CS 599: Distributed Intelligence in Robotics

Size: px
Start display at page:

Download "CS 599: Distributed Intelligence in Robotics"

Transcription

1 CS 599: Distributed Intelligence in Robotics Winter Dr. Daisy Tang All lecture notes are adapted from Dr. Lynne Parker s lecture notes on Distributed Intelligence in Autonomous Robotics

2 Outline Overview of syllabus Overview of distributed intelligence in robotics

3 Introduction to Distributed Intelligence Distributed intelligence refers to systems of entities working together to reason, plan, solve problems, think abstractly, comprehend ideas and language, and learn.

4

5 Objective of Distributed Intelligence The objectiveis to generate systems of software agents, robots, sensors, computer systems, and even people and animals that can work together with the same level of efficiencyand expertise as human teams We will have a focus of study on multirobot system(mrs)

6 Rapidly Growing Research in MRS

7 How Rapidly is This Research Growing?

8 Reasons for the Rapid Growth Advances in individual autonomous robotics Advances in understanding of complex systems Increased computational capabilities Many potential application domains RoboCup influence Etc.

9 Potential Application Domains for MRS

10 Why Distributed Intelligence? Inherently distributed task High task complexity Efficiency through parallelism Robustness through redundancy Easier design of robots

11 Challenges How to manage the complete system? Lack of centralized control More communication requirement? Interference between entities Increased uncertainty about the system

12 MRS Design is Challenging Solutions are dependent upon task requirements and robot capabilities Efficiency Robustness Speed Flexibility Scalability Task 1 Task 2? Task 3

13 7 Primary Areas of Research in Distributed Robotics 1. Biological inspirations 2. Motion coordination 3. Communication 4. Object transport and manipulation 5. Reconfigurable robotics 6. Architectures, task planning, and control 7. Localization, mapping, and exploration

14 1. Biological Inspirations Objective: study biological systems to achieve engineering goals Communication Auditory, chemical, tactile, visual, electrical Direct, indirect, explicit, implicit Roles Strict division vs. loose assignments Hierarchies Purpose: reduction in fighting, efficiency Territoriality Reduces fighting, disperses group, simplifies interactions Leaf cutter ants Bee colony

15 Gist: Application of simple local control rules of various biological societies (ants, bees, and birds) to the development of similar behaviors in cooperative robot systems Flock, disperse, aggregate, forage, and follow trails Emergent cooperation as a result of acting on selfish interest

16 Swarm-Type Dispersion A. Howard, USC

17 Biological Inspirations: Future

18 2. Motion Coordination Issues studied: Multi-robot path planning Traffic control Formation Target tracking Target search Etc. Multi-robot path planning: enable robots to navigate collaboratively to achieve spatial positioning goals

19 Multi-Robot Motion Control: Keeping-Formation Work by Parker et ORNL Global control via local interactions

20 Motion Coordination: Future

21 3. Communication Objective: enable robots to exchange state and environmental information with a minimum bandwidth requirement Issues studied: Explicit vs. Implicit Local vs. Global Impact of bandwidth restrictions Variety of mediums: radio, IR, chemical scents, breadcrumbs, etc.

22 Communication: Future

23 4. Object Transportation and Manipulation Objective: enable multiple robots to collaboratively push, move, or carry objects that cannot be handled by one robot alone Issue studied: Two-robot teams vs. Swarm-type teams Cluttered vs. Uncluttered environments Global system models vs. Distributed models Etc.

24 Baton Passing and Box Pushing by Parker et al by Tang & Parker

25 Object Transport and Manipulation: Future

26 5. Reconfigurable Robotics Self-reconfiguring modular robots are autonomous kinematic machines with variable morphology Objective: obtain function from shape, allowing modules to reconnect to form shapes that achieve desired purpose Adapt to new circumstances Perform new tasks Recover from damage

27 Potential Applications Applications: Various navigation configurations (rolling track, spider, snake, etc.) Stair climbing, object support, etc. Space applications Requires long-term self-sustaining robots that can handle unforeseen situations and may require self repair

