl utes 4-fl utes 6-fl utes Chip disposbility is excellent. Suitble for sinking. Low cutting resistnce. Low rigidity Chip disposbility is excellent. Suitble for sinking. Dimeter is not esily mesured. High rigidity Chip disposbility is poor. High rigidity. Superior cutting edge durbility. Chip disposbility is poor. Usge Slotting, side milling, sinking etc. Wide rnge of use. Slotting, side milling Hevy cutting, finishing Shllow slotting, side milling Finishing High Hrdness Mteril Shllow slotting, side milling Q19

TYPES AND SHAPES OF END MILL yperipherl Cutting Edge Kind Shpe Feture Ordinry Flute Ordinry fl ute type is most generlly used for the slotting, side milling, nd the shoulder milling, etc. Cn be used for roughing, semi-finishing, nd the fi nishing. Tpered Flute A tpered fute is used for milling mould drfts nd ngled fces. Roughing Flute Becuse roughing tooth hs wve-like form nd produces smll chips. Cutting resistnce is low, nd is suitble for roughing. Not suitble for fi nishing. The tooth fce is re-grindble. Formed Flute A corner rdius cutter is shown. An infi nite rnge of form cutters cn be produced. yend Cutting Edge Kind Shpe Feture Squre End (Centre With Hole) This is generlly used for slotting, side milling, nd shoulder milling. Sinking is not possible. Grinding is center supported, mking re-grinding ccurte. Squre End (Centre Cut) It is generlly used for slotting, side milling, nd shoulder milling. Verticl cutting cn be performed. Re-grinding is possible. Bll End Suitble for profi le mchining nd pick feed milling. End Rdius For corner rdius milling nd contouring. Effi cient smll corner rdius milling due to lrge dimeter nd smll corner rdius. yshnk And Neck Prts Kind Shpe Feture Stndrd (Stright Shnk) For generl use. Long Shnk Long Neck Tper Neck For deep slotting nd hs long shnk, so tht djustment of the overhng is possible. For deep slotting nd smll dimeter end mills, lso suitble for boring. For best performnce in deep slotting nd on mould drfts. Q2

PITCH SELECTION OF PICK FEED ypick FEED MILLING (CONTOURING) WITH BALL NOSE END MILLS AND END MILLS WITH CORNER RADIUS End mill h h= R 1 cos sin -1 ( P ) 2R R R : Rdius of Bll Nose(PRFRAD), Corner Rdius(RE) P : Pick Feed P h : Cusp Height ycorner R OF END MILLS AND CUSP HEIGHT BY PICK FEED P Pitch of Pick Feed (P) Unit : mm R.1.2.3.4.5.6.7.8.9 1.. 5.3.1.23.42.67.1 1.1.5.11.2.32.46.63.83.17 1. 5.1.3.8.13.21.3.41.54.69.86 2.1.3.6.1.16.23.31.4.51.64 2. 5.1.2.5.8.13.18.25.32.41.51 3.2.4.7.1.15.2.27.34.42 4.1.3.5.8.11.15.2.25.31 5.1.2.4.6.9.12.16.2.25 6.1.2.3.5.8.1.13.17.21 8.1.3.4.6.8.1.13.16 1.1.2.3.5.6.8.1.13 12. 5.1.2.3.4.5.6.8.1 P Pitch of Pick Feed (P) R 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.. 5 1 1. 5.14 2.77.92.19 2. 5.61.73.86.1 3.51.61.71.83.95.19 4.38.45.53.62.71.81.91.13 5.3.36.42.49.57.64.73.82.91.11 6.25.3.35.41.47.54.61.68.76.84 8.19.23.26.31.35.4.45.51.57.63 1.15.18.21.25.28.32.36.41.45.5 12. 5.12.14.17.2.23.26.29.32.36.4 Q21

TROUBLE SHOOTING FOR DRILLING Deteriortion of Tool Life Deteriortion of Hole Accurcy Burrs Poor Chip Dispersl Trouble Drill brekge Lrge wer t the peripherl cutting edge nd long the lnd Chipping of the peripherl cutting edge Chisel edge chipping Hole dimeter increses Hole dimeter becomes smller Poor strightness Poor hole positioning ccurcy, roundness nd surfce finish Burrs t the hole exit Long chips Chip jmming Solution Fctors Lck of drill rigidity Lrge deflection of the tool holder Workpiece fce is inclined An increse in temperture t the cutting point Poor run-out ccurcy Lrge deflection of the tool holder chttering, vibrtion The chisel edge width is too wide Poor entry Chttering, vibrtion Lck of drill rigidity drill geometry An increse in temperture t the cutting point drill geometry Lck of drill rigidity Lrge deflection of the tool holder Poor guiding properties Lck of drill rigidity Poor entry Lrge deflection of the tool holder drill geometry Poor chip disposl Poor chip disposl Cutting speed Up Down Feed Cutting Conditions Lower feed t initil cutting Lower feed when breking through Step feed Increse ccurcy of prep-hole nd depth Increse oil rtio Coolnt Increse volume Increse coolnt pressure Chisel width Style nd Design of the Tool Honing width Up Down Core thickness Shorten flute length Decrese lip height Use internl coolnt type drill Chnge to drill with X type thinning Increse tool instlltion ccurcy Mchine, Instlltion of Tool Shorten tool overhng Flt workpiece fce Increse work clmping rigidity Reduce mchine bcklsh nd increse rigidity Q22

DRILL WEAR AND CUTTING EDGE DAMAGE ydrill WEAR CONDITION The tble below shows simple drwing depicting the wer of drill s cutting edge. The genertion nd the mount of wer differ ccording to the workpiece mterils nd used. But generlly, the peripherl wer is lrgest nd determines drill tool life. When regrinding, the flnk wer t the point needs to be ground wy completely. Therefore, if there is lrge wer more mteril needs to be ground wy to renew the cutting edge. We We : Chisel edge wer width Wf Wf : Flnk Wer (The middle of the cutting edge) Wo Wo : Outer corner wer width Wm : Mrgin wer width Wm Wm' Wm' : Mrgin wer width (Leding edge) ycutting EDGE DAMAGE When drilling, the cutting edge of the drill cn suffer from chipping, frcture nd bnorml dmge. In such cses, it is importnt to tke closer look t the dmge, investigte the cuse nd tke countermesures. b c b c Cutting edge dmge Q23

DRILL TERMINOLOGY AND CUTTING CHARACTERISTICS ynames OF EACH PART OF A DRILL Stright shnk with tng Height of point Functionl length Clernce ngle Flnk Led Helix ngle Body Neck Tper shnk Tng Drill dimeter Outer corner Point ngle Centrl xis Flute length Shnk length Overll length Neck length Mrgin width Mrgin Depth of body clernce Body clernce Chisel edge ngle Lnd width Flute Flute width Cutting edge yshape SPECIFICATION AND CUTTING CHARACTERISTICS Helix Angle Is the inclintion of the fl ute with respect to the xil direction of drill, which corresponds to the rke ngle of bit. The rke ngle of drill differs ccording to the position of the cutting edge, nd it decreses gretly s the circumference pproches the centre.the chisel edge hs negtive rke ngle, crushing the work. High-hrdness mteril Smll Rke ngle Lrge Soft mteril (Aluminium, etc.) Flute Length Point Angle Web Thickness It is determined by depth of hole, bush length, nd regrinding llownce. Since the infl uence on the tool life is gret, it is necessry to minimize it s much s possible. In generl, the ngle is 118 which is set differently to vrious pplictions. Soft mteril with good mchinbility Smll Point ngle Lrge For hrd mteril nd high-efficiency mchining It is n importnt element tht determines the rigidity nd chip rking performnce of drill. The web thickness is set ccording to pplictions. Lrge cutting resistnce Smll cutting resistnce High rigidity Low rigidity Thin Web thickness Thick Poor chip rking performnce Good chip rking performnce High-hrdness mteril, Mchinble mteril cross hole drilling, etc. Mrgin Dimeter Bck Tper The tip determines the drill dimeter nd functions s drill guide during drilling. The mrgin width is determined in considertion of friction during hole drilled. Poor guiding performnce Smll Mrgin width Lrge Good guiding performnce To reduce friction with the inside of the drilled hole, the portion from the tip to the shnk is tpered slightly. The degree is usully represented by the quntity of reduction in the dimeter with respect to the fl ute length, which is pprox..4.1mm. It is set t lrger vlue for high-effi ciency drills nd the work mteril tht llows drilled holes. Q24

