HFBR-1505AZ/2505AZ (SMA

Similar documents
HFBR-1505AFZ/2505AFZ (SMA Tx/Rx for SERCOS) HFBR-1515BFZ/2515BFZ (ST Tx/Rx for PROFIBUS) HFBR-1505CFZ/2505CFZ (SMA Tx/Rx for INTERBUS-S)

Data Sheet. HFBR-1506AMZ/HFBR-2506AMZ Fiber Optic SMA Transmitters and Receivers for 16 MBd SERCOS Applications. Description. Features.

Data Sheet HFBR-1506AFZ/HFBR-2506AFZ. Full Metal Fiber Optic SMA Transmitters and Receivers for 16 MBd SERCOS Applications. Description.

Fiber Optic Transmitters and Receivers for SERCOS, PROFIBUS and INTERBUS-S Applications. Technical Data

AFBR-1555ARZ, AFBR-2555ARZ (SMA Tx/Rx for SERCOS)

Features. Applications

12 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 μm HCS. Features. Applications

The HFBR-1604 is a selected version of the HFBR-1602, with power specified to meet the

Isolation in Test and Measurement Instruments Error Free Signalling for Industrial and Manufacturing

Data Sheet. HFBR-0500Z Series Versatile Link The Versatile Fiber Optic Connection. Description. Features. Applications

Data Sheet. HFBR-0500ETZ Series Versatile Link The Versatile Fiber Optic Connection. Description. Features. Applications

Data Sheet. HFBR-0300Z Series HFBR-1312TZ Transmitter HFBR-2316TZ Receiver nm Fiber Optic Transmitter and Receiver. Features.

Data Sheet AFBR-2419MZ. 50 MBd Miniature Link Fiber Optic Receiver. Description. Features. Applications. AFBR-24x9xZ Available Part Numbers

Data Sheet AFBR-2418MZ. DC-50MBd Miniature Link Fiber Optic Receiver. Description. Features. Applications. AFBR-24x8xZ Available Part Numbers

Data Sheet. HFBR-1312TZ Transmitter HFBR-2316TZ Receiver nm Fiber Optic Transmitter and Receiver. Description. Features.

AFBR-1528CZ and AFBR-2528CZ

Data Sheet. HFBR-1312T Transmitter HFBR-2316T Receiver 1300 nm Fiber Optic Transmitter and Receiver. Description. Features. Applications.

Data Sheet. AFBR-16xxZ and AFBR-26x4Z/25x9Z DC-50MBd Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 µm PCS.

Data Sheet. AFBR-3950xxRZ High Voltage Galvanic Insulation Link for DC to 50MBaud. Features. Description. Applications. Ordering Information

FT10MHNR FT10MVNR. 650 nm DC 10 MBd RedLink Fiber Optic Transmitter Data Sheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

Data Sheet. AFBR-16xxZ and AFBR-26x4Z/25x9Z DC-50MBd Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 m PCS.

FT05MHNR FT05MVNR. 650 nm DC 5 MBd RedLink Fiber Optic Transmitter Data Sheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

DC-5 MBd RedLink Transmitter and Receiver Pair

FT01MHNG FT01MVNG. 530 nm DC-1 MBd RedLink Fiber Optic Transmitter Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS



DC-10 MBd RedLink Transmitter and Receiver Pair

Data Sheet. HFBR-14xxZ and HFBR-24xxZ Series Low-Cost, 820 nm Miniature Link Fiber Optic Components with ST, SMA, SC and FC Ports.

FM10DHIR FM10DHNR FM10DVIR FM10DVNR DC 10 RedLink Fiber Optic Receiver Preliminary Data Sheet

FT10MHLR FT10MVLR. 650 nm DC-10 MBd RedLink Fiber Optic Transmitter Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

FR10DxxR. DC-10 RedLink Fiber Optic Receiver Datasheet DESCRIPTION FEATURES AVAILABLE OPTIONS APPLICATIONS

FT05MxNR. 650 nm DC-5 MBd RedLink Fiber Optic Transmitter Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

FR50MxxR. DC-50 RedLink Fiber Optic Receiver Datasheet DESCRIPTION FEATURES AVAILABLE OPTIONS APPLICATIONS

