RoBotanic: a Robot Guide for Botanical Gardens. Early steps.

Size: px
Start display at page:

Download "RoBotanic: a Robot Guide for Botanical Gardens. Early steps."

Transcription

1 RoBotanic: a Robot Guide for Botanical Gardens. Early steps. Antonio Chella, Irene Macaluso, Daniele Peri, and Lorenzo Riano Department of Computer Engineering (DINFO) University of Palermo, Ed.6 viale delle Scienze, Palermo, Italy chella@unipa.it,{macaluso,peri,riano}@csai.unipa.it Abstract. RoBotanic is a brand new project we recently started to deliver a robotic guide for the Botanical Garden of the University of Palermo. This project follows on the researches of the Robotics Lab that yelded CiceRobot, the robotic guide that has been tested in the indoor environment of the Archaeological Museum of Agrigento. In this paper we describe the goal of the new project, the design challenges we are facing in a difficult and vast outdoor environment, and the early steps we are undertaking to meet the goal. Key words: Personal Robotics, Cognitive Robotics, Human Robot Interaction, Robotic Guide 1 Introduction The interaction of humans and robot is a fascinating research with a broad range of possible applications. One of the most exciting is represented by a robotic tour guide for museum. The task is considered a relevant case study (see [1]) as it involves perception, self perception, planning and human-robot interaction [4]. The Robotics Lab of University of Palermo has been pursuing a robotic architecture for robots that takes into account several suggestions from cognitive science [2], [3] trying to address the problems posed by the application. The architecture has been used in the previously started CiceRobot project (see [4]), aimed at developing a robotic guide for museums. A lot of experiences and data has so far been collected concerning with both the problem of a robot guiding a group of human visitors inside a sensitive area full of precious artifacts, and the interaction of generally enthusiastic and curious humans with the technological guide. Thus we can easily affirm that simply putting a robot in the context of a museum generates a new interest in visitors, even the ones completely unaware of the role of the robot, as we often have experienced in the pauses between experiments. Such high interest, especially in pupils, has given us the motivation to keep on pursuing the development of a robotic guide. Following this inspiration we started the RoBotanic project aimed at bringing a robotic guide to outdoor environment of the Botanical Garden of the University of Palermo. We are transferring the experience that has so far been gained in the CiceRobot

2 2 Antonio Chella, Irene Macaluso, Daniele Peri, and Lorenzo Riano project by the Robotics Lab to the RoBotanic project, although major differences between the two scenarios are quite evident. In this paper we present the goal of the RoBotanic project, the current status and the steps we are undertaking, as well as as the challenges that such a difficult outdoor environment poses us. 2 The goal The RoBotanic project is focused on developing a robot able to guide visitors of the Botanical Garden of the University of Palermo to discover in a new way the wealth of plants, history, architecture, finely crafted decorations and statues that the more than two centuries old institution contains. Obviously, we are focused on tours that are considerably simpler than those offered by the human guides of the garden. Nevertheless delivering even simple robot guided tours is a challenging task when the environment is the one we describe in the following section. Fig. 1. Map of the Botanical Garden 2.1 The environment The Botanical Garden of the University of Palermo is a research and educational institution hosting more than species of plants and with an extension of about 30 acres. The origins of the garden date back to the late 18th century as reflected by the neoclassic style of the three main buildings, the Gymnasium, the Calidarium, the Frigidarium, respectively spotted by labels 1, 2 and 3 in the map of figure 1. This building complex define the north side of the original