28 Movies of PolyBot By Mark Yim, Xerox PARC Porous material climbing Stair climbing Tricycle pedaling

29 Movies of CONRO (USC Information Science Institute) From snake to a rolling track Reconfiguration

30 Reconfigurable Robotic: Future

31 6. Architectures, Task Planning and Control Objective: development of overall control approach enabling robot teams to effectively accomplish given tasks Issues studied: Task allocation Action selection Delegation of authority and control Communication structure Heterogeneity vs. Homogeneity Achieving coherence amidst local actions Resolution of conflicts

32 Site-Clearing Movie by Tang & Parker

33 Architectures, Task Planning and Control: Future

34 7. Localization, Mapping and Exploration Objective: enable robot teams to cooperatively build models of their environment, or to accomplish spatial tasks requiring knowledge of other robot positions Issues studied: Extension of single-robot mapping approach to multi-robot teams Hardware, algorithms for robot positioning Sonar vs. Laser vs. Stereo vs. Sensor fusion Landmarks vs. Scan-matching

35 Monte Carlo Localization with 2 Robots by Thrun

36 3-D Mapping by Thrun The 3D map Was created with A laser pointing up At an angle

37 Localization, Mapping and Exploration: Future

38 Some New Research Areas Peer-to-peer human robot teams Highly heterogeneous teams Unmanned aerial and ground vehicles Physical demonstrations of large number of robots (> 100)

39 Topics We Will Study See our course website for details

40 Next Class Single robot control If you have taken Introduction to Robotics (CS 521) with me, you do not need to show up for the next class But you will need to have your player/stage installed and running

CS594, Section 30682:

CS594, Section 30682: CS594, Section 30682: Distributed Intelligence in Autonomous Robotics Spring 2003 Tuesday/Thursday 11:10 12:25 http://www.cs.utk.edu/~parker/courses/cs594-spring03 Instructor: Dr. Lynne E. Parker ½ TA:

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1 Introduction to Robotics CSCI 445 Laurent Itti Group Robotics Introduction to Robotics L. Itti & M. J. Mataric 1 Today s Lecture Outline Defining group behavior Why group behavior is useful Why group behavior

More information

Biological Inspirations for Distributed Robotics. Dr. Daisy Tang

Biological Inspirations for Distributed Robotics. Dr. Daisy Tang Biological Inspirations for Distributed Robotics Dr. Daisy Tang Outline Biological inspirations Understand two types of biological parallels Understand key ideas for distributed robotics obtained from

More information

Robotic Systems ECE 401RB Fall 2007

Robotic Systems ECE 401RB Fall 2007 The following notes are from: Robotic Systems ECE 401RB Fall 2007 Lecture 14: Cooperation among Multiple Robots Part 2 Chapter 12, George A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Collective Robotics. Marcin Pilat

Collective Robotics. Marcin Pilat Collective Robotics Marcin Pilat Introduction Painting a room Complex behaviors: Perceptions, deductions, motivations, choices Robotics: Past: single robot Future: multiple, simple robots working in teams

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

Swarm Robotics. Lecturer: Roderich Gross

Swarm Robotics. Lecturer: Roderich Gross Swarm Robotics Lecturer: Roderich Gross 1 Outline Why swarm robotics? Example domains: Coordinated exploration Transportation and clustering Reconfigurable robots Summary Stigmergy revisited 2 Sources

More information

Multi-Robot Systems, Part II

Multi-Robot Systems, Part II Multi-Robot Systems, Part II October 31, 2002 Class Meeting 20 A team effort is a lot of people doing what I say. -- Michael Winner. Objectives Multi-Robot Systems, Part II Overview (con t.) Multi-Robot

More information

SWARM INTELLIGENCE. Mario Pavone Department of Mathematics & Computer Science University of Catania

SWARM INTELLIGENCE. Mario Pavone Department of Mathematics & Computer Science University of Catania Worker Ant #1: I'm lost! Where's the line? What do I do? Worker Ant #2: Help! Worker Ant #3: We'll be stuck here forever! Mr. Soil: Do not panic, do not panic. We are trained professionals. Now, stay calm.