FR10DxxR. DC-10 RedLink Fiber Optic Receiver Datasheet DESCRIPTION FEATURES AVAILABLE OPTIONS APPLICATIONS

FR50MxxR DC-50 RedLink Fiber Optic Receiver Datasheet

FR05DHCR FR05DVCR. DC-5 MBd Open Collector Dual Supply Voltage RedLink Receiver Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

RECEIVER. Package Options. Transmitter (TX) PLD-1315TM PLD-1315M. Receiver (RX) PLD-23XXTM PLD-23XXM

HFBR-14xxZ and HFBR-24xxZ Series

Data Sheet. HFBR-0400Z, HFBR-14xxZ and HFBR-24xxZ Series. Low Cost, Miniature Fiber Optic Components with ST, SMA, SC and FC Ports.

Features. Applications. Truth Table (Positive Logic) LED ENABLE OUTPUT

HFBR-14xxZ and HFBR-24xxZ Series

FT50MHNR FT50MHIR FT50MVNR FT50MVIR 650 nm DC 50 MBd Fully Integrated RedLink Fiber Optic Transmitter Data Sheet

FT50MxxR 650 nm DC-50 MBd Fully Integrated RedLink Fiber Optic Transmitter Datasheet

FM05DHIR FM05DVIR DC 5 MBd Dual Supply Voltage RedLink Receiver Preliminary Data Sheet

FR05DHIR FR05DVIR. DC-5 MBd Dual Supply Voltage RedLink Receiver Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

Data Sheet. AFBR-S10TR001Z Compact 650 nm Analog Transceiver with Compact Versatile-Link Connector for Sensing Over POF. Description.

FR05DxIR. DC-5 MBd Dual Supply Voltage RedLink Receiver Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

Fiber Optic Receiver. OPF520 Series. OPF520 Series

HFD Mbit Direct Coupled Receiver

FM20VHIR FM20VVIR. RedLink Fiber Optic Receiver for Direct High Voltage Switching Preliminary Data Sheet DESCRIPTION FEATURES APPLICATIONS

FR20DxIR RedLink Fiber Optic Receiver for Direct High Voltage Switching Datasheet

Schematic V F HCPL-7601/11 SHIELD. USE OF A 0.1 µf BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS REQUIRED (SEE NOTE 1).


ACNT-H50L. 1-MBd Optocoupler in 15-mm Stretched SO8 Package. Data Sheet. Description. Features. Applications. Functional Diagram

FR05DxDR RedLink Fiber Optic Receiver for Direct High Voltage Switching Datasheet

RoHS compliant 1310 nm multi-mode Transceiver (2 km) 1x9, SC Duplex Connector, 5.0 V 155 Mbps ATM/ Fast Ethernet

RoHS Compliant 1310 nm Single-mode Transceiver (L1.1) 2 5, LC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

Features. Applications OFF

ACNV2601. High Insulation Voltage 10-MBd Digital Optocoupler. Data Sheet. Description. Features. Applications

Dual Channel, High Speed Optocouplers Technical Data

European Connectorized Receivers

AC/DC to Logic Interface Optocouplers Technical Data

RoHS compliant 1310 nm Single-mode Transceiver (1000BASE-LX) 2 5, LC Duplex Connector, 3.3 V Gbd Fiber Channel/1.25 Gigabit Ethernet

Dual Channel, High Speed Optocouplers Technical Data

RoHS compliant 1310 nm Single-mode Transceiver (S1.1, 19dB margin) 1x9, SC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

4N25 Phototransistor Optocoupler General Purpose Type. Features

HCPL-M454 Ultra High CMR, Small Outline, 5 Lead, High Speed Optocoupler. Features

ACPL-M50L, ACPL-054L, ACPL-W50L and ACPL-K54L Low Power, 1MBd Digital Optocoupler. Features. Applications GND

PARAMETER SYMBOL MIN MAX UNITS NOTE

RoHS compliant 1310 nm Single-mode Transceiver (L1.1) 1x9, ST Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet.

HCPL-270L/070L/273L/073L

1550 nm Single-mode Transceiver (80km) 1 9, SC Duplex Connector, 3.3 V 622 Mbps ATM/SONET OC-12/SDH STM-4

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package

FIBER105.TIF OUTLINE DIMENSIONS in inches (mm) .176 (4.47).165 (4.19) .500 MIN (12.7) FIBER203.DIM. Pinout 1. Capacitor 2. VÙÙ 3.