3 RoBotanic: a Robot Guide for Botanical Gardens. Early steps. 3 structure corresponding to the rectangular area of the System of Lynnaeus (spot 4 ) sectioned by two crossing walkways. The main walkway extends for 200 meters down south (right of the map) to the round pool ( 5 ) called Aquarium hosting the aquatic plants. The orthogonal walkway, long 100 meters, walked towards west leads to the Giardino d Inverno ( Winter garden ) (fig. 5) which is the oldest greenhouse of the garden ( 6 ). The walkways have a width of 7.5 meters including two small sideways ground corridors with small plants, and are delimited by walls (fig. 3). In the first phase of our experimentation we are restricting the robot to move along the main walkways. The continuity of the walls is interrupted by either regularly spaced passages to the sectors of the garden or, occasionally, by trunks and protruding roots (4). The surface of the garden is composed of tuff powder and is pleasant enough for a human to ride. The same cannot be unfortunately be said about the small wheeled suspensionsless robot we introduce in the following section. Fig. 2. The Pioneer 3 AT robot at the Botanical Garden 2.2 The Robot The robotic platform we are using for the project is a Pioneer 3-AT from Mobile Robots (fig. 2) with several add-on sensors. The robot is a box-shaped (50 cm x 49 cm x 26 cm) compact unit with rounded front and rear sides. It weighs about 25 kg. Two motor sets, one for each side, powers four outdoor wheels with a diameter of 21 cm. Steering is accomplished by skid-driving motors in opposite ways; this makes the robot able to turn on place. Encoders on the motors axles and an inertial unit based on solid state gyroscope and accelerometers provide data for the odometry estimation. An electronic compass is also mounted on the robot. The onboard controller from Mobile Robots takes care of driving motors,

4 4 Antonio Chella, Irene Macaluso, Daniele Peri, and Lorenzo Riano performing all the odometry-related computations, and providing an high level interface to the robot. An EBX form-factor single board PC, powered by a Pentium Mobile processor clocked at 1.6GHz is also mounted on board. The PC is responsible for the higher level tasks, including localization and mapping, navigation, vision, sound output and speech. The PC has also the duty to deal with the laser rangefinder and GPS units. A Linux based distribution (Gentoo) is the operating system we chose to install on the onboard computer. Wireless ethernet can be used to connect to the robot. External amplified speakers deliver sound output loud enough to be audible in the open-air space. A Propak+ unit from Novatel provides GPS positioning. A fixed GPS base station located in a certified location nearby the garden can be paired with the onboard GPS unit by means of wireless modems to gain the robot the more precise Differential GPS positioning. The robot mounts frontally a Sick PLS Laser rangefinder, with 180 degrees aperture, that provides either 180 samples readings at 10 Hz, or 360 samples readings at 5 Hz. The measurements are in the range 0.5m-50m with 1cm accuracy. Ultrasound sonars on front and rear sides and Infrared proximity sensors provide further data for obstacle detection. A Bumblebee color stereo camera atop a pan-tilt unit gives robot the ability to take stereo pairs of color pictures (fig. 8). Three 12 Amps hour batteries gives the robot a maximum overall autonomy of about one hour and half. Fig. 3. RoBotanic riding on past the main crossing. 2.3 The experimental tour Our current goal is to make RoBotanic able to guide a simple tour in the selected area of the botanical garden (The System of Lynnaeus ) exposing visitors to Historical, Botanical and Architectural information by mean of its synthetic

5 RoBotanic: a Robot Guide for Botanical Gardens. Early steps. 5 voice. The tour starts in the half-circular area near the Gymnasium where visitors are introduced to the history of the garden, and the main buildings complex is described. The group then moves along the main walkway headed to the central crossing. During the walk informations concerning the sectors at the side of the walkway are given to the visitors. After reaching the crossing the group stops to be briefed about the intersecting walkway. The walk then resumes headed towards the Giardino d Inverno where the description of the historical greenhouse and the plants it contains is provided to the group of visitors (fig. 5). Then the walk continues back to the crossing where a right turn brings the group back on the main walkway headed to the Aquarium (fig. 3). Again along the walk the group is let to know about the remaining two sectors of the System until the round pool with aquatic plants is reached. Then, after the description of the Aquarium, the guide tells briefly visitors about the other parts of the garden. Finally the robot guides the group back to the starting point (fig. 4), and from there to the nearby exit gate where the visit ends. In this task RoBotanic is facing several specific challenges arising from the environment of the botanical garden as pointed out in the following section. Fig. 4. RoBotanic coming back from the Aquarium. Roots partially obstructing the walkway are visible on the right. 3 Early steps of a small robotic outdoor guide We have so far performed a large number of experiments collecting many detailed logs of the odometry, sonars and laser rangefinders data. We are thus able to make some early considerations. At first, we focused on building a map of the RoBotanic environment in order to test the robot in autonomous navigation accordingly with the process is described in [5] and [6]. For this early experiments