More information

A Taxonomy of Multirobot Systems

A Taxonomy of Multirobot Systems A Taxonomy of Multirobot Systems ---- Gregory Dudek, Michael Jenkin, and Evangelos Milios in Robot Teams: From Diversity to Polymorphism edited by Tucher Balch and Lynne E. Parker published by A K Peters,

More information

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015 Subsumption Architecture in Swarm Robotics Cuong Nguyen Viet 16/11/2015 1 Table of content Motivation Subsumption Architecture Background Architecture decomposition Implementation Swarm robotics Swarm

More information

An Introduction To Modular Robots

An Introduction To Modular Robots An Introduction To Modular Robots Introduction Morphology and Classification Locomotion Applications Challenges 11/24/09 Sebastian Rockel Introduction Definition (Robot) A robot is an artificial, intelligent,

More information

Design of Adaptive Collective Foraging in Swarm Robotic Systems

Design of Adaptive Collective Foraging in Swarm Robotic Systems Western Michigan University ScholarWorks at WMU Dissertations Graduate College 5-2010 Design of Adaptive Collective Foraging in Swarm Robotic Systems Hanyi Dai Western Michigan University Follow this and

More information

Towards Artificial ATRON Animals: Scalable Anatomy for Self-Reconfigurable Robots

Towards Artificial ATRON Animals: Scalable Anatomy for Self-Reconfigurable Robots Towards Artificial ATRON Animals: Scalable Anatomy for Self-Reconfigurable Robots David J. Christensen, David Brandt & Kasper Støy Robotics: Science & Systems Workshop on Self-Reconfigurable Modular Robots

More information

OFFensive Swarm-Enabled Tactics (OFFSET)

OFFensive Swarm-Enabled Tactics (OFFSET) OFFensive Swarm-Enabled Tactics (OFFSET) Dr. Timothy H. Chung, Program Manager Tactical Technology Office Briefing Prepared for OFFSET Proposers Day 1 Why are Swarms Hard: Complexity of Swarms Number Agent

More information

Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha

Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha Multi robot Team Formation for Distributed Area Coverage Raj Dasgupta Computer Science Department University of Nebraska, Omaha C MANTIC Lab Collaborative Multi AgeNt/Multi robot Technologies for Intelligent

More information

Artificial Intelligence and Mobile Robots: Successes and Challenges

Artificial Intelligence and Mobile Robots: Successes and Challenges Artificial Intelligence and Mobile Robots: Successes and Challenges David Kortenkamp NASA Johnson Space Center Metrica Inc./TRACLabs Houton TX 77058 kortenkamp@jsc.nasa.gov http://www.traclabs.com/~korten

More information

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011 Overview of Challenges in the Development of Autonomous Mobile Robots August 23, 2011 What is in a Robot? Sensors Effectors and actuators (i.e., mechanical) Used for locomotion and manipulation Controllers

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

SWARM-BOT: A Swarm of Autonomous Mobile Robots with Self-Assembling Capabilities

SWARM-BOT: A Swarm of Autonomous Mobile Robots with Self-Assembling Capabilities SWARM-BOT: A Swarm of Autonomous Mobile Robots with Self-Assembling Capabilities Francesco Mondada 1, Giovanni C. Pettinaro 2, Ivo Kwee 2, André Guignard 1, Luca Gambardella 2, Dario Floreano 1, Stefano

More information

Decentralized Approaches for Robot Fleet Control

Decentralized Approaches for Robot Fleet Control Workshop on AERIAL ROBOTICS - Onera Toulouse 2-3 October 2014 Decentralized Approaches for Robot Fleet Control INSA Lyon CITI-Inria Lab. - Dynamid team Olivier.Simonin@insa-lyon.fr Outline I. Decentralized

More information

KOVAN Dept. of Computer Eng. Middle East Technical University Ankara, Turkey

KOVAN Dept. of Computer Eng. Middle East Technical University Ankara, Turkey Swarm Robotics: From sources of inspiration to domains of application Erol Sahin KOVAN Dept. of Computer Eng. Middle East Technical University Ankara, Turkey http://www.kovan.ceng.metu.edu.tr What is Swarm

More information

Multi-Agent Planning

Multi-Agent Planning 25 PRICAI 2000 Workshop on Teams with Adjustable Autonomy PRICAI 2000 Workshop on Teams with Adjustable Autonomy Position Paper Designing an architecture for adjustably autonomous robot teams David Kortenkamp

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

Teamwork among marine robots advances and challenges

Teamwork among marine robots advances and challenges Teamwork among marine robots advances and challenges Mandar Chitre ARL, Tropical Marine Science Institute and Department of Electrical & Computer Engineering, National University of Singapore. Abstract.