RoHS compliant 850 nm Multi-mode Transceiver (1000BASE-SX) 1 9, SC Duplex Connector, 3.3 V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet

RoHS compliant 1310 nm Single-mode Transceiver (10km) 1 9, ST Duplex Connector, 3.3 V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet

Data Sheet. AFBR-1150L / AFBR-2150L Fiber Optic Transmitter and Receiver for 150 Mbit/s MOST. Features. Description. Applications.

DC 50 FEATURES APPLICATIONS. Emitting a visible (POF). range of. MBd. with +/ 10 % RCLED in. Ultra low. width distortion. Table 1.

Fiber Optic LAN Components VF45 Quad Transceiver for 10Mb/s and 100Mb/s Ethernet

Data Sheet. HCPL-181 Phototransistor Optocoupler SMD Mini-Flat Type. Features

AFBR-59F2Z Data Sheet Description Features Applications Transmitter Receiver Package

MediSpec SMI Non-Magnetic Transceiver

VOLTAGE TEMPERATURE LD TYPE

Agilent HCPL-0738 High Speed CMOS Optocoupler

Data Sheet. HCPL-181 Phototransistor Optocoupler SMD Mini-Flat Type. Description

Features. Description. PART NUMBER TX RX VOLTAGE TEMPERATURE KSB2-A3S-PC-N nm 1310 nm 3.3 V 0 C to 70 C

SFH551/1-1 and SFH551/1-1V Receiver with Digital Output Stage for Polymer Optical Fiber Applications. Data Sheet. Description.

HCPL-576x* AC/DC to Logic Interface Hermetically Sealed Optocouplers


PART NUMBER TX RX VOLTAGE TEMPERATURE. LSB2-A3M-PC-N nm 1310 nm 3.3 V 0 C to 70 C LSB2-A3M-PI-N nm 1310 nm 3.

RoHS Compliant TX-1310/RX-1550 nm Single-mode Bi-directional 2

HFD3029. Schmitt Input, Non-Inverting TTL Output Receiver

ACPL-P480 and ACPL-W480

ACNV4506 Intelligent Power Module and Gate Drive Interface Optocouplers. Features. Specifications. Applications

Wide Operating Temperature Automotive Digital Optocoupler with R 2 Coupler Isolation and 5-Pin SMT Package. Features. Applications ANODE

HFD /XXX. h 479. Schmitt Input, Non-Inverting TTL Output Receiver

HCPL-0700, HCPL-0701, HCNW138, HCNW139, 6N139, 6N138, Low Input Current, High Gain Optocouplers. Features. Applications LOW HIGH

LTV-063L LVTTL/LVCMOS Compatible 3.3V Dual-Channel Optocouplers (10 Mb/s)

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler. Features. Specifications. Applications

ACPL-K49T. Data Sheet

Transcription:

HFBR-0AZ/20AZ (SMA Tx/Rx for SERCOS) HFBR-BZ/2BZ (ST Tx/Rx for PROFIBUS) HFBR-0CZ/20CZ (SMA Tx/Rx for INTERBUS-S) Fiber Optic Transmitters and Receivers for SERCOS, PROFIBUS and INTERBUS-S Applications Data Sheet Description SERCOS SERCOS, an acronym for SErial Realtime COmmunications System, is a standard digital interface for communication in industrial CNC applications. SERCOS is a European (EN 9) and international standard (IEC 9). The optical interface allows data rates of 2,,, and MBd and data transfer between numerical controls and drives via fiberoptic rings, with voltage isolation and noise immunity. The HFBR-0AZ and HFBR-20AZ products comply with SERCOS specifications for optical characteristics and connector style, and have guaranteed performance up to 0 MBd. (Typically the MBd required by SERCOS is possible as well but please contact Avago regarding the plan for the MBd device.) PROFIBUS PROFIBUS, an acronym of PROcess FIeld BUS, is an open fieldbus standard defined for data rates ranging from 9. kbd to 2 MBd in selectable steps for wire and optical fiber. PROFIBUS is a German national DIN 92 standard and a European CENELEC standard EN 00. The ST connector is the recommended optical port of the PROFIBUS optical fiber version but other connectors are allowed as well. The HFBR-BZ and HFBR-2BZ comply fully to the technical guideline using Plastic Optical Fiber up to MBd, and have a guaranteed performance at data rates up to 0 MBd. (Typically the 2 MBd is possible as well, but please contact Avago regarding the plan for the 2 MBd device.) Features Meets industrial SERCOS, PROFIBUS, and INTERBUS-S standard SMA and ST ports 0 nm wavelength technology Specified for use with mm plastic optical fiber and 200 µm hard clad silica Auto-insertable and wave solderable DC 0 MBd data rate RoHS-compliant Applications Industrial control data links Factory automation data links Voltage isolation applications PLCs Motor drives Sensor, meter and actuator interfaces INTERBUS-S INTERBUS-S, a special open Sensor/Actuator Bus, is finding a broad acceptance in the factory automation industry. The HFBR-0CZ and HFBR-20CZ were specially designed for this application and can be used with mm POF and 200 µm HCS fiber at the specified data rates of 00 kbd and 2 MBd. The optical transmission guideline is a supplement of the German National DIN E 92 standard draft. On the European level, pren 02 is the draft of the INTERBUS-S fieldbus. ST is a registered trademark of AT&T. HCS is a registered trademark of OFS Corporation.

Package Information All HFBR-XXXZ series transmitters and receivers are housed in a low-cost, dual-in-line package that is made of high strength, heat resistant, chemically resistant and UL 9 V-O (UL file # E22) flame retardant plastic. The transmitters are easily identified by the light grey colored connector port. The receivers are easily identified by the dark grey colored connector port. The package is designed for auto-insertion and wave soldering so it is ideal for high volume production applications. Handling and Design Information When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean. Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol on a cotton swab also works well. Recommended Chemicals for Cleaning/Degreasing XXX Products Alcohols: methyl, isopropyl, isobutyl. Aliphatics: hexane, heptane. Other: soap solution, naphtha. Do not use partially halogenated hydrocarbons such as,, trichloroethane, ketones such as MEK, acetone, chloroform, ethyl acetate, methylene dichloride, phenol, methylene chloride or N-methylpyrolldone. Also, Avago does not recommend the use of cleaners that use halogenated hydrocarbons because of their potential environmental harm. CAUTION: The small junction size inherent in the design of these components increases the components susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these components to prevent damage and/or degradation which may be induced by ESD. Specified Link Performance -0 C to +0 C unless otherwise noted. Parameter Symbol Min. Max. Unit Condition Reference Link Distance with 0. 0 m POF Notes, 2, 3,, HFBR-0AZ/20AZ or 0. 200 m HCS Notes, 2, 3,, HFBR-BZ/2BZ Link Distance with 0. 0 m POF Notes, 2, 3,, HFBR-0CZ/20CZ 0. 00 m HCS Notes, 2, 3,, Pulse Width Distortion PWD 30 +30 ns 2% to % Note with HFBR-0AZ/20AZ duty cycle or HFBR-BZ/2BZ Pulse Width Distortion PWD 2 +2 ns arbitrary duty cycle Note with HFBR-0CZ/20CZ Notes:. With recommended Tx and Rx circuits (0 ma nominal drive current). 2. POF HFBR-ExxyyyZ 0.23 db/m worst case attentuation. 3. HCS 0 db/km worst case attenuation.. Including a 3 db optical safety margin accounting for link service lifetime.. Including a 2 db optical safety margin accounting for link service lifetime.. Signaling rate DC to 0 MBd.. Signaling rate DC to 2 MBd. 2