6 6 Antonio Chella, Irene Macaluso, Daniele Peri, and Lorenzo Riano Fig. 5. RoBotanic with the main greenhouse in the background. we used the Aria software by Mobile Robots in both the logging and mapping phases. We drove the robot along a continuous path covering the main walkways in their whole extent while recording a log of the sensor data (fig. 6). The result of the off-line mapping process [8] was correct in the walkways but shows sensible misalignment of the orthogonal segments and a short ghost walkway directed to north-west (fig. 7). The problem ariso mostly from systematic errors we are now able to account for and correct. Of course the tuff powder and irregularity of the surface of walkways are not quite helping in getting good odometry data. Other problems we realized -actually not quite unexpectedly- concern the Differential GPS that could boost considerably the mapping process if only was not hindered by the intricate leafage of tall trees and the stereo camera (fig. 8). Minor problems are generated by few protruding roots that partially obstruct the walkways (4) as they are generally detected by the rangefinder and included in the map(7). Our early experimentation continued with a map assisted navigation test that apart from some unexpected localization [7] failures gave us some more hints to improve our approach. 4 Conclusions We presented the early steps of our RoBotanic project describing the path we are following to deliver an outdoor robotic guide. While we think RoBotanic is the natural evolution of Cicerobot, most of the robotic architecture we have based our work so far needs some overhaul in the light of the experimental data we have collected so far. That is not unexpected considering the scarce literature on outdoor robotic guides and even the problems to adapt navigation, mapping, localization, and vision techniques that have been tested in indoor environments to the realm of outdoor robotics.

7 RoBotanic: a Robot Guide for Botanical Gardens. Early steps. 7 Fig. 6. Raw mapping of the entire walkways generated by driving the robot from the Giardino d Inverno for the entire walkway, then back halfway to the central crossing, then to the Gymnasium and finally along the entire main walkway down-to the Aquarium. Fig. 7. Map generated by the Mapper application. The map is correct in the walkways but shows sensible misalignment of the orthogonal segments, and shows a short ghost walkway directed to north-west.

8 8 Antonio Chella, Irene Macaluso, Daniele Peri, and Lorenzo Riano Fig. 8. Image taken by the on-board camera. Note the difficult lighting conditions and the abundant leafage that makes problematic receiving GPS signals. Acknowledgments. Authors would like to thank Prof. F. M. Raimondo, director of the Botanical Garden of the University of Palermo, and Dr. M. Speciale and Dr. M. Surano from the same institution, for their precious help and support. References 1. W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114:3 55, A. Chella, M. Frixione, and S. Gaglio. A cognitive architecture for artificial vision. Artificial Intelligence, 89:73 111, A. Chella, M. Frixione, and S. Gaglio. Understanding dynamic scenes. Artificial Intelligence, 123:89 132, A. Chella, M. Liotta, I. Macaluso, and Daniele Peri. Lessons learned with cicerobot, a robot for museum guided tours. In Eurobot 2006, J.A. Meyer and D. Filliat. Map-based navigation in mobile robots: I. a review of map learning and path-planning strategies. Elsevier Science, J.A. Meyer and D. Filliat. Map-based navigation in mobile robots: Ii. a review of map learning and path-planning strategies. Cognitive Systems Research, 4: , S. Thrun. Learning metric-topological for indoor mobile robot navigation. Artificial Intelligence, 99(1):21 71, B. Yamauchi and R. Beer. Spatial learning for navigation in dynamic environments. IEEE Transactions on Systems, Man and Cybernetics-Part B., 26(3): , Special Issue on Learning Autonomous Robots.