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg)

1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg) 1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg) 6) Virtual Ecosystems & Perspectives (sb) Inspired

More information

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Proc. of IEEE International Conference on Intelligent Robots and Systems, Taipai, Taiwan, 2010. IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Yu Zhang

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25)

CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25) CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25) Dr. Cengiz Günay, Emory Univ. Günay Robotics I Autonomous Robots (Ch. 25) Spring 2013 1 / 15 Robots As Killers? The word robot coined

More information

An Introduction to Swarm Intelligence Issues

An Introduction to Swarm Intelligence Issues An Introduction to Swarm Intelligence Issues Gianni Di Caro gianni@idsia.ch IDSIA, USI/SUPSI, Lugano (CH) 1 Topics that will be discussed Basic ideas behind the notion of Swarm Intelligence The role of

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

Robotic Technology for Port and Maritime Automation

Robotic Technology for Port and Maritime Automation Industrial/Service Robots Field Robots Robotic Technology for Port and Maritime Automation Presenter: Assoc Prof Chen I-Ming Director, Robotics Research Center & Intelligent Systems Center School of Mechanical

More information

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Seiji Yamada Jun ya Saito CISS, IGSSE, Tokyo Institute of Technology 4259 Nagatsuta, Midori, Yokohama 226-8502, JAPAN

More information

CAPACITIES FOR TECHNOLOGY TRANSFER

CAPACITIES FOR TECHNOLOGY TRANSFER CAPACITIES FOR TECHNOLOGY TRANSFER The Institut de Robòtica i Informàtica Industrial (IRI) is a Joint University Research Institute of the Spanish Council for Scientific Research (CSIC) and the Technical

More information

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Learning to avoid obstacles Outline Problem encoding using GA and ANN Floreano and Mondada

More information

Current research in multirobot systems

Current research in multirobot systems Artif Life Robotics (2003) 7:1-5 9 ISAROB 2003 DOI 10.1007/s10015-003-0229-9 Lynne E. Parker Current research in multirobot systems Received and accepted: January 10, 2003 Abstract As research progresses

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

MASON. A Java Multi-agent Simulation Library. Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus

MASON. A Java Multi-agent Simulation Library. Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus MASON A Java Multi-agent Simulation Library Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus George Mason University s Center for Social Complexity and Department of Computer

More information

Distributed Control of Multi-Robot Teams: Cooperative Baton Passing Task

Distributed Control of Multi-Robot Teams: Cooperative Baton Passing Task Appeared in Proceedings of the 4 th International Conference on Information Systems Analysis and Synthesis (ISAS 98), vol. 3, pages 89-94. Distributed Control of Multi- Teams: Cooperative Baton Passing

More information

Task Allocation: Role Assignment. Dr. Daisy Tang

Task Allocation: Role Assignment. Dr. Daisy Tang Task Allocation: Role Assignment Dr. Daisy Tang Outline Multi-robot dynamic role assignment Task Allocation Based On Roles Usually, a task is decomposed into roleseither by a general autonomous planner,

More information

Swarm Intelligence. Corey Fehr Merle Good Shawn Keown Gordon Fedoriw

Swarm Intelligence. Corey Fehr Merle Good Shawn Keown Gordon Fedoriw Swarm Intelligence Corey Fehr Merle Good Shawn Keown Gordon Fedoriw Ants in the Pants! An Overview Real world insect examples Theory of Swarm Intelligence From Insects to Realistic A.I. Algorithms Examples

More information

Multi-Robot Path Planning and Motion Coordination

Multi-Robot Path Planning and Motion Coordination Multi-Robot Path Planning and Motion Coordination Dr. Lynne E. Parker Professor and Associate Head Dept. of Electrical Engineering & Computer Science University of Tennessee, Knoxville USA leparker@utk.edu

More information

Praktikum: 9 Introduction to modular robots and first try

Praktikum: 9 Introduction to modular robots and first try 18.272 Praktikum: 9 Introduction to modular robots and first try Lecturers Houxiang Zhang Manfred Grove TAMS, Department of Informatics, Germany @Tams/hzhang Institute TAMS s http://tams-www.informatik.uni-hamburg.de/hzhang