HFBR-XXZ Transmitters The HFBR-XXZ transmitter incorporates a 0 nm LED in a light gray nonconductive plastic housing. The high light output power enables the use of both plastic optical fiber (POF) and Hard Clad Silica (HCS ). This transmitter can be operated up to 0 MBd using a simple driver circuit. The HFBR-0XZ is compatible with SMA connectors, while the HFBR-XZ mates with ST connectors. PIN BOTTOM VIEW, HFBR-xxZ SEE NOTE 0 FUNCTION CONNECTED TO PIN CONNECTED TO PIN GND GND CATHODE ANODE Absolute Maximum Ratings Parameter Symbol Min. Max. Unit Reference Storage and Operating Temperature T S,O 0 C Peak Forward Input Current I F,PK 90 ma Note Average Forward Input Current I F,AVG 0 ma Reverse Input Voltage V R 3 V Lead Soldering Cycle Temp T SOL 20 C Note Time 0 s Electrical/Optical Characteristics -0 C to +0 C unless otherwise noted. Parameter Symbol Min. Typ. [] Max. Unit Condition Ref. Optical Power Temperature P T / T 0.02 db/ C Coefficient Forward Voltage V F. 2. 2. V I F, dc = 0 ma Fig. Forward Voltage V F / T. mv/ C Fig. Temperature Coefficient Breakdown Voltage V BR 3.0 3 V I F, dc = 0 µa Peak Emission Wavelength λ PK 0 0 0 nm Fig. 3 Full Width Half Max FWHM 2 30 nm Fig. 3 Diode Capacitance C O 0 pf V F = 0 V, f = MHz Thermal Resistance θ JC 0 C/W Notes, Rise Time (0% to 90%) t r 3 ns 0% to 90%, Fall Time (90% to 0%) t f 0 ns I F = 0 ma EYE SAFETY: The HFBR-xXZ is a Class LED Product and eye safe when used within the data sheet limits and under normal operating conditions. This includes all reasonably foreseeable single fault conditions per IEC02- and amendments. 3

V F - FORWARD VOLTAGE - V P T - NORMALIZED OUTPUT POWER - db NORMALIZED SPECTRAL OUTPUT POWER Peak Output Power -0 C to +0 C unless otherwise noted. Model Number Symbol Min. Max. Unit Condition Reference HFBR-0AZ SERCOS P T 0.. dbm POF, I F, dc = 3 ma Notes 2, 3,. 3. POF, I F, dc = 0 ma Figure 2.0 0 HCS, I F, dc = 0 ma HFBR-BZ PROFIBUS 0.. POF, I F, dc = 3 ma Notes 2, 3,. 3. POF, I F, dc = 0 ma Figure 2.0. HCS, I F, dc = 0 ma HFBR-0CZ INTERBUS-S.2 0.0 POF, I F, dc = 0 ma Notes 3,, 9.9. HCS, I F, dc = 0 ma Figure 2 Notes:. Typical data at 2 C. 2. Optical power measured at the end of 0. meters of mm diameter plastic optical fiber with a large area detector. 3. Minimum and maximum values for P T over temperature are based on a fixed drive current. The recommended drive circuit has temperature compensation which reduces the variation in P T over temperature, refer to Figures and.. Thermal resistance is measured with the transmitter coupled to a connector assembly and fiber, and mounted on a printed circuit board.. To further reduce the thermal resistance, the cathode trace should be made as large as is consistent with good RF circuit design.. For I F,PK > 0 ma, the duty factor must maintain I F,AVG 0 ma and pulse width µs... mm below seating plane.. Minimum peak output power at 2 C is.3 dbm (POF) and.0 dbm (HCS ) for 0C series only. 9. Optical power measured at the end of meter of mm diameter plastic or 200 µm hard clad silica optical fiber with a large area detector. 0. Pins and are for mounting and retaining purposes, but are electrically connected; pins and are electrically isolated. It is recommended that pins,,, and all be connected to ground to reduce coupling of electrical noise.. Output power with 200 µm hard clad silica optical fiber assumes a typical 0. db difference compared to mm plastic optical fiber. 2. 2.3 2..9-0 C 0 C 2 C 0 C 0 0-0 -20-0 C 2 C C..2.0 0. 0. -0 C 0 C 2 C 0 C C. C. 0 00 I F,DO - TRANSMITTER DRIVE CURRENT - ma Figure. Typical forward voltage vs. drive current -30-0 0 00 I F,DO - TRANSMITTER DRIVE CURRENT - ma Figure 2. Typical normalized optical power vs. drive current 0. 0.2 0 0 30 0 0 90 WAVELENGTH Ð nm Figure 3. Typical normalized optical spectra