TOWARDS A NEW GENERATION OF CONSCIOUS AUTONOMOUS ROBOTS

TOWARDS A NEW GENERATION OF CONSCIOUS AUTONOMOUS ROBOTS TOWARDS A NEW GENERATION OF CONSCIOUS AUTONOMOUS ROBOTS Antonio Chella Dipartimento di Ingegneria Informatica, Università di Palermo Artificial Consciousness Perception Imagination Attention Planning Emotion

More information

Experiences with CiceRobot, a museum guide cognitive robot

Experiences with CiceRobot, a museum guide cognitive robot Experiences with CiceRobot, a museum guide cognitive robot I. Macaluso 1, E. Ardizzone 1, A. Chella 1, M. Cossentino 2, A. Gentile 1, R. Gradino 1, I. Infantino 2, M. Liotta 1, R. Rizzo 2, G. Scardino

More information

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim MEM380 Applied Autonomous Robots I Winter 2011 Feedback Control USARSim Transforming Accelerations into Position Estimates In a perfect world It s not a perfect world. We have noise and bias in our acceleration

More information

Sensations and Perceptions in Cicerobot a Museum Guide Robot

Sensations and Perceptions in Cicerobot a Museum Guide Robot Sensations and Perceptions in Cicerobot a Museum Guide Robot Antonio Chella, Irene Macaluso Dipartimento di Ingegneria Informatica, Università di Palermo Viale delle Scienze, building 6 90128 Palermo,

More information

Creating a 3D environment map from 2D camera images in robotics

Creating a 3D environment map from 2D camera images in robotics Creating a 3D environment map from 2D camera images in robotics J.P. Niemantsverdriet jelle@niemantsverdriet.nl 4th June 2003 Timorstraat 6A 9715 LE Groningen student number: 0919462 internal advisor:

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

Probabilistic Robotics Course. Robots and Sensors Orazio

Probabilistic Robotics Course. Robots and Sensors Orazio Probabilistic Robotics Course Robots and Sensors Orazio Giorgio Grisetti grisetti@dis.uniroma1.it Dept of Computer Control and Management Engineering Sapienza University of Rome Outline Robot Devices Overview

More information

Design of an Office-Guide Robot for Social Interaction Studies

Design of an Office-Guide Robot for Social Interaction Studies Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems October 9-15, 2006, Beijing, China Design of an Office-Guide Robot for Social Interaction Studies Elena Pacchierotti,

More information

Mobile Robots Exploration and Mapping in 2D

Mobile Robots Exploration and Mapping in 2D ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. Mobile Robots Exploration and Mapping in 2D Sithisone Kalaya Robotics, Intelligent Sensing & Control (RISC)

More information

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful?

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful? Brainstorm In addition to cameras / Kinect, what other kinds of sensors would be useful? How do you evaluate different sensors? Classification of Sensors Proprioceptive sensors measure values internally

More information

Design of an office guide robot for social interaction studies

Design of an office guide robot for social interaction studies Design of an office guide robot for social interaction studies Elena Pacchierotti, Henrik I. Christensen & Patric Jensfelt Centre for Autonomous Systems Royal Institute of Technology, Stockholm, Sweden

More information

Intelligent Vehicle Localization Using GPS, Compass, and Machine Vision

Intelligent Vehicle Localization Using GPS, Compass, and Machine Vision The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Intelligent Vehicle Localization Using GPS, Compass, and Machine Vision Somphop Limsoonthrakul,