ycutting EDGE GEOMETRY AND ITS INFLUENCE As shown in the tble below, it is possible to select the most suitble cutting edge geometry for different pplictions. If the most suitble cutting edge geometry is selected then higher mchining efficiency nd higher hole ccurcy cn be obtined. Cutting Edge Shpes Grinding nme Shpe Fetures nd effect Appliction Conicl The fl nk is conicl nd the clernce ngle increses towrd the centre of the drill. Generl Use Flt The fl nk is fl t. Esy grinding. Minly for smll dimeter drills. Three fl nk ngles As there is no chisel edge, the results re high centripetl force nd smll hole oversize. Requires specil grinding mchine. Surfce grinding of three sides. For drilling opertions tht require high hole ccurcy nd positioning ccurcy. Spirl point To increse the clernce ngle ner the centre of the drill, conicl grinding combined with irregulr helix. S type chisel edge with high centripetl force nd mchining ccurcy. For drilling tht requires high ccurcy. Rdil lip Centre Point drill The cutting edge is ground rdil with the im of dispersing lod. High mchining ccurcy nd fi nished surfce roughness. For through holes, smll burrs on the bse. Requires specil grinding mchine. This geometry hs two-stge point ngle for better concentricity nd reduction in shock when exiting the workpiece. Cst Iron, Aluminium Alloy For cst iron pltes. Steel For thin sheet drilling. yweb THINNING The rke ngle of the cutting edge of drill reduces towrd the centre, nd it chnges into negtive ngle t the chisel edge. During drilling, the centre of drill crushes the work, generting 5 7% of the cutting resistnce. Web thinning is very effective for reduction in the cutting resistnce of drill, erly removl of cut chips t the chisel edge, nd better initil bite. Shpe Fetures Mjor Applictions X type XR type S type N type The thrust lod substntilly reduces, nd the bite performnce improves. This is effective when the web is thick. Generl drilling nd deep hole drilling. The initil performnce is slightly inferior to tht of the X type, but the cutting edge is hrd nd the pplicble rnge of work is wide. Long life. Generl drilling nd stinless steel drilling. Populr design, esy cutting type. Generl drilling for steel, cst iron, nd non-ferrous metl. Effective when the web is comprtively thick. Deep hole drilling. Q25

DRILL TERMINOLOGY AND CUTTING CHARACTERISTICS ydrilling CHIPS Types of Chips Shpe Fetures nd Ese of Rking Conicl Spirl Fn-shped chips cut by the cutting edge re curved by the fl ute. Chips of this type re produced when the feeding rte of ductile mteril is smll. If the chip breks fter severl turns, the chip rking performnce is stisfctory. Long Pitch The generted chip comes out without coiling. It will esily coil round the drill. Fn This is chip broken by the restrint cused by the drill fl ute nd the wll of drilled hole. It is generted when the feed rte is high. Segment A conicl spirl chip tht is broken before the chip grows into the long-pitch shpe by the restrint cused by the wll of the drilled hole due to the insuffi ciency of ductility. Excellent chip disposl nd chip dischrge. Zigzg A chip tht is buckled nd folded becuse of the shpe of flute nd the chrcteristics of the mteril. It esily cuses chip pcking t the fl ute. Needle Chips broken by vibrtion or broken when brittle mteril is curled with smll rdius. The rking performnce is stisfctory, but these chips cn pck closely creting. Q26

FORMULAE FOR DRILLING ycutting SPEED (vc) vc = ) DC n 1 (m/min) Divide by 1, to chnge to m from mm. n vc (m/min) : Cutting Speed DC (mm) : Drill Dimeter ) (3.14) : Pi n (min -1 ) : Min Axis Spindle Speed (Problem) Wht is the cutting speed when min xis spindle speed is 135min -1 nd drill dimeter is 12mm? (Answer) Substitute )=3.14, DC=12, n=135 into the formul vc = ) DC n = 3.14 12 135 = 5.9m/min 1 1 The cutting speed is 5.9m/min. DC yfeed OF THE MAIN SPINDLE (vf) vf = fr n(mm/min) vf (mm/min) : Feed Speed of the Min Spindle (Z xis) fr (mm/rev) : Feed per Revolution n (min -1 ) : Min Axis Spindle Speed vf n (Problem) Wht is the spindle feed (vf) when the feed per revolution is.2mm/rev nd min xis spindle speed is 135min -1? (Answer) Substitute f=.2, n=135 into the formul vf = f n =.2 135 = 27mm/min The spindle feed is 27mm/min. f ydrilling TIME (Tc) Tc = Id i n fr n Tc (min) : Drilling Time n (min -1 ) : Spindle Speed ld (mm) : Hole Depth fr (mm/rev): Feed per Revolution i : Number of Holes (Problem) Wht is the drilling time required for drilling 3mm length hole in lloy steel (JIS SCM44) t cutting speed of 5m/min nd feed.15mm/rev? (Answer) Spindle Speed n = 5 1 = 161.57min 15 3.14-1 3 1 Tc = =.188 161.57.15 =.188 6i11.3 sec ld Q27

METALLIC MATERIALS CROSS REFERENCE LIST ycarbon STEEL Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB STKM 12A 1.38 STKM 12C RSt.37-2 436 4 C E 24-2 Ne 1311 A57.36 15 1.41 C15 8M15 CC12 C15, C16 F.111 135 115 15 1.42 C22 5A2 2C CC2 C2, C21 F.112 145 12 2 SUM22 1.715 9SMn28 23M7 1A S25 CF9SMn28 F.2111 11SMn28 1912 1213 Y15 SUM22L 1.718 9SMnPb28 S25Pb CF9SMnPb28 11SMnPb28 1914 12L13 1.722 1SPb2 1PbF2 CF1Pb2 1SPb2 1.736 9SMn36 24M7 1B S3 CF9SMn36 12SMn35 1215 Y13 1.737 9SMnPb36 S3Pb CF9SMnPb36 12SMnP35 1926 12L14 S15C 1.1141 Ck15 8M15 32C XC12 C16 C15K 137 115 15 S25C 1.1158 Ck25 125 25 1.89 StE38 436 55 E FeE39KG 2145 A572-6 1.51 C35 6A35 CC35 C35 F.113 155 135 35 1.53 C45 8M46 CC45 C45 F.114 165 145 45 1.726 35S2 212M36 8M 35MF4 F21G 1957 114 1.1157 4Mn4 15M36 15 35M5 139 4Mn SMn438(H) 1.1167 36Mn5 4M5 36Mn5 212 1335 35Mn2 SCMn1 1.117 28Mn6 15M28 14A 2M5 C28Mn 133 3Mn S35C 1.1183 Cf35 6A35 XC38TS C36 1572 135 35Mn S45C 1.1191 Ck45 8M46 XC42 C45 C45K 1672 145 Ck45 S5C 1.1213 Cf53 6A52 XC48TS C53 1674 15 5 1.535 C55 7M55 9 C55 1655 155 55 1.61 C6 8A62 43D CC55 C6 16 6 S55C 1.123 Ck55 7M55 XC55 C5 C55K 155 55 S58C 1.1221 Ck6 8A62 43D XC6 C6 1678 16 6Mn 1.1274 Ck11 6A96 XC1 F.5117 187 195 SK3 1.1545 C15W1 BW1A Y15 C36KU F.5118 188 W1 SUP4 1.1545 C15W1 BW2 Y12 C12KU F.515 29 W21 y ALLOY STEEL Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB SM4A, SM4B 1.144 SM4C St.44.2 436 43 C E28-3 1412 A573-81 SM49A, SM49B Fe52BFN 1.57 St52-3 436 5 B E36-3 SM49C Fe52CFN 2132 1.841 St52-3 15M19 2MC5 Fe52 F.431 2172 512 1.94 55Si7 25A53 45 55S7 55Si8 56Si7 285 9255 55Si2Mn 1.961 6SiCr7 6SC7 6SiCr8 6SiCr8 9262 SUJ2 1.355 1Cr6 534A99 31 1C6 1Cr6 F.131 2258 ASTM 521 Gr15, 45G 1.5415 15Mo3 151-24 15D3 16Mo3KW 16Mo3 2912 ASTM A24Gr.A 1.5423 16Mo5 153-245-42 16Mo5 16Mo5 452 1.5622 14Ni6 16N6 14Ni6 15Ni6 ASTM A35LF5 1.5662 X8Ni9 151-59-51 X1Ni9 XBNi9 ASTM A353 SNC236 1.571 36NiCr6 64A35 111A 35NC6 3135 SNC415(H) 1.5732 14NiCr1 14NC11 16NiCr11 15NiCr11 3415 SNC815(H) 1.5752 14NiCr14 655M13 36A 12NC15 3415, 331 SNCM22(H) 1.6523 21NiCrMo2 85M2 362 2NCD2 2NiCrMo2 2NiCrMo2 256 862 SNCM24 1.6546 4NiCrMo22 311-Type 7 4NiCrMo2(KB) 4NiCrMo2 874 1.6587 17CrNiMo6 82A16 18NCD6 14NiCrMo13 SCr415(H) 1.715 15Cr3 523M15 12C3 515 15Cr Q28

Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB SCr44 1.745 42Cr4 42Cr4 2245 514 4Cr SUP9(A) 1.7176 55Cr3 527A6 48 55C3 5155 2CrMn SCM415(H) 1.7262 15CrMo5 12CD4 12CrMo4 2216 14CrMo45 14CrMo45 1.7335 13CrMo4 4 151-62Gr27 15CD3.5 15CD4.5 SCM42 SCM43 SCM432 SCCRM3 ASTM A182 F11, F12 1.738 1CrMo91 151-622 12CD9 12CrMo9 Gr31, 45 12CD1 12CrMo1 TU.H 2218 ASTM A182 F.22 1.7715 14MoV63 153-66-44 13MoCrV6 1.8523 39CrMoV13 9 897M39 4C 36CrMoV12 1.6511 36CrNiMo4 816M4 11 4NCD3 38NiCrMo4(KB) 35NiCrMo4 984 1.6582 34CrNiMo6 817M4 24 35NCD6 35NiCrMo6(KB) 2541 434 4CrNiMoA SCr43(H) 1.733 34Cr4 53A32 18B 32C4 34Cr4(KB) 35Cr4 5132 35Cr SCr44(H) 1.735 41Cr4 53M4 18 42C4 41Cr4 42Cr4 514 4Cr 1.7131 16MnCr5 (527M2) 16MC5 16MnCr5 16MnCr5 2511 5115 18CrMn 1.7218 25CrMo4 1717CDS11 25CD4 25CrMo4(KB) 2225 413 55Cr3 3CrMn 78M2 1.722 34CrMo4 78A37 19B 35CD4 35CrMo4 34CrMo4 2234 SCM 44 1.7223 41CrMo4 78M4 19A 42CD4TS 41CrMo4 42CrMo4 2244 4137 4135 414 4142 35CrMo 4CrMoA 42CrMo SCM44(H) 1.7225 42CrMo4 78M4 19A 42CD4 42CrMo4 42CrMo4 2244 414 42CrMnMo 1.7361 32CrMo12 722M24 4B 3CD12 32CrMo12 F.124.A 224 SUP1 1.8159 5CrV4 735A5 47 5CV4 5CrV4 51CrV4 223 615 5CrVA 4CAD6 1.859 41CrAlMo7 95M39 41B 41CrAlMo7 41CrAlMo7 294 4CAD2 1.267 1Cr6 BL3 Y1C6 1Cr6 L3 CrV, 9SiCr SKS31 1.2419 15WCr6 15WC13 1WCr6 15WCr5 214 CrWMo SKS2, SKS3 17WCr5KU SKT4 1.2713 55NiCrMoV6 BH224/5 55NCDV7 F.52.S L6 5CrNiMo 1.5662 X8Ni9 151-59 X1Ni9 XBNi9 ASTM A353 1.568 12Ni19 Z18N5 2515 1.6657 14NiCrMo134 832M13 36C 15NiCrMo13 14NiCrMo131 SKD1 1.28 X21Cr12 BD3 Z2C12 X21Cr13KU X21Cr12 D3 X25Cr12KU ASTM D3 Cr12 SKD11 1.261 X153CrMoV12 BD2 X16CrMoV12 D2 Cr12MoV SKD12 1.2363 X1CrMoV5 BA2 Z1CDV5 X1CrMoV5 F.5227 226 A2 Cr5Mo1V SKD61 1.2344 X4CrMoV51 BH13 Z4CDV5 X35CrMoV5KU X4CrMoV5 2242 X4CrMoV51 X4CrMoV51KU H13 ASTM H13 4CrMoV5 SKD2 1.2436 X21CrW12 X215CrW121KU X21CrW12 2312 1.2542 45WCrV7 BS1 45WCrV8KU 45WCrSi8 271 S1 SKD5 1.2581 X3WCrV93 BH21 Z3WCV9 X28W9KU X3WCrV9 H21 3WCrV9 1.261 X165CrMoV12 X165CrMoW12KU X16CrMoV12 231 SKS43 1.2833 1V1 BW2 Y115V W21 V SKH3 1.3255 S 18-1-2-5 BT4 Z8WKCV X78WCo185KU HS18-1-1-5 T4 W18Cr4VCo5 SKH2 1.3355 S 18--1 BT1 Z8WCV X75W18KU HS18--1 T1 SCMnH/1 1.341 G-X12Mn12 Z12M12 Z12M12 XG12Mn12 X12MN12 SUH1 1.4718 X45CrSi93 41S45 52 Z45CS9 X45CrSi8 F.322 HW3 X45CrSi93 SUH3 1.3343 S6-5-2 4959BA2 Z4CSD1 15NiCrMo13 2715 D3 SKH9, SKH51 1.3343 S6/5/2 BM2 Z85WDCV HS6-5-2-2 F.563 2722 M2 1.3348 S 2-9-2 HS2-9-2 HS2-9-2 2782 M7 SKH55 1.3243 S6/5/2/5 BM35 6-5-2-5 HS6-5-2-5 F.5613 2723 M35 Q29

METALLIC MATERIALS CROSS REFERENCE LIST y STAINLESS STEEL (FERRITIC,MARTENSITIC) Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB SUS43 1.4 X7Cr13 43S17 Z6C13 X6Cr13 F.311 231 43 OCr13 1Cr12 1.41 X7Cr14 F.841 SUS416 1.45 X12CrS13 416S21 Z11CF13 X12CrS13 F.3411 238 416 SUS41 1.46 X1Cr13 41S21 56A Z1C14 X12Cr13 F.341 232 41 1Cr13 SUS43 1.416 X8Cr17 43S15 6 Z8C17 X8Cr17 F.3113 232 43 1Cr17 SCS2 1.427 G-X2Cr14 42C29 56B Z2C13M SUS42J2 1.434 X46Cr13 42S45 56D Z4CM X4Cr14 F.345 234 4Cr13 Z38C13M 1.43 45S17 Z8CA12 X6CrAl13 45 1.421 42S37 Z8CA12 X2Cr13 233 42 SUS431 1.457 X22CrNi17 431S29 57 Z15CNi6.2 X16CrNi16 F.3427 2321 431 1Cr17Ni2 SUS43F 1.414 X12CrMoS17 Z1CF17 X1CrS17 F.3117 2383 43F Y1Cr17 SUS434 1.4113 X6CrMo17 434S17 Z8CD17.1 X8CrMo17 2325 434 1Cr17Mo SCS5 1.4313 X5CrNi134 425C11 Z4CND13.4M (G)X6CrNi34 2385 CA6-NM SUS45 1.4724 X1CrA113 43S17 Z1C13 X1CrA112 F.311 45 OCr13Al SUS43 1.4742 X1CrA118 43S15 6 Z1CAS18 X8Cr17 F.3113 43 Cr17 SUH4 1.4747 X8CrNiSi2 443S65 59 Z8CSN2.2 X8CrSiNi2 F.32B HNV6 SUH446 1.4762 X1CrA124 Z1CAS24 X16Cr26 2322 446 2Cr25N SUH35 1.4871 X53CrMnNiN219 349S54 Z52CMN21.9 X53CrMnNiN219 EV8 5Cr2Mn9Ni4N 1.4521 X1CrMoTi182 2326 S444 1.4922 X2CrMoV12-1 X2CrMoNi121 2317 1.4542 Z7CNU17-4 63 y STAINLESS STEEL (AUSTENITIC) Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB SUS34L 1.436 X2CrNi1911 34S11 Z2CN18.1 X2CrNi18.11 2352 34L OCr19Ni1 SUS34 1.435 X5CrNi189 34S11 58E Z6CN18.9 X5CrNi181 F.3551 2332 34 OCr18Ni9 F.3541 F.354 SUS33 1.435 X12CrNiS188 33S21 58M Z1CNF18.9 X1CrNiS18.9 F.358 2346 33 1Cr18Ni9MoZr SUS34L 34C12 Z3CN19.1 2333 SCS19 1.436 X2CrNi189 34S12 Z2CrNi181 X2CrNi18.11 F.353 2352 34L SUS31 1.431 X12CrNi177 Z12CN17.7 X12CrNi177 F.3517 2331 31 Cr17Ni7 SUS34LN 1.4311 X2CrNiN181 34S62 Z2CN18.1 2371 34LN SUS316 1.441 X5CrNiMo181 316S16 58J Z6CND17.11 X5CrNiMo1712 F.3543 2347 316 Cr17Ni11Mo2 SCS13 1.438 G-X6CrNi189 34C15 Z6CN18.1M SCS14 1.448 G-X6CrNiMo181 316C16 F.8414 SCS22 1.4581 G-X5CrNiMoNb181 318C17 Z4CNDNb1812M XG8CrNiMo1811 SUS316LN 1.4429 X2CrNiMoN1813 Z2CND17.13 2375 316LN OCr17Ni13Mo 1.444 316S13 Z2CND17.12 X2CrNiMo1712 2348 316L SCS16 1.4435 X2CrNiMo1812 316S13 2353 316L OCr27Ni12Mo3 Z2CND17.12 X2CrNiMo1712 SUS316L 1.4436 316S13 Z6CND18-12-3 X8CrNiMo1713 2343, 2347 316 SUS317L 1.4438 X2CrNiMo1816 317S12 Z2CND19.15 X2CrNiMo1816 2367 317L OOCr19Ni13Mo 1.4539 2562 UNS V X1NiCrMo Z6CNT18.1 89A SUS321 1.4541 321S12 58B Z6CNT18.1 X6CrNiTi1811 F.3553 2337 321 X1CrNiTi189 F.3523 1Cr18NI9Ti SUS347 1.455 347S17 58F Z6CNNb18.1 X6CrNiNb1811 F.3552 2338 347 X1CrNiNb189 F.3524 1Cr18Ni11Nb 1.4571 X1CrNiMoTi181 32S17 58J Z6CNDT17.12 X6CrNiMoTi1712 F.3535 235 316Ti Cr18Ni12Mo2T 1.4583 X1CrNiMoNb1812 Z6CNDNb1713B X6CrNiMoNb1713 318 Cr17Ni12Mo3Mb Q3

Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB SUH39 1.4828 X15CrNiSi212 39S24 Z15CNS2.12 X6CrNi252 39 1Cr23Ni13 SUH31 1.4845 X12CrNi2521 31S24 Z12CN252 X6CrNi252 F.331 2361 31S OCr25Ni2 SCS17 1.446 X1CrNi18.8 58C Z1NCDU25.2 F.8414 237 38 1.4418 X4CrNiMo165 Z6CND16-4-1 1.4568 1.454 316S111 Z8CNA17-7 X2CrNiMo1712 17-7PH 1.4563 Z1NCDU31-27-3 Z1CNDU2-18-6AZ yheat RESISTANT STEELS JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB SUH33 1.4864 X12NiCrSi3616 Z12NCS35.16 33 SCH15 1.4865 G-X4NiCrSi3818 33C11 XG5NiCr3919 HT, HT 5 y GRAY CAST IRON 2584 2378 NO828 S31254 SUS321 1.4878 X12CrNiTi189 321S32 58B, 58C Z6CNT18.12B X6CrNiTi18 11 F.3523 321 1Cr18Ni9Ti Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB 1 FC1 GG 1 Ft 1 D 11 No 2 B FC15.615 GG 15 Grde 15 Ft 15 D G15 FG15 115 No 25 B HT15 FC2.62 GG 2 Grde 22 Ft 2 D G2 12 No 3 B HT2 FC25.625 GG 25 Grde 26 Ft 25 D G25 FG25 125 No 35 B HT25 No 4 B FC3.63 GG 3 Grde 3 Ft 3 D G3 FG3 13 No 45 B HT3 FC35.635 GG 35 Grde 35 Ft 35 D G35 FG35 135 No 5 B HT35.64 GG 4 Grde 4 Ft 4 D 14 No 55 B HT4.666 GGL NiCr22 L-NiCuCr22 L-NC 22 523 A436 Type 2 yductile CAST IRON Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB FCD4.74 GGG 4 SNG 42/12 FCS 4-12 GS 37-17 FGE 38-17 7 17-2 6-4-18 QT4-18 GGG 4.3 SNG 37/17 FGS 37-17 7 17-12.733 GGG 35.3 7 17-15 FCD5.75 GGG 5 SNG 5/7 FGS 5-7 GS 5 FGE 5-7 7 27-2 8-55-6 QT5-7.766 GGG NiCr22 Grde S6 S-NC22 7 76 A43D2 GGG NiMn137 L-NiMn 137 L-MN 137 7 72 FCD6 GGG 6 SNG 6/3 FGS 6-3 7 32-3 QT6-3 FCD7.77 GGG 7 SNG 7/2 FGS 7-2 GS 7-2 FGS 7-2 7 37-1 1-7-3 QT7-18 ymalleable CAST IRON Jpn Germny U.K. Frnce Itly Spin Sweden USA Chin JIS W-nr. DIN BS EN AFNOR UNI UNE SS AISI/SAE GB FCMB31 8 29/6 MN 32-8 8 14 FCMW33 GTS-35 B 34/12 MN 35-1 8 15 3251 FCMW37.8145 GTS-45 P 44/7 Mn 45 GMN45 8 52 41 FCMP49.8155 GTS-55 P 51/4 MP 5-5 GMN55 8 54 55 FCMP54 GTS-65 P 57/3 MP 6-3 8 58 73 FCMP59.8165 GTS-65-2 P 57/3 Mn 65-3 GMN 65 8 56 A22-73 FCMP69 GTS-7-2 P 69/2 Mn 7-2 GMN 7 8 62 A22-82 Q31

DIE STEELS Clssifiction Crbon Steel for Mchine Structure Alloy Steel for Mchine Structure Crbon Tool Steel Alloy Tool Steel (For Cold Working) Alloy Tool Steel (For Cold Working nd Others) Alloy Tool Steel (For Hot Working) JIS (Others) S5C AUK1 KTSM2A SD1 PDS1 KPM1 MT5C KTSM21 SD17 PXZ S55C KTSM22 SD21 SCM44 AUK11 KTSM3A SD61 PDS3 KTSM31 SCM445 HOLDAX SK3 SK3 YK3 K3 YC3 SKS3 SKS3 GOA KS3 SGT SKS31 GO31 K31 SKS93 SK31 YK3 K3M YCS3 SKD1 KD1 CRD SKD11 SKD11 KAD181 DC11 KD11 SLD SKD11 AUD11 DC3 KD11V SLD2 SKD11 KDQ SKD12 RIGOR DC12 KD12 SCD SX4 SX44 SX15V FH5 TCD DC53 KD21 SLD8 PD613 GO4 ACD37 GO5 HMD5 GO4F HPM2T YSM HPM31 HMD1 KDM5 HMD5 KD11S ACD6 ACD8 ACD9 (P2) IMPAX KTSM3M PX5 KPM3 HPM2 MT24M (P2) HPM7 (P21) KTSM4EF NAK55 KAP HPM1 KTSM4E NAK8 KAP2 HPM5 GLD2 CENA1 SKD4 DH4 KD4 YDC SKD5 DH5 KD5 HDC SKD6 DH6 KD6 SKD61 SKD61 Over M Suprem DHA1 KDA DAC SKD61 MFA SKD62 SKD62 DH62 KDB DBC SKT4 GFA KTV DM SKD7 DH72 KDH1 YEM (H1) DH73 SKD8 DH41 KDF MDC QRO8M YHD4 DH71 DH42 DH21 KDW KDHM AE31 YEM4 YHD5 SKT4 SKT4A YHD26 6F4 MPH SKT4 DH31 KDA1 DAC3 KDA5 DAC1 DAC4 GF78 DAC45 DH76 DAC55 TD3 DH2F KDAS FDAC YHD3 MDC K YEM K Aichi Steel Works Uddeholm Sumitomo Kobe Steel, Dido Steel Metl Ltd. Co., Ltd. Industries, Ltd. Nippon Koshuh Mitsubishi Steel Hitchi Mnufcturing Metls, Ltd. Co., Ltd. Q32

Clssifiction High-speed Tool Steel Powder High-speed Tool Steel Stinless Steel Mrging Steel Het Resistnt Alloy Forged Tool JIS (Others) Aichi Steel Works Uddeholm Sumitomo Kobe Steel, Dido Steel Metl Ltd. Co., Ltd. Industries, Ltd. SKH51 MH51 H51 YXM1 SKH55 MH55 HM35 YXM4 SKH57 MH57 MV1 XVC5 MH8 NK4 YXM6 MH24 MH7V1 MH64 Nippon Koshuh VH54 HV2 XVC11 HM3 Mitsubishi Steel Hitchi Mnufcturing Metls, Ltd. Co., Ltd. YXM7 MH85 KDMV YXR3 MH88 HM9TL YXR4 YXR7 YXR35 ASP23 KHA32 DEX2 HAP1 ASP3 KHA3 DEX4 HAP4 KHA3VN DEX6 HAP5 KHA3N DEX7 HAP63 KHA33N DEX8 HAP72 KHA5 KHA77 ASP6 KHA6 SUS43 GLD1 SUS42 STAVAX S STAR KSP1 HPM38 SUS44C ELMAX (Powder) KAS44 (Powder) SUS44C KSP3 SUS42 SUS42 SUS63 NAK11 U63 PSL (414) MAS1C KMS18 2 YAG DMG3 HRNC ICD1 ICD5 Q33