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Middleware and Software Frameworks in Robotics Applicability to Small Unmanned Vehicles

Middleware and Software Frameworks in Robotics Applicability to Small Unmanned Vehicles Applicability to Small Unmanned Vehicles Daniel Serrano Department of Intelligent Systems, ASCAMM Technology Center Parc Tecnològic del Vallès, Av. Universitat Autònoma, 23 08290 Cerdanyola del Vallès

More information

1,024 Kilobot Robots Studying Collective Behaviors & Swarm Intelligence with Little Bitty Robots

1,024 Kilobot Robots Studying Collective Behaviors & Swarm Intelligence with Little Bitty Robots NJIT 1,024 Kilobot Robots Studying Collective Behaviors & Swarm Intelligence with Little Bitty Robots From ant colonies to how cells cooperate to form complex patterns, New Jersey Institute of Technology(NJIT)

More information

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS BY SERAFIN BENTO MASTER OF SCIENCE in INFORMATION SYSTEMS Edmonton, Alberta September, 2015 ABSTRACT The popularity of software agents demands for more comprehensive HAI design processes. The outcome of

More information

COS Lecture 1 Autonomous Robot Navigation

COS Lecture 1 Autonomous Robot Navigation COS 495 - Lecture 1 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Introduction Education B.Sc.Eng Engineering Phyics, Queen s University

More information

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors In the 2001 International Symposium on Computational Intelligence in Robotics and Automation pp. 206-211, Banff, Alberta, Canada, July 29 - August 1, 2001. Cooperative Tracking using Mobile Robots and

More information

Scalable Task Assignment for Heterogeneous Multi-Robot Teams

Scalable Task Assignment for Heterogeneous Multi-Robot Teams International Journal of Advanced Robotic Systems ARTICLE Scalable Task Assignment for Heterogeneous Multi-Robot Teams Regular Paper Paula García 1, Pilar Caamaño 2, Richard J. Duro 2 and Francisco Bellas

More information

Flocking-Based Multi-Robot Exploration

Flocking-Based Multi-Robot Exploration Flocking-Based Multi-Robot Exploration Noury Bouraqadi and Arnaud Doniec Abstract Dépt. Informatique & Automatique Ecole des Mines de Douai France {bouraqadi,doniec}@ensm-douai.fr Exploration of an unknown

More information

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Institutue for Robotics and Intelligent Systems (IRIS) Technical Report IRIS-01-404 University of Southern California, 2001 Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Boyoon

More information

Task Allocation: Motivation-Based. Dr. Daisy Tang

Task Allocation: Motivation-Based. Dr. Daisy Tang Task Allocation: Motivation-Based Dr. Daisy Tang Outline Motivation-based task allocation (modeling) Formal analysis of task allocation Motivations vs. Negotiation in MRTA Motivations(ALLIANCE): Pro: Enables

More information

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many Preface The jubilee 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 was held in the conference centre of the Best Western Hotel M, Belgrade, Serbia, from 30 June to 2 July

More information

Neuro-Fuzzy and Soft Computing: Fuzzy Sets. Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani

Neuro-Fuzzy and Soft Computing: Fuzzy Sets. Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani Outline Introduction Soft Computing (SC) vs. Conventional Artificial Intelligence (AI) Neuro-Fuzzy (NF) and SC Characteristics 2 Introduction

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

The Oil & Gas Industry Requirements for Marine Robots of the 21st century

The Oil & Gas Industry Requirements for Marine Robots of the 21st century The Oil & Gas Industry Requirements for Marine Robots of the 21st century www.eninorge.no Laura Gallimberti 20.06.2014 1 Outline Introduction: fast technology growth Overview underwater vehicles development

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Semester Schedule C++ and Robot Operating System (ROS) Learning to use our robots Computational

More information

In cooperative robotics, the group of robots have the same goals, and thus it is

In cooperative robotics, the group of robots have the same goals, and thus it is Brian Bairstow 16.412 Problem Set #1 Part A: Cooperative Robotics In cooperative robotics, the group of robots have the same goals, and thus it is most efficient if they work together to achieve those

More information

Smart Materials and Intelligent System Design at IIT Kanpur

Smart Materials and Intelligent System Design at IIT Kanpur Smart Materials and Intelligent System Design at IIT Kanpur Bishakh Bhattacharya This talk presents a brief overview of my lab at IIT Kanpur. It also brings out how starting from modelling and experimental