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

Design Project Introduction DE2-based SecurityBot

Design Project Introduction DE2-based SecurityBot Design Project Introduction DE2-based SecurityBot ECE2031 Fall 2017 1 Design Project Motivation ECE 2031 includes the sophomore-level team design experience You are developing a useful set of tools eventually

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011 Overview of Challenges in the Development of Autonomous Mobile Robots August 23, 2011 What is in a Robot? Sensors Effectors and actuators (i.e., mechanical) Used for locomotion and manipulation Controllers

More information

The Wayfarer modular navigation payload for intelligent robot infrastructure

The Wayfarer modular navigation payload for intelligent robot infrastructure The Wayfarer modular navigation payload for intelligent robot infrastructure Brian Yamauchi * irobot Research Group, irobot Corporation, 63 South Avenue, Burlington, MA 01803-4903 ABSTRACT We are currently

More information

Sponsored by. Nisarg Kothari Carnegie Mellon University April 26, 2011

Sponsored by. Nisarg Kothari Carnegie Mellon University April 26, 2011 Sponsored by Nisarg Kothari Carnegie Mellon University April 26, 2011 Motivation Why indoor localization? Navigating malls, airports, office buildings Museum tours, context aware apps Augmented reality

More information

4D-Particle filter localization for a simulated UAV

4D-Particle filter localization for a simulated UAV 4D-Particle filter localization for a simulated UAV Anna Chiara Bellini annachiara.bellini@gmail.com Abstract. Particle filters are a mathematical method that can be used to build a belief about the location

More information

Hybrid architectures. IAR Lecture 6 Barbara Webb

Hybrid architectures. IAR Lecture 6 Barbara Webb Hybrid architectures IAR Lecture 6 Barbara Webb Behaviour Based: Conclusions But arbitrary and difficult to design emergent behaviour for a given task. Architectures do not impose strong constraints Options?

More information

A Frontier-Based Approach for Autonomous Exploration

A Frontier-Based Approach for Autonomous Exploration A Frontier-Based Approach for Autonomous Exploration Brian Yamauchi Navy Center for Applied Research in Artificial Intelligence Naval Research Laboratory Washington, DC 20375-5337 yamauchi@ aic.nrl.navy.-iil

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

Autonomous Mobile Robots

Autonomous Mobile Robots Autonomous Mobile Robots The three key questions in Mobile Robotics Where am I? Where am I going? How do I get there?? To answer these questions the robot has to have a model of the environment (given

More information

Correcting Odometry Errors for Mobile Robots Using Image Processing

Correcting Odometry Errors for Mobile Robots Using Image Processing Correcting Odometry Errors for Mobile Robots Using Image Processing Adrian Korodi, Toma L. Dragomir Abstract - The mobile robots that are moving in partially known environments have a low availability,

More information

Semi-Autonomous Parking for Enhanced Safety and Efficiency

Semi-Autonomous Parking for Enhanced Safety and Efficiency Technical Report 105 Semi-Autonomous Parking for Enhanced Safety and Efficiency Sriram Vishwanath WNCG June 2017 Data-Supported Transportation Operations & Planning Center (D-STOP) A Tier 1 USDOT University

More information

Exploration of Unknown Environments Using a Compass, Topological Map and Neural Network

Exploration of Unknown Environments Using a Compass, Topological Map and Neural Network Exploration of Unknown Environments Using a Compass, Topological Map and Neural Network Tom Duckett and Ulrich Nehmzow Department of Computer Science University of Manchester Manchester M13 9PL United

More information

Lecture information. Intelligent Robotics Mobile robotic technology. Description of our seminar. Content of this course

Lecture information. Intelligent Robotics Mobile robotic technology. Description of our seminar. Content of this course Intelligent Robotics Mobile robotic technology Lecturer Houxiang Zhang TAMS, Department of Informatics, Germany http://sied.dis.uniroma1.it/ssrr07/ Lecture information Class Schedule: Seminar Intelligent