SURFACE ROUGHNESS SURFACE ROUGHNESS (From JIS B 61-1994) Type Code Determintion Determintion Exmple (Figure) Arithmeticl Men Roughness R R mens the vlue obtined by the following formul nd expressed in micrometer (!m) when smpling only the reference length from the roughness curve in the direction of the men line, tking X-xis in the direction of men line nd Y-xis in the direction of longitudinl mgnifiction of this smpled prt nd the roughness curve is expressed by y=f(x): Mximum Height Rz RZ shll be tht only when the reference length is smpled from the roughness curve in the direction of the men line, the distnce between the top profile pek line nd the bottom profile vlley line on this smpled portion is mesured in the longitudinl mgnifiction direction of roughness curve nd the obtined vlue is expressed in micrometer (!m). (Note) When finding Rz, portion without n exceptionlly high pek or low vlley, which my be regrded s flw, is selected s the smpling length. Ten-Point Men Roughness RZJIS RZJIS shll be tht only when the reference length is smpled from the roughness curve in the direction of its men line, the sum of the verge vlue of bsolute vlues of the heights of five highest profile peks (Yp) nd the depths of five deepest profile vlleys (Yv) mesured in the verticl mgnifiction direction from the men line of this smpled portion nd this sum is expressed in micrometer (!m). : ltitudes of the five highest profile peks of the smpled portion corresponding to the reference length l. : ltitudes of the fi ve deepest profi le vlleys of the smpled portion corresponding to the reference length l. yrelationship BETWEEN ARITHMETICAL MEAN (R) AND CONVENTIONAL DESIGNATION (REFERENCE DATA) Arithmeticl Men Roughness R Stndrd Series.12.8.5 s.5 z.25.1 s.1 z.25.5.2 s.2 z.1.4 s.4 z.2.8 s.8 z.4.8 1.6 s 1.6 z.8 3.2 s 3.2 z 1.6 6.3 s 6.3 z 3.2 12.5 s 12.5 z 2.5 6.3 25 s 25 z 12.5 Cutoff Vlue "c (mm) Mx. Height Rz Stndrd Series Ten-Point Men Roughness RZJIS 5 s 5 z 25 8 1 s 1 z 5 2 s 2 z Smpling Length for Rz RZJIS l (mm) 1 4 s 4 z The correltion mong the three is shown for convenience nd is not exct. R: The evlution length of Rz nd RzJIS is the cutoff vlue nd smpling length multiplied by 5, respectively..8.25.8 2.5 8 Conventionl Finish Mrk ]]]] ]]] ]] ] Q34

HARDNESS COMPARISON TABLE HARDNESS CONVERSION NUMBERS OF STEEL Brinell Hrdness (HB) 1mm Bll,Lod: 3, kgf Stndrd Bll Tungsten Crbide Bll Vickers Hrdness Rockwell Hrdness Shore Hrdness A Scle, B Scle, C Scle, D Scle, Lod:6kgf, Lod:1kgf, Lod:15kgf, Lod:1kgf, Dimond 1/16" Bll Dimond Dimond Point Point Point (HV) (HRA) (HRB) (HRC) (HRD) (HS) Tensile Strength (Approx.) Mp 94 85.6 68. 76.9 97 92 85.3 67.5 76.5 96 9 85. 67. 76.1 95 (767) 88 84.7 66.4 75.7 93 (757) 86 84.4 65.9 75.3 92 Brinell Hrdness (HB) 1mm Bll,Lod: 3, kgf Stndrd Bll Tungsten Crbide Bll Vickers Hrdness Rockwell Hrdness Shore Hrdness A Scle, B Scle, C Scle, D Scle, Lod:6kgf, Lod:1kgf, Lod:15kgf, Lod:1kgf, Dimond 1/16" Bll Dimond Dimond Point Point Point (HV) (HRA) (HRB) (HRC) (HRD) (HS) Tensile Strength (Approx.) Mp 429 429 455 73.4 45.7 59.7 61 151 415 415 44 72.8 44.5 58.8 59 146 41 41 425 72. 43.1 57.8 58 139 388 388 41 71.4 41.8 56.8 56 133 375 375 396 7.6 4.4 55.7 54 127 (745) 84 84.1 65.3 74.8 91 (733) 82 83.8 64.7 74.3 9 (722) 8 83.4 64. 73.8 88 (712) (71) 78 83. 63.3 73.3 87 (698) 76 82.6 62.5 72.6 86 (684) 74 82.2 61.8 72.1 (682) 737 82.2 61.7 72. 84 (67) 72 81.8 61. 71.5 83 (656) 7 81.3 6.1 7.8 (653) 697 81.2 6. 7.7 81 (647) 69 81.1 59.7 7.5 (638) 68 8.8 59.2 7.1 8 63 67 8.6 58.8 69.8 627 667 8.5 58.7 69.7 79 677 8.7 59.1 7. 61 64 79.8 57.3 68.7 77 64 79.8 57.3 68.7 578 615 79.1 56. 67.7 75 67 78.8 55.6 67.4 555 591 78.4 54.7 66.7 73 255 579 78. 54. 66.1 215 534 569 77.8 53.5 65.8 71 1985 533 77.1 52.5 65. 1915 514 547 76.9 52.1 64.7 7 189 (495) 539 76.7 51.6 64.3 1855 53 76.4 51.1 63.9 1825 495 528 76.3 51. 63.8 68 182 363 363 383 7. 39.1 54.6 52 122 352 352 372 69.3 (11.) 37.9 53.8 51 118 341 341 36 68.7 (19.) 36.6 52.8 5 113 331 331 35 68.1 (18.5) 35.5 51.9 48 195 321 321 339 67.5 (18.) 34.3 51. 47 16 311 311 328 66.9 (17.5) 33.1 5. 46 125 32 32 319 66.3 (17.) 32.1 49.3 45 15 293 293 39 65.7 (16.) 3.9 48.3 43 97 285 285 31 65.3 (15.5) 29.9 47.6 95 277 277 292 64.6 (14.5) 28.8 46.7 41 925 269 269 284 64.1 (14.) 27.6 45.9 4 895 262 262 276 63.6 (13.) 26.6 45. 39 875 255 255 269 63. (12.) 25.4 44.2 38 85 248 248 261 62.5 (11.) 24.2 43.2 37 825 241 241 253 61.8 1 22.8 42. 36 8 235 235 247 61.4 99. 21.7 41.4 35 785 229 229 241 6.8 98.2 2.5 4.5 34 765 223 223 234 97.3 (18.8) 217 217 228 96.4 (17.5) 33 725 212 212 222 95.5 (16.) 75 27 27 218 94.6 (15.2) 32 69 21 21 212 93.8 (13.8) 31 675 197 197 27 92.8 (12.7) 3 655 192 192 22 91.9 (11.5) 29 64 187 187 196 9.7 (1.) 62 183 183 192 9. (9.) 28 615 179 179 188 89. (8.) 27 6 174 174 182 87.8 (6.4) 585 17 17 178 86.8 (5.4) 26 57 167 167 175 86. (4.4) 56 (477) 516 75.9 5.3 63.2 178 58 75.6 49.6 62.7 174 477 58 75.6 49.6 62.7 66 174 (461) 495 75.1 48.8 61.9 168 491 74.9 48.5 61.7 167 461 491 74.9 48.5 61.7 65 167 444 474 74.3 47.2 61. 1595 472 74.2 47.1 6.8 1585 444 472 74.2 47.1 6.8 63 1585 163 163 171 85. (3.3) 25 545 156 156 163 82.9 (.9) 525 149 149 156 8.8 23 55 143 143 15 78.7 22 49 137 137 143 76.4 21 46 131 131 137 74. 45 126 126 132 72. 2 435 121 121 127 69.8 19 415 116 116 122 67.6 18 4 111 111 117 65.7 15 385 (Note 1) Above list is the sme s tht t AMS Metls Hnd book with tensile strength in pproximte metric vlue nd Brinell hrdness over recommended rnge. (Note 2) 1MP=1N/mm 2 (Note 3) Figures in ( ) re rrely used nd re included for reference. This list hs been tken from JIS Hndbook Steel I. Q35