More information

The Necessity of Average Rewards in Cooperative Multirobot Learning

The Necessity of Average Rewards in Cooperative Multirobot Learning Carnegie Mellon University Research Showcase @ CMU Institute for Software Research School of Computer Science 2002 The Necessity of Average Rewards in Cooperative Multirobot Learning Poj Tangamchit Carnegie

More information

Biologically-inspired Autonomic Wireless Sensor Networks. Haoliang Wang 12/07/2015

Biologically-inspired Autonomic Wireless Sensor Networks. Haoliang Wang 12/07/2015 Biologically-inspired Autonomic Wireless Sensor Networks Haoliang Wang 12/07/2015 Wireless Sensor Networks A collection of tiny and relatively cheap sensor nodes Low cost for large scale deployment Limited

More information

Mobile Crowdsensing enabled IoT frameworks: harnessing the power and wisdom of the crowd

Mobile Crowdsensing enabled IoT frameworks: harnessing the power and wisdom of the crowd Mobile Crowdsensing enabled IoT frameworks: harnessing the power and wisdom of the crowd Malamati Louta Konstantina Banti University of Western Macedonia OUTLINE Internet of Things Mobile Crowd Sensing

More information

Walking and Flying Robots for Challenging Environments

Walking and Flying Robots for Challenging Environments Shaping the future Walking and Flying Robots for Challenging Environments Roland Siegwart, ETH Zurich www.asl.ethz.ch www.wysszurich.ch Lisbon, Portugal, July 29, 2016 Roland Siegwart 29.07.2016 1 Content

More information

Lecture Overview. c D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 1.1, Page 1 1 / 15

Lecture Overview. c D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 1.1, Page 1 1 / 15 Lecture Overview What is Artificial Intelligence? Agents acting in an environment Learning objectives: at the end of the class, you should be able to describe what an intelligent agent is identify the

More information

Courses on Robotics by Guest Lecturing at Balkan Countries

Courses on Robotics by Guest Lecturing at Balkan Countries Courses on Robotics by Guest Lecturing at Balkan Countries Hans-Dieter Burkhard Humboldt University Berlin With Great Thanks to all participating student teams and their institutes! 1 Courses on Balkan

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

Reconnectable Joints for Self-Reconfigurable Robots

Reconnectable Joints for Self-Reconfigurable Robots Reconnectable Joints for Self-Reconfigurable Robots Behrokh Khoshnevis*, Robert Kovac, Wei-Min Shen, Peter Will Information Sciences Institute 4676 Admiralty Way, Marina del Rey, CA 90292 Department of

More information

Improving Emergency Response and Human- Robotic Performance

Improving Emergency Response and Human- Robotic Performance Improving Emergency Response and Human- Robotic Performance 8 th David Gertman, David J. Bruemmer, and R. Scott Hartley Idaho National Laboratory th Annual IEEE Conference on Human Factors and Power Plants

More information

GROUP BEHAVIOR IN MOBILE AUTONOMOUS AGENTS. Bruce Turner Intelligent Machine Design Lab Summer 1999

GROUP BEHAVIOR IN MOBILE AUTONOMOUS AGENTS. Bruce Turner Intelligent Machine Design Lab Summer 1999 GROUP BEHAVIOR IN MOBILE AUTONOMOUS AGENTS Bruce Turner Intelligent Machine Design Lab Summer 1999 1 Introduction: In the natural world, some types of insects live in social communities that seem to be

More information

Distributed Robotics From Science to Systems

Distributed Robotics From Science to Systems Distributed Robotics From Science to Systems Nikolaus Correll Distributed Robotics Laboratory, CSAIL, MIT August 8, 2008 Distributed Robotic Systems DRS 1 sensor 1 actuator... 1 device Applications Giant,

More information

Embodiment from Engineer s Point of View

Embodiment from Engineer s Point of View New Trends in CS Embodiment from Engineer s Point of View Andrej Lúčny Department of Applied Informatics FMFI UK Bratislava lucny@fmph.uniba.sk www.microstep-mis.com/~andy 1 Cognitivism Cognitivism is

More information

A MARINE FAULTS TOLERANT CONTROL SYSTEM BASED ON INTELLIGENT MULTI-AGENTS

A MARINE FAULTS TOLERANT CONTROL SYSTEM BASED ON INTELLIGENT MULTI-AGENTS A MARINE FAULTS TOLERANT CONTROL SYSTEM BASED ON INTELLIGENT MULTI-AGENTS Tianhao Tang and Gang Yao Department of Electrical & Control Engineering, Shanghai Maritime University 1550 Pudong Road, Shanghai,

More information

An Agent-based Heterogeneous UAV Simulator Design

An Agent-based Heterogeneous UAV Simulator Design An Agent-based Heterogeneous UAV Simulator Design MARTIN LUNDELL 1, JINGPENG TANG 1, THADDEUS HOGAN 1, KENDALL NYGARD 2 1 Math, Science and Technology University of Minnesota Crookston Crookston, MN56716

More information

Team Kanaloa: research initiatives and the Vertically Integrated Project (VIP) development paradigm

Team Kanaloa: research initiatives and the Vertically Integrated Project (VIP) development paradigm Additive Manufacturing Renewable Energy and Energy Storage Astronomical Instruments and Precision Engineering Team Kanaloa: research initiatives and the Vertically Integrated Project (VIP) development

More information

Cognitive Robotics 2017/2018

Cognitive Robotics 2017/2018 Cognitive Robotics 2017/2018 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

Autonomous Control for Unmanned

Autonomous Control for Unmanned Autonomous Control for Unmanned Surface Vehicles December 8, 2016 Carl Conti, CAPT, USN (Ret) Spatial Integrated Systems, Inc. SIS Corporate Profile Small Business founded in 1997, focusing on Research,

More information

INFORMATION AND COMMUNICATION TECHNOLOGIES IMPROVING EFFICIENCIES WAYFINDING SWARM CREATURES EXPLORING THE 3D DYNAMIC VIRTUAL WORLDS

INFORMATION AND COMMUNICATION TECHNOLOGIES IMPROVING EFFICIENCIES WAYFINDING SWARM CREATURES EXPLORING THE 3D DYNAMIC VIRTUAL WORLDS INFORMATION AND COMMUNICATION TECHNOLOGIES IMPROVING EFFICIENCIES Refereed Paper WAYFINDING SWARM CREATURES EXPLORING THE 3D DYNAMIC VIRTUAL WORLDS University of Sydney, Australia jyoo6711@arch.usyd.edu.au

More information

CPE/CSC 580: Intelligent Agents

CPE/CSC 580: Intelligent Agents CPE/CSC 580: Intelligent Agents Franz J. Kurfess Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. 1 Course Overview Introduction Intelligent Agent, Multi-Agent

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

Executive Summary. Chapter 1. Overview of Control

Executive Summary. Chapter 1. Overview of Control Chapter 1 Executive Summary Rapid advances in computing, communications, and sensing technology offer unprecedented opportunities for the field of control to expand its contributions to the economic and

More information

PERFORMANCE ANALYSIS OF A RANDOM SEARCH ALGORITHM FOR DISTRIBUTED AUTONOMOUS MOBILE ROBOTS CHENG CHEE KONG NATIONAL UNIVERSITY OF SINGAPORE

PERFORMANCE ANALYSIS OF A RANDOM SEARCH ALGORITHM FOR DISTRIBUTED AUTONOMOUS MOBILE ROBOTS CHENG CHEE KONG NATIONAL UNIVERSITY OF SINGAPORE PERFORMANCE ANALYSIS OF A RANDOM SEARCH ALGORITHM FOR DISTRIBUTED AUTONOMOUS MOBILE ROBOTS CHENG CHEE KONG NATIONAL UNIVERSITY OF SINGAPORE 24 PERFORMANCE ANALYSIS OF A RANDOM SEARCH ALGORITHM FOR DISTRIBUTED

More information

New task allocation methods for robotic swarms

New task allocation methods for robotic swarms New task allocation methods for robotic swarms F. Ducatelle, A. Förster, G.A. Di Caro and L.M. Gambardella Abstract We study a situation where a swarm of robots is deployed to solve multiple concurrent

More information

ENGINEERING SERVICE-ORIENTED ROBOTIC SYSTEMS

ENGINEERING SERVICE-ORIENTED ROBOTIC SYSTEMS ENGINEERING SERVICE-ORIENTED ROBOTIC SYSTEMS Prof. Dr. Lucas Bueno R. de Oliveira Prof. Dr. José Carlos Maldonado SSC5964 2016/01 AGENDA Robotic Systems Service-Oriented Architecture Service-Oriented Robotic

More information

From Model-Based Strategies to Intelligent Control Systems

From Model-Based Strategies to Intelligent Control Systems From Model-Based Strategies to Intelligent Control Systems IOAN DUMITRACHE Department of Automatic Control and Systems Engineering Politehnica University of Bucharest 313 Splaiul Independentei, Bucharest

More information

Programmable self-assembly in a thousandrobot

Programmable self-assembly in a thousandrobot Programmable self-assembly in a thousandrobot swarm Michael Rubenstein, Alejandro Cornejo, Radhika Nagpal. By- Swapna Joshi 1 st year Ph.D Computing Culture and Society. Authors Michael Rubenstein Assistant

More information

SWARM ROBOTICS: PART 2. Dr. Andrew Vardy COMP 4766 / 6912 Department of Computer Science Memorial University of Newfoundland St.

SWARM ROBOTICS: PART 2. Dr. Andrew Vardy COMP 4766 / 6912 Department of Computer Science Memorial University of Newfoundland St. SWARM ROBOTICS: PART 2 Dr. Andrew Vardy COMP 4766 / 6912 Department of Computer Science Memorial University of Newfoundland St. John s, Canada PRINCIPLE: SELF-ORGANIZATION 2 SELF-ORGANIZATION Self-organization

More information

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Leandro Soriano Marcolino and Luiz Chaimowicz Abstract A very common problem in the navigation of robotic swarms is when groups of robots

More information

10 th INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF COMMAND AND CONTROL

10 th INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF COMMAND AND CONTROL 10 th INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF COMMAND AND CONTROL Title of Paper : A Simplified Taxonomy of Command and Control Structures for Robot Teams Topic

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

SnakeSIM: a Snake Robot Simulation Framework for Perception-Driven Obstacle-Aided Locomotion

SnakeSIM: a Snake Robot Simulation Framework for Perception-Driven Obstacle-Aided Locomotion : a Snake Robot Simulation Framework for Perception-Driven Obstacle-Aided Locomotion Filippo Sanfilippo 1, Øyvind Stavdahl 1 and Pål Liljebäck 1 1 Dept. of Engineering Cybernetics, Norwegian University

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino What is Robotics? Robotics studies robots For history and definitions see the 2013 slides http://www.ladispe.polito.it/corsi/meccatronica/01peeqw/2014-15/slides/robotics_2013_01_a_brief_history.pdf

More information

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design CSE 165: 3D User Interaction Lecture #14: 3D UI Design 2 Announcements Homework 3 due tomorrow 2pm Monday: midterm discussion Next Thursday: midterm exam 3D UI Design Strategies 3 4 Thus far 3DUI hardware

More information

CS123. Programming Your Personal Robot. Part 3: Reasoning Under Uncertainty

CS123. Programming Your Personal Robot. Part 3: Reasoning Under Uncertainty CS123 Programming Your Personal Robot Part 3: Reasoning Under Uncertainty Topics For Part 3 3.1 The Robot Programming Problem What is robot programming Challenges Real World vs. Virtual World Mapping and

More information

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Funzionalità per la navigazione di robot mobili Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Variability of the Robotic Domain UNIBG - Corso di Robotica - Prof. Brugali Tourist

More information

SWARM ROBOTICS: PART 2

SWARM ROBOTICS: PART 2 SWARM ROBOTICS: PART 2 PRINCIPLE: SELF-ORGANIZATION Dr. Andrew Vardy COMP 4766 / 6912 Department of Computer Science Memorial University of Newfoundland St. John s, Canada 2 SELF-ORGANIZATION SO in Non-Biological

More information

Creating a 3D environment map from 2D camera images in robotics

Creating a 3D environment map from 2D camera images in robotics Creating a 3D environment map from 2D camera images in robotics J.P. Niemantsverdriet jelle@niemantsverdriet.nl 4th June 2003 Timorstraat 6A 9715 LE Groningen student number: 0919462 internal advisor:

More information