More information

Towards Complex Human Robot Cooperation Based on Gesture-Controlled Autonomous Navigation

Towards Complex Human Robot Cooperation Based on Gesture-Controlled Autonomous Navigation CHAPTER 1 Towards Complex Human Robot Cooperation Based on Gesture-Controlled Autonomous Navigation J. DE LEÓN 1 and M. A. GARZÓN 1 and D. A. GARZÓN 1 and J. DEL CERRO 1 and A. BARRIENTOS 1 1 Centro de

More information

Mobile Robot Exploration and Map-]Building with Continuous Localization

Mobile Robot Exploration and Map-]Building with Continuous Localization Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Belgium May 1998 Mobile Robot Exploration and Map-]Building with Continuous Localization Brian Yamauchi, Alan Schultz,

More information

Indoor Positioning by the Fusion of Wireless Metrics and Sensors

Indoor Positioning by the Fusion of Wireless Metrics and Sensors Indoor Positioning by the Fusion of Wireless Metrics and Sensors Asst. Prof. Dr. Özgür TAMER Dokuz Eylül University Electrical and Electronics Eng. Dept Indoor Positioning Indoor positioning systems (IPS)

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Motivation Agenda Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 http://youtu.be/rvnvnhim9kg

More information

AN HYBRID LOCOMOTION SERVICE ROBOT FOR INDOOR SCENARIOS 1

AN HYBRID LOCOMOTION SERVICE ROBOT FOR INDOOR SCENARIOS 1 AN HYBRID LOCOMOTION SERVICE ROBOT FOR INDOOR SCENARIOS 1 Jorge Paiva Luís Tavares João Silva Sequeira Institute for Systems and Robotics Institute for Systems and Robotics Instituto Superior Técnico,

More information

ASSISTIVE TECHNOLOGY BASED NAVIGATION AID FOR THE VISUALLY IMPAIRED

ASSISTIVE TECHNOLOGY BASED NAVIGATION AID FOR THE VISUALLY IMPAIRED Proceedings of the 7th WSEAS International Conference on Robotics, Control & Manufacturing Technology, Hangzhou, China, April 15-17, 2007 239 ASSISTIVE TECHNOLOGY BASED NAVIGATION AID FOR THE VISUALLY

More information

Towards a Methodology for Designing Artificial Conscious Robotic Systems

Towards a Methodology for Designing Artificial Conscious Robotic Systems Towards a Methodology for Designing Artificial Conscious Robotic Systems Antonio Chella 1, Massimo Cossentino 2 and Valeria Seidita 1 1 Dipartimento di Ingegneria Informatica - University of Palermo, Viale

More information

C-ELROB 2009 Technical Paper Team: University of Oulu

C-ELROB 2009 Technical Paper Team: University of Oulu C-ELROB 2009 Technical Paper Team: University of Oulu Antti Tikanmäki, Juha Röning University of Oulu Intelligent Systems Group Robotics Group sunday@ee.oulu.fi Abstract Robotics Group is a part of Intelligent

More information

Intelligent Robotics Sensors and Actuators

Intelligent Robotics Sensors and Actuators Intelligent Robotics Sensors and Actuators Luís Paulo Reis (University of Porto) Nuno Lau (University of Aveiro) The Perception Problem Do we need perception? Complexity Uncertainty Dynamic World Detection/Correction

More information

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Funzionalità per la navigazione di robot mobili Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Variability of the Robotic Domain UNIBG - Corso di Robotica - Prof. Brugali Tourist

More information

Intelligent. Mobile Robots. Robots that know where they re going. Since 1995.

Intelligent. Mobile Robots. Robots that know where they re going. Since 1995. Intelligent Mobile Robots Robots that know where they re going. Since 1995. Robots & Controls for MobileRobots Inc offers OEMs, integrators and dealers robust, reliable robot controls and bases with our

More information

International Journal of Informative & Futuristic Research ISSN (Online):

International Journal of Informative & Futuristic Research ISSN (Online): Reviewed Paper Volume 2 Issue 4 December 2014 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 A Survey On Simultaneous Localization And Mapping Paper ID IJIFR/ V2/ E4/

More information

An Example of robots with their sensors

An Example of robots with their sensors ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 1 An Example of robots with their sensors Basilio Bona ROBOTICS 01PEEQW 3 Another example Omnivision

More information

Shoichi MAEYAMA Akihisa OHYA and Shin'ichi YUTA. University of Tsukuba. Tsukuba, Ibaraki, 305 JAPAN

Shoichi MAEYAMA Akihisa OHYA and Shin'ichi YUTA. University of Tsukuba. Tsukuba, Ibaraki, 305 JAPAN Long distance outdoor navigation of an autonomous mobile robot by playback of Perceived Route Map Shoichi MAEYAMA Akihisa OHYA and Shin'ichi YUTA Intelligent Robot Laboratory Institute of Information Science

More information

EMERGENCE OF COMMUNICATION IN TEAMS OF EMBODIED AND SITUATED AGENTS

EMERGENCE OF COMMUNICATION IN TEAMS OF EMBODIED AND SITUATED AGENTS EMERGENCE OF COMMUNICATION IN TEAMS OF EMBODIED AND SITUATED AGENTS DAVIDE MAROCCO STEFANO NOLFI Institute of Cognitive Science and Technologies, CNR, Via San Martino della Battaglia 44, Rome, 00185, Italy

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Agenda Motivation Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 Bridge the Gap Mobile

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Development of intelligent systems

Development of intelligent systems Development of intelligent systems (RInS) Robot sensors Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science Academic year: 2017/18 Development of intelligent systems Robotic

More information

Homework 10: Patent Liability Analysis

Homework 10: Patent Liability Analysis Homework 10: Patent Liability Analysis Team Code Name: Autonomous Targeting Vehicle (ATV) Group No. 3 Team Member Completing This Homework: Anthony Myers E-mail Address of Team Member: myersar @ purdue.edu

More information

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page: What is a robot?

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page:   What is a robot? COMP 102: Computers and Computing Lecture 23: Robotics Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp102 What is a robot? The word robot is popularized by the Czech playwright

More information

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging Proseminar Roboter und Aktivmedien Educational robots achievements and challenging Lecturer Lecturer Houxiang Houxiang Zhang Zhang TAMS, TAMS, Department Department of of Informatics Informatics University

More information

MAKER: Development of Smart Mobile Robot System to Help Middle School Students Learn about Robot Perception

MAKER: Development of Smart Mobile Robot System to Help Middle School Students Learn about Robot Perception Paper ID #14537 MAKER: Development of Smart Mobile Robot System to Help Middle School Students Learn about Robot Perception Dr. Sheng-Jen Tony Hsieh, Texas A&M University Dr. Sheng-Jen ( Tony ) Hsieh is

More information

An Example of robots with their sensors

An Example of robots with their sensors ROBOTICA 03CFIOR DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 1 An Example of robots with their sensors 3 Another example Omnivision Camera (360 ) Pan-Tilt-Zoom (PTZ) camera

More information

Say Cheese!: Experiences with a Robot Photographer

Say Cheese!: Experiences with a Robot Photographer Say Cheese!: Experiences with a Robot Photographer Zachary Byers and Michael Dixon and William D. Smart and Cindy M. Grimm Department of Computer Science and Engineering Washington University in St. Louis

More information

MOBILE ROBOTICS. Sensors An Introduction

MOBILE ROBOTICS. Sensors An Introduction CY 02CFIC CFIDV RO OBOTIC CA 01 MOBILE ROBOTICS Sensors An Introduction Basilio Bona DAUIN Politecnico di Torino Basilio Bona DAUIN Politecnico di Torino 001/1 CY CA 01CFIDV 02CFIC OBOTIC RO An Example

More information

Cedarville University Little Blue

Cedarville University Little Blue Cedarville University Little Blue IGVC Robot Design Report June 2004 Team Members: Silas Gibbs Kenny Keslar Tim Linden Jonathan Struebel Faculty Advisor: Dr. Clint Kohl Table of Contents 1. Introduction...

More information

Team Autono-Mo. Jacobia. Department of Computer Science and Engineering The University of Texas at Arlington

Team Autono-Mo. Jacobia. Department of Computer Science and Engineering The University of Texas at Arlington Department of Computer Science and Engineering The University of Texas at Arlington Team Autono-Mo Jacobia Architecture Design Specification Team Members: Bill Butts Darius Salemizadeh Lance Storey Yunesh

More information

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT Brandon J. Patton Instructors: Drs. Antonio Arroyo and Eric Schwartz

More information

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Institutue for Robotics and Intelligent Systems (IRIS) Technical Report IRIS-01-404 University of Southern California, 2001 Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Boyoon

More information

The Robotic Busboy: Steps Towards Developing a Mobile Robotic Home Assistant

The Robotic Busboy: Steps Towards Developing a Mobile Robotic Home Assistant The Robotic Busboy: Steps Towards Developing a Mobile Robotic Home Assistant Siddhartha SRINIVASA a, Dave FERGUSON a, Mike VANDE WEGHE b, Rosen DIANKOV b, Dmitry BERENSON b, Casey HELFRICH a, and Hauke

More information

Integrating Exploration and Localization for Mobile Robots

Integrating Exploration and Localization for Mobile Robots Submitted to Autonomous Robots, Special Issue on Learning in Autonomous Robots. Integrating Exploration and Localization for Mobile Robots Brian Yamauchi, Alan Schultz, and William Adams Navy Center for

More information

Sensing and Perception

Sensing and Perception Unit D tion Exploring Robotics Spring, 2013 D.1 Why does a robot need sensors? the environment is complex the environment is dynamic enable the robot to learn about current conditions in its environment.

More information

Slides that go with the book

Slides that go with the book Autonomous Mobile Robots, Chapter Autonomous Mobile Robots, Chapter Autonomous Mobile Robots The three key questions in Mobile Robotics Where am I? Where am I going? How do I get there?? Slides that go

More information

Service Robots in an Intelligent House

Service Robots in an Intelligent House Service Robots in an Intelligent House Jesus Savage Bio-Robotics Laboratory biorobotics.fi-p.unam.mx School of Engineering Autonomous National University of Mexico UNAM 2017 OUTLINE Introduction A System

More information

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision 11-25-2013 Perception Vision Read: AIMA Chapter 24 & Chapter 25.3 HW#8 due today visual aural haptic & tactile vestibular (balance: equilibrium, acceleration, and orientation wrt gravity) olfactory taste

More information

FP7 ICT Call 6: Cognitive Systems and Robotics

FP7 ICT Call 6: Cognitive Systems and Robotics FP7 ICT Call 6: Cognitive Systems and Robotics Information day Luxembourg, January 14, 2010 Libor Král, Head of Unit Unit E5 - Cognitive Systems, Interaction, Robotics DG Information Society and Media

More information

Limits of a Distributed Intelligent Networked Device in the Intelligence Space. 1 Brief History of the Intelligent Space

Limits of a Distributed Intelligent Networked Device in the Intelligence Space. 1 Brief History of the Intelligent Space Limits of a Distributed Intelligent Networked Device in the Intelligence Space Gyula Max, Peter Szemes Budapest University of Technology and Economics, H-1521, Budapest, Po. Box. 91. HUNGARY, Tel: +36

More information

Autonomous Vehicle GNC

Autonomous Vehicle GNC Autonomous Vehicle Global issues for autonomous vehicles (Mikel - 20 min) ION Robotic Lawn Mower (