NORMALIZED OUTPUT POWER PWD - ns.2..0 V CC =.2 V V CC =.0 V 2 0 - V CC =.0 V V CC =.2 V 0.9-2 0. V CC =. V -3 - V CC =. V 0. -0-20 0 20 0 0 0 TEMPERATURE - C Figure. Typical normalized optical power vs. temperature (in recommended drive circuit) - -0-20 0 20 0 0 0 TEMPERATURE - C Figure. Typical optical pulse width distortion vs. temperature and power supply voltage (in recommended drive circuit) Recommended Drive Circuit for HFBR-x0AZ/xBZ TTL COMPATIBLE TRANSMITTER TTL COMPATIBLE RECEIVER + V V CC C 0 µf + C2 0. µf R U2 U3 HFBR-XXZ HFBR-2XXZ R2 2. C 0. µf + V V CC 0 V TTL OUTPUT 2 DS U 3 TTL INPUT 0 V R I F 2. Ω 3 ma Ω 0 ma Figure. Recommended transmitter and receiver drive circuit (I F, on = 3 ma or 0 ma nominal at T A = 2 C)

HFBR-2xAZ/BZ Receivers The HFBR-2xAZ/BZ receiver consists of a silicon PIN photodiode and digitizing IC to produce a logic compatible output. The IC includes a unique circuit to correct the pulse width distortion of the first bit after a long idle period. This enables operation from DC to 0 MBd with low PWD for arbitrary data patterns. The receiver output is a push pull stage compatible with TTL and CMOS logic. The receiver housing is a dark grey, conductive plastic. The HFBR-20AZ is compatible with SMA connectors, while the HFBR-2BZ mates with ST connectors. PIN BOTTOM VIEW, HFBR 2xAZ/BZ SEE NOTE FUNCTION CONNECTED TO PIN CONNECTED TO PIN NO CONNECT V CC GND V O Absolute Maximum Ratings Parameter Symbol Min. Max. Unit Reference Storage and Operating Temperature T S 0 C Supply Voltage V CC 0. +. V Average Output Current I O,AVG + ma Output Power Dissipation P OD 0 mw Lead Soldering Cycle Temp 20 C Note 2 Time 0 s Electrical/Optical Characteristics -0 C to +0 C,. V < V CC <.2 V, V P P Noise 00 mv unless otherwise noted Parameter Symbol Min. Typ. [] Max. Unit Condition Ref. Peak Input Power Level P RH 2 dbm mm POF Notes 3, Logic HIGH 200 µm HCS Peak Input Power Level P RL 20 0 dbm mm POF, Note 3 Logic LOW 22 2 200 µm HCS Figs.,, PWD < 30 ns 9, 0 Supply Current I CC 2 ma V O = Open High Level Output V OH.2. V I O = 0 µa Voltage Low Level Output Voltage V OH 0.22 0. V I O = +. ma Output Rise Time t r 2 30 ns C L = 0 pf Note 3 Output Fall Time t f 0 30 ns CL = 0 pf Note 3 Notes:. Typical data are at 2 C, V CC =.0 V. 2.. mm below seating plane. 3. In recommended receiver circuit, with an optical signal from the recommended transmitter circuit.. Pins and are electrically connected to the conductive housing and are also used for mounting and retaining purposes. It is required that pin and be connected to ground to maintain conductive housing shield effectiveness.. BER 0E-9, includes a 0. db margin below the receiver switching threshold level (signal to noise ratio = 2).

PWD - ns PWD - ns RECEIVED POWER - dbm RECEIVED PWD - ns V CC =.2 V V CC =.0 V 30 20 0 3 2 V CC =. V 0-0 -20 0-0 -20 0 20 0 0 0 00 TEMPERATURE - C -30-22 - - -0 - -2 2 P PL - RECEIVER OPTICAL INPUT POWER - dbm Figure. Typical POF receiver overdrive P RL,max at 0 MBd vs. temperature and power supply voltage Figure. Typical POF receiver pulse width distortion vs. optical power at 0 MBd 3 2 0 9...9.0..2.3.. V CC - VOLTS -3 - - - - -...9.0..2.3.. V CC - VOLTS Figure 9. Typical POF receiver pulse width distortion vs. power supply voltage at high optical power, (0 dbm, 0 MBd) Figure 0. Typical POF receiver pulse width distortion vs. power supply voltage at low optical power, (-2 dbm, 0 MBd)