FIT TOLERANCE TABLE (HOLE) Clssifi ction of Stndrd Dimensions (mm) Clss of Geometricl Tolernce Zone of Holes > B1 C9 C1 D8 D9 D1 E7 E8 E9 F6 F7 F8 G6 G7 H6 H7 3 3 6 6 1 +18 +85 +1 +34 +45 +6 +24 +28 +39 +12 +16 +2 +8 +12 +6 +1 +14 +6 +6 +2 +2 +2 +14 +14 +14 +6 +6 +6 +2 +2 +188 +1 +118 +48 +6 +78 +32 +38 +5 +18 +22 +28 +12 +16 +8 +12 +14 +7 +7 +3 +3 +3 +2 +2 +2 +1 +1 +1 +4 +4 +28 +116 +138 +62 +76 +98 +4 +47 +61 +22 +28 +35 +14 +2 +9 +15 +15 +8 +8 +4 +4 +4 +25 +25 +25 +13 +13 +13 +5 +5 1 14 +22 +138 +165 +77 +93 +12 +5 +59 +75 +27 +34 +43 +17 +24 +11 +18 14 18 +15 +95 +95 +5 +5 +5 +32 +32 +32 +16 +16 +16 +6 +6 18 24 +244 +162 +194 +98 +117 +149 +61 +73 +92 +33 +41 +53 +2 +28 +13 +21 24 3 +16 +11 +11 +65 +65 +65 +4 +4 +4 +2 +2 +2 +7 +7 3 4 4 5 +27 +28 +182 +192 +22 +23 +8 +8 +8 +5 +5 +5 +25 +25 +25 +9 +9 +17 +18 +12 +13 +12 +13 +119 +142 +18 +75 +89 +112 +41 +5 +64 +25 +34 +16 5 65 +31 +214 +26 +19 +14 +14 +146 +174 +22 +9 +16 +134 +49 +6 +76 +29 +4 +19 65 8 +32 +224 +27 +1 +1 +1 +6 +6 +6 +3 +3 +3 +1 +1 +2 +15 +15 8 1 +36 +257 +31 +22 +17 +17 +174 +27 +26 +17 +126 +159 +58 +71 +9 +34 +47 +22 1 12 +38 +267 +32 +12 +12 +12 +72 +72 +72 +36 +36 +36 +12 +12 +24 +18 +18 12 14 +42 +3 +36 +26 +2 +2 14 16 +44 +31 +37 +28 +245 +35 +125 +148 +185 +68 +83 +16 +39 +54 +25 +28 +21 +21 +145 +145 +145 +85 +85 +85 +43 +43 +43 +14 +14 16 18 +47 +33 +39 +31 +23 +23 18 2 +525 +355 +425 +34 +24 +24 2 225 +565 +375 +445 +242 +285 +355 +146 +172 +215 +79 +96 +122 +44 +61 +29 +38 +26 +26 +17 +17 +17 +1 +1 +1 +5 +5 +5 +15 +15 225 25 +65 +395 +465 +42 +28 +28 25 28 +69 +43 +51 +48 +3 +3 +271 +32 +4 +162 +191 +24 +88 +18 +137 +49 +69 +32 28 315 +75 +46 +54 +19 +19 +19 +11 +11 +11 +56 +56 +56 +17 +17 +54 +33 +33 315 355 +83 +5 +59 +6 +36 +36 +299 +35 +44 +182 +214 +265 +98 +119 +151 +54 +75 +36 355 4 +91 +54 +63 +21 +21 +21 +125 +125 +125 +62 +62 +62 +18 +18 +68 +4 +4 4 45 +11 +595 +69 +76 +44 +44 +327 +385 +48 +198 +232 +29 +18 +131 +165 +6 +83 +4 45 5 +19 +635 +73 +23 +23 +23 +135 +135 +135 +68 +68 +68 +2 +2 +84 +48 +48 (Note) Vlues shown in the upper portion of respective lines re upper dimensionl tolernce, while vlues shown in the lower portion of respective lines re lower dimensionl tolernce. +25 +3 +35 +4 +46 +52 +57 +63 Q36

Units :!m Clss of Geometricl Tolernce Zone of Holes H8 H9 H1 JS6 JS7 K6 K7 M6 M7 N6 N7 P6 P7 R7 S7 T7 U7 X7 +14 +25 +4 2 2 4 4 6 6 1 14 18 2 e3 e5 6 1 8 12 1 14 12 16 2 24 28 3 +18 +3 +48 +2 +3 1 5 4 9 8 11 15 19 24 e4 e6 6 9 9 12 13 16 17 2 23 27 31 36 +22 +36 +58 +2 +5 3 7 4 12 9 13 17 22 28 e4.5 e7 7 1 12 15 16 19 21 24 28 32 37 43 +27 +33 +43 +52 +7 +84 e5.5 e9 e6.5 e1 +2 9 +2 11 +6 12 +6 15 4 15 4 17 18 21 9 2 11 24 5 23 7 28 15 26 11 29 16 34 21 39 26 44 33 51 38 56 33 46 18 14 2 27 54 67 31 35 41 48 33 4 56 54 61 77 39 51 +39 +62 +1 +3 +7 4 12 8 21 17 25 34 64 76 e8 e12 13 18 2 25 28 33 37 42 5 59 45 61 7 86 3 42 55 76 +46 +74 +12 +4 +9 5 14 9 26 21 6 72 85 16 e9.5 e15 15 21 24 3 33 39 45 51 32 48 64 91 62 78 94 121 38 58 78 111 +54 +87 +14 +4 +1 6 16 1 3 24 73 93 113 146 e11 e17 18 25 28 35 38 45 52 59 41 66 91 131 76 11 126 166 48 77 17 88 117 147 +63 +1 +16 +4 +12 8 2 12 36 28 5 85 119 e12.5 e2 21 28 33 4 45 52 61 68 9 125 159 53 93 131 93 133 171 6 15 16 151 +72 +115 +185 +5 +13 8 22 14 41 33 63 113 e14.5 e23 24 33 37 46 51 6 7 79 19 159 67 123 113 169 74 +81 +13 +21 +5 +16 9 25 14 47 36 126 e16 e26 27 36 41 52 57 66 79 88 78 13 87 +89 +14 +23 +7 +17 1 26 16 51 41 144 e18 e28 29 4 46 57 62 73 87 98 93 15 13 +97 +155 +25 +8 +18 1 27 17 55 45 166 e2 e31 32 45 5 63 67 8 95 18 19 172 Q37

FIT TOLERANCE TABLE (SHAFTS) Clssifi ction of Stndrd Dimensions (mm) Clss of Geometricl Tolernce Zone of Shfts > b9 c9 d8 d9 e7 e8 e9 f6 f7 f8 g5 g6 h5 h6 h7 3 3 6 6 1 14 6 2 2 14 14 14 6 6 6 2 2 165 85 34 45 24 28 39 12 16 2 6 8 4 6 1 14 7 3 3 2 2 2 1 1 1 4 4 17 1 48 6 32 38 5 18 22 28 9 12 5 8 12 15 8 4 4 25 25 25 13 13 13 5 5 186 116 62 76 4 47 61 22 28 35 11 14 6 9 15 1 14 14 18 15 193 95 138 5 77 5 93 32 5 32 59 32 75 16 27 16 34 16 43 6 14 6 17 8 11 18 18 24 24 3 16 212 11 162 65 98 65 117 4 61 4 73 4 92 2 33 2 41 2 53 7 16 7 2 9 13 21 3 4 17 12 232 182 8 8 5 5 5 25 25 25 9 9 4 5 18 13 119 142 75 89 112 41 5 64 2 25 11 16 25 242 192 5 65 19 14 264 214 1 1 6 6 6 3 3 3 1 1 65 8 2 15 146 174 9 16 134 49 6 76 23 29 13 19 3 274 224 8 1 22 17 37 257 12 12 72 72 72 36 36 36 12 12 1 12 24 18 174 27 17 126 159 58 71 9 27 34 15 22 35 327 267 12 14 26 2 36 3 14 16 28 21 145 145 85 85 85 43 43 43 14 14 38 31 28 245 125 148 185 68 83 16 32 39 18 25 4 16 18 31 23 41 33 18 2 34 24 455 355 2 225 38 26 17 17 1 1 1 5 5 5 15 15 495 375 242 285 146 172 215 79 96 122 35 44 2 29 46 225 25 42 28 535 395 25 28 48 3 61 43 19 19 11 11 11 56 56 56 17 17 28 315 54 33 271 32 162 191 24 88 18 137 4 49 23 32 52 67 46 315 355 6 36 74 5 21 21 125 125 125 62 62 62 18 18 355 4 68 4 299 35 182 214 265 98 119 151 43 54 25 36 57 82 54 4 45 76 44 915 595 23 23 135 135 135 68 68 68 2 2 45 5 84 48 327 385 198 232 29 18 131 165 47 6 27 4 63 995 635 (Note) Vlues shown in the upper portion of respective lines re upper dimensionl tolernce, while vlues shown in the lower portion of respective lines re lower dimensionl tolernce. Q38

Units :!m Clss of Geometricl Tolernce Zone of Shfts h8 h9 js5 js6 js7 k5 k6 m5 m6 n6 p6 r6 s6 t6 u6 x6 +4 +6 +6 +8 +1 +12 +16 +2 +24 +26 e2 e3 e5 14 25 +2 +2 +4 +6 +1 +14 +18 +2 +6 +9 +9 +12 +16 +2 +23 +27 +31 +36 e2.5 e4 e6 18 3 +1 +1 +4 +4 +8 +12 +15 +19 +23 +28 +7 +1 +12 +15 +19 +24 +28 +32 +37 +43 e3 e4.5 e7 22 36 +1 +1 +6 +6 +1 +15 +19 +23 +28 +34 +51 +9 +12 +15 +18 +23 +29 +34 +39 +44 +4 e4 e5.5 e9 27 43 +1 +1 +7 +7 +12 +18 +23 +28 +33 +56 +45 +54 +67 +11 +15 +17 +21 +28 +35 +41 +48 +41 +54 e4.5 e6.5 e1 33 52 +2 +2 +8 +8 +15 +22 +28 +35 +54 +61 +77 +41 +48 +64 +64 +76 +13 +18 +2 +25 +33 +42 +5 +59 +48 +6 e5.5 e8 e12 39 62 +2 +2 +9 +9 +17 +26 +34 +43 +7 +86 +54 +7 +6 +72 +85 +16 +15 +21 +24 +3 +39 +51 +41 +53 +66 +87 e6.5 e9.5 e15 46 74 +2 +2 +11 +11 +2 +32 +62 +78 +94 +121 +43 +59 +75 +12 +73 +93 +113 +146 +18 +25 +28 +35 +45 +59 +51 +71 +91 +124 e7.5 e11 e17 54 87 +3 +3 +13 +13 +23 +37 +76 +11 +126 +166 +54 +79 +14 +144 +88 +117 +147 +63 +92 +122 +21 +28 +33 +4 +52 +68 +9 +125 +159 e9 e12.5 e2 63 1 +3 +3 +15 +15 +27 +43 +65 +1 +134 +93 +133 +171 +68 +18 +146 +16 +151 +77 +122 +24 +33 +37 +46 +6 +79 +19 +159 e1 e14.5 e23 72 115 +4 +4 +17 +17 +31 +5 +8 +13 +113 +169 +84 +14 +126 +27 +36 +43 +52 +66 +88 +94 e11.5 e16 e26 81 13 +4 +4 +2 +2 +34 +56 +13 +98 +144 +29 +4 +46 +57 +73 +98 +18 e12.5 e18 e28 89 14 +4 +4 +21 +21 +37 +62 +15 +114 +166 +32 +45 +5 +63 +8 +18 +126 e13.5 e2 e31 97 155 +5 +5 +23 +23 +4 +68 +172 +132 Q39

DRILL DIAMETERS FOR PREPARED HOLES Metric Corse Screw Thred Metric Fine Screw Thred Nominl Drill Dimeter HSS Crbide M1.25.75.75 Drill Dimeter Nominl HSS Crbide M1.2.8.8 Drill Dimeter Nominl HSS Crbide M2 2. 18. 18.3 Drill Dimeter Nominl HSS Crbide M42 3. 39. M1.1.25.85.85 M1.1.2.9.9 M2 1.5 18.5 18.7 M42 2. 4. M1.2.25.95.95 M1.2.2 1. 1. M2 1. 19. 19.1 M42 1.5 4.5 M1.4.3 1.1 1.1 M1.4.2 1.2 1.2 M22 2. 2. M45 4. 41. M1.6.35 1.25 1.3 M1.6.2 1.4 1.4 M22 1.5 2.5 M45 3. 42. M1.7.35 1.35 1.4 M1.8.2 1.6 1.6 M22 1. 21. M45 2. 43. M1.8.35 1.45 1.5 M2.25 1.75 1.75 M24 2. 22. M45 1.5 43.5 M2.4 1.6 1.65 M2.2.25 1.95 2. M24 1.5 22.5 M48 4. 44. M2.2.45 1.75 1.8 M2.5.35 2.2 2.2 M24 1. 23. M48 3. 45. M2.3.4 1.9 1.95 M3.35 2.7 2.7 M25 2. 23. M48 2. 46. M2.5.45 2.1 2.15 M3.5.35 3.2 3.2 M25 1.5 23.5 M48 1.5 46.5 M2.6.45 2.15 2.2 M4.5 3.5 3.55 M25 1. 24. M5 3. 47. M3.5 2.5 2.55 M4.5.5 4. 4.5 M26 1.5 24.5 M5 2. 48. M3.5.6 2.9 2.95 M5.5 4.5 4.55 M27 2. 25. M5 1.5 48.5 M4.7 3.3 3.4 M5.5.5 5. 5.5 M27 1.5 25.5 M4.5.75 3.8 3.9 M6.75 5.3 5.35 M27 1. 26. M5.8 4.2 4.3 M7.75 6.3 6.35 M28 2. 26. M6 1. 5. 5.1 M8 1. 7. 7.1 M28 1.5 26.5 M7 1. 6. 6.1 M8.75 7.3 7.35 M28 1. 27. M8 1.25 6.8 6.9 M9 1. 8. 8.1 M3 3. 27. M9 1.25 7.8 7.9 M9.75 8.3 8.35 M3 2. 28. M1 1.5 8.5 8.7 M1 1.25 8.8 8.9 M3 1.5 28.5 M11 1.5 9.5 9.7 M1 1. 9. 9.1 M3 1. 29. M12 1.75 1.3 1.5 M1.75 9.3 9.35 M32 2. 3. M14 2. 12. 12.2 M11 1. 1. 1.1 M32 1.5 3.5 M16 2. 14. 14.2 M11.75 1.3 1.3 M33 3. 3. M18 2.5 15.5 15.7 M12 1.5 1.5 1.7 M33 2. 31. M2 2.5 17.5 17.7 M12 1.25 1.8 1.9 M33 1.5 31.5 M22 2.5 19.5 19.7 M12 1. 11. 11.1 M35 1.5 33.5 M24 3. 21. M14 1.5 12.5 12.7 M36 3. 33. M27 3. 24. M14 1. 13. 13.1 M36 2. 34. M3 3.5 26.5 M15 1.5 13.5 13.7 M36 1.5 34.5 M33 3.5 29.5 M15 1. 14. 14.1 M38 1.5 36.5 M36 4. 32. M16 1.5 14.5 14.7 M39 3. 36. M39 4. 35. M42 4.5 37.5 M45 4.5 4.5 M48 5. 43. M16 1. 15. 15.1 M17 1.5 15.5 15.7 M17 1. 16. 16.1 M18 2. 16. 16.3 M18 1.5 16.5 16.7 M39 2. 37. M39 1.5 37.5 M4 3. 37. M4 2. 38. M4 1.5 38.5 M18 1. 17. 17.1 M42 4. 38. (Note) When using the drill dimeters shown in this tble, tht the processed hole should be mesured since the size ccurcy of drill hole my chnge due to the drilling condition, nd tht if found to be inpproprite for prepred hole, the drill dimeter must be corrected ccordingly. Q4

HEXAGON SOCKET HEAD BOLT HOLE SIZE DIMENSIONS OF COUNTERBORING FOR HEXAGON SOCKET HEAD CAP SCREW AND BOLT HOLE Unit : mm Nominl dimensions M3 M4 M5 M6 M8 M1 M12 M14 M16 M18 M2 M22 M24 M27 M3 of thred d d1 3 4 5 6 8 1 12 14 16 18 2 22 24 27 3 ød' ød ød' H H" d' 3.4 4.5 5.5 6.6 9 11 14 16 18 2 22 24 26 3 33 D 5.5 7 8.5 1 13 16 18 21 24 27 3 33 36 4 45 D' 6.5 8 9.5 11 14 17.5 2 23 26 29 32 35 39 43 48 H 3 4 5 6 8 1 12 14 16 18 2 22 24 27 3 H' 2.7 3.6 4.6 5.5 7.4 9.2 11 12.8 14.5 16.5 18.5 2.5 22.5 25 28 H" 3.3 4.4 5.4 6.5 8.6 1.8 13 15.2 17.5 19.5 21.5 23.5 25.5 29 32 ød1 ød' ød d H' H ød' ød1 d Q41

TAPER STANDARD Fig.1 Bolt Grip Tper LS t5 t1 Fig.2 Ntionl Tper I2 I4 I3 Tper 7/24 (d5) 6 d3 d1 DF_2 DF 6 d2 d3 d1 DF Tble 1 Bolt Grip Tper (Fig.1) Bering Number DF DF_2 t1 t2 t3 t5 d1 d3 LS CRKS d5 BT35 53 43 2 1 13. 2 38.1 13 56.5 M12 1.75 21.62 BT4 63 53 25 1 16.6 2 44.45 17 65.4 M16 2 25.3 BT45 85 73 3 12 21.2 3 57.15 21 82.8 M2 25 33.1 BT5 1 85 35 15 23.2 3 69.85 25 11.8 M24 3 4.1 BT6 155 135 45 2 28.2 3 17.95 31 161.8 M3 3.5 6.7 Tble 2 Ntionl Tper (Fig.2) Bering Number CRKS Tper 7/24 d1 d2 LS I1 t3 t2 Metric Screw CRKS Wit Screw I2 I3 d3 I4 DF I5 NT3 31.75 17.4 7 5 M12 W 1/2 24 5 16.5 6 5 8 NT4 44.45 25.3 95 67 M16 W 5/8 3 7 24 7 63 1 NT5 69.85 39.6 13 15 M24 W 1 45 9 38 11 1 13 NT6 17.95 6.2 21 165 M3 W 1 1 /4 56 11 58 12 17 15 CRKS LS I1 I5 Fig.3 Morse Tper (Shnk with Tongue) H d2 b R e d M.T.NO. I1 LS Tble 3 Shnk with Tongue (Fig.3) Morse Tper Number d1 BD d2 H I1 LS d c e R r 9.45 3 9.21 6.14 6 56.5 59.5 3.9 6.5 1.5 4 1 1 12.65 3.5 12.24 8.972 8.7 62. 65.5 5.2 8.5 13.5 5 1.2 2 17.78 5 18.3 14.34 13.5 75. 8. 6.3 1 16 6 1.6 3 23.825 5 24.76 19.17 18.5 94. 99 7.9 13 2 7 2 4 31.267 6.5 31.65 25.164 24.5 117.5 124 11.9 16 24 8 2.5 5 44.399 6.5 44.741 36.531 35.7 149.5 156 15.9 19 29 1 3 6 63.348 8 63.765 52.399 51. 21. 218 19 27 4 13 4 7 83.58 1 83.578 68.185 66.8 286. 296 28.6 35 54 19 5 Tble 4 Shnk with Screw (Fig.4) c 8 18 d1 BD Fig.4 Morse Tper (Shnk with Screw) Morse Tper Number d1 BD d d2 I1 LS t r CRKS K 9.45 3 9.21 6.442 6 5 53 4.2 1 12.65 3.5 12.24 9.396 9 53.5 57 5.2 M6 16 2 17.78 5 18.3 14.583 14 64 69 5.2 M1 24 3 23.825 5 24.76 19.759 19 81 86 7.6 M12 28 4 31.267 6.5 31.65 25.943 25 12.5 19 9 1. M16 32 5 44.399 6.5 44.741 37.584 35.7 129.5 136 9 2.5 M2 4 6 63.348 8 63.765 53.859 51 182 19 12 4. M24 5 7 83.58 1 83.578 7.52 65 25 26 18.5 5. M33 8 d d2 6 r t K CRKS M.T.NO. d I1 LS d1 BD Q42

INTERNATIONAL SYSTEM OF UNITS yunit CONVERSION TABLE for EASIER CHANGE into SI UNITS (Bold type Indictes SI unit) Pressure P kp MP br kgf/cm 2 tm mmh2o mmhg or Torr 1 1 1-3 1 1-6 1 1-5 1.1972 1-5 9.86923 1-6 1.1972 1-1 7.562 1-3 1 1 3 1 1 1-3 1 1-2 1.1972 1-2 9.86923 1-3 1.1972 1 2 7.562 1 1 6 1 1 3 1 1 1 1.1972 1 9.86923 1.1972 1 5 7.562 1 3 1 1 5 1 1 2 1 1-1 1 1.1972 9.86923 1-1 1.1972 1 4 7.562 1 2 9.8665 1 4 9.8665 1 9.8665 1-2 9.8665 1-1 1 9.67841 1-1 1 1 4 7.35559 1 2 1.1325 1 5 1.1325 1 2 1.1325 1-1 1.1325 1.3323 1 1.3323 1 4 7.6 1 2 9.8665 9.8665 1-3 9.8665 1-6 9.8665 1-5 1 1-4 9.67841 1-5 1 7.35559 1-2 1.33322 1 2 1.33322 1-1 1.33322 1-4 1.33322 1-3 1.35951 1-3 1.31579 1-3 1.35951 1 1 (Note) 1P=1N/m 2 Force N dyn kgf 1 1 1 5 1.1972 1-1 1 1-5 1 1.1972 1-6 9.8665 9.8665 1 5 1 Stress P MP or N/mm 2 kgf/mm 2 kgf/cm 2 1 1 1-6 1.1972 1-7 1.1972 1-5 1 1 6 1 1.1972 1-1 1.1972 1 9.8665 1 6 9.8665 1 1 1 2 9.8665 1 4 9.8665 1-2 1 1-2 1 (Note) 1P=1N/m 2 Work / Energy / Quntity of Het J kw h kgf m kcl 1 2.77778 1-7 1.1972 1-1 2.38889 1-4 3.6 1 6 1 3.6798 1 5 8.6 1 2 9.8665 2.7247 1-6 1 2.3427 1-3 4.1865 1 3 1.16279 1-3 4.26858 1 2 1 (Note) 1J=1W s, 1J=1N m 1cl=4.1865J (By the lw of weights nd mesures) Power (Rte of Production / Motive Power) /Het Flow Rte W kgf m/s PS kcl/h 1 1.1972 1-1 1.35962 1-3 8.6 1-1 9.8665 1 1.33333 1-2 8.43371 7.355 1 2 7.5 1 1 6.32529 1 2 1.16279 1.18572 1-1 1.5895 1-3 1 (Note) 1W=1J/s, PS:French horse power 1PS=.7355kW (By the enforcement ct for the lw of weights nd mesures) 1cl=4.1865J Q43

TOOL WEAR AND DAMAGE CAUSES AND COUNTERMEASURES Tool Dmge Form Cuse Countermesure Flnk Wer Tool grde is too soft. Cutting speed is too high. Flnk ngle is too smll. Feed rte is extremely low. Tool grde with high wer resistnce. Lower cutting speed. Increse fl nk ngle. Increse feed rte. Crter Wer Tool grde is too soft. Cutting speed is too high. Feed rte is too high. Tool grde with high wer resistnce. Lower cutting speed. Lower feed rte. Chipping Frcture Plstic Deformtion Welding Tool grde is too hrd. Feed rte is too high. Lck of cutting edge strength. Lck of shnk or holder rigidity. Tool grde is too hrd. Feed rte is too high. Lck of cutting edge strength. Lck of shnk or holder rigidity. Tool grde is too soft. Cutting speed is too high. Depth of cut nd feed rte re too lrge. Cutting temperture is high. Cutting speed is low. Poor shrpness. Unsuitble grde. Tool grde with high toughness. Lower feed rte. Increse honing. (Round honing is to be chnged to chmfer honing.) Use lrge shnk size. Tool grde with high toughness. Lower feed rte. Increse honing. (Round honing is to be chnged to chmfer honing.) Use lrge shnk size. Tool grde with high wer resistnce. Lower cutting speed. Decrese depth of cut nd feed rte. Tool grde with high therml conductivity. Increse cutting speed. (For JIS S45C, cutting speed 8m/min.) Increse rke ngle. Tool grde with low ffi nity. (Coted grde, cermet grde) Therml Crcks Notching Expnsion or shrinkge due to cutting het. Tool grde is too hrd. Especilly in milling. Hrd surfces such s uncut surfces, chilled prts nd mchining hrdened lyer. Friction cused by jgged shpe chips. (Cused by smll vibrtion) Dry cutting. (For wet cutting, fl ood workpiece with cutting fl uid) Tool grde with high toughness. Tool grde with high wer resistnce. Increse rke ngle to improve shrpness. Flking Cutting edge welding nd dhesion. Poor chip disposl. Increse rke ngle to improve shrpness. Enlrge chip pocket. Flnk Wer Frcture Dmge for polycrystllines Dmge due to the lck of strength of curved cutting edge. Increse honing. Tool grde with high toughness. Crter Wer Frcture Dmge for polycrystllines Tool grde is too soft. Cutting resistnce is too high nd cuses high cutting het. Decrese honing. Tool grde with high wer resistnce. Q44