HFBR-20CZ Receiver The HFBR-20CZ receiver includes a monolithic DC coupled, digital IC receiver with open collector Schottky output transistor. An internal pullup resistor to V CC is available at pin. The receiver housing is a dark gray conductive plastic and the optical port is compatible with SMA connectors. The speci-fied signal rate of HFBR- 20CZ is 2 MBd. BOTTOM VIEW, HFBR 20CZ PIN SEE NOTE 3 FUNCTION CONNECTED TO PIN CONNECTED TO PIN R L V CC GND V O Absolute Maximum Ratings Parameter Symbol Min. Max. Units Reference Storage & Operating Temperatures T S, O 0 + C Lead Soldering Cycle Temp. 20 C Note Time 0 sec Supply Voltage V CC 0. V Note 2 Output Collector Current I OAV 2 ma Output Collector Power Dissipation P OD 0 mw Output Voltage V O 0. V Pull-up Voltage V P V CC V Fan Out (TTL) N Notes:.. mm below seating plane. 2. It is essential that a bypass capacitor 0. µf be connected from pin to pin of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm. 3. Pins and are electrically connected to the conductive housing and are also used for mounting and retaining purposes. It is required that pin and be connected to ground to maintain conductive housing shield effectiveness.

Receiver Electrical/Optical Characteristics -0 C to +0 C,. V V CC.2 V unless otherwise specified Parameter Symbol Min. Typ. Max. Units Conditions Ref. Input Optical Power Level P R(L) 2. 2.0 dbm V OL = 0. V Notes, 2 for Logic 0 I OL = ma mm POF 23.0 V OL = 0. V I OL = ma 200 µm HCS Input Optical Power Level P R(H) 3 dbm V OL =.2 V Note for Logic I OH 20 µa High Level Output Current I OH 20 µa V O = V, P R = 0 Note 3 Low Level Output Current V OL 0. 0. V I OL = ma, Note 3 P R = P R(L)MIN High Level Supply Current I CCH 3..3 ma V CC =.2 V, Note 3 P R = 0 Low Level Supply Current I CCL.2 0 ma V CC =.2 V Note 3 P R = -2. dbm Effective Diameter D mm Numerical Aperture NA 0. Internal Pull-up Resistor R L 0 000 00 Ω Notes:. Optical flux, P (dbm) = 0 Log [P (µw)/000 µw]. 2. Measured at the end of the fiber optic cable with large area detector. 3. R L is open. TTL COMPATIBLE TRANSMITTER TTL COMPATIBLE RECEIVER + V V CC C 0 µf + I F R = (V CC - V F ) /I F R C2 0. µf V F C 0. µf + V V CC 0 V HFBR-0CZ HFBR-20CZ TTL OUTPUT 2 DS U 3 TTL INPUT 0 V Figure. Typical interface circuit R I F 2. Ω 3 ma Ω 0 ma 9

Mechanical Dimensions HFBR-XXZ 2.2 (0.3) 2. (0.9) YYWW HFBR-XXXX.0 (0.2) DATE CODE PART NUMBER. (0.30). (0.9).3 (0.2).3 (0.0) Æ. (0.0). (0.20).0 (0.0) 3. (0.0).3 (0.00) 3. (0.0) PINS, ARE 0. (0.02) DIA..3 (0.0) 2. (0.) 2. (0.0) PINS,,, ARE 0. (0.020) X 0.2 (0.0) HFBR-X0XZ. (0.3) 2. (0.9) YYWW HFBR-XXXX DATE CODE PART NUMBER. (0.30) / - 3 UNS 2A THREAD.3 (0.2).3 (0.0). (0.20) DIA.. (0.20).0 (0.0) 3. (0.0).3 (0.00) 3. (0.0) 2. (0.) PINS, ARE 0. (0.02) DIA. 2. (0.0) PINS,,, ARE 0. (0.020) X 0.2 (0.0) 0

For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright 200-200 Avago Technologies. All rights reserved. Obsoletes AV0-0303EN AV02-99EN - December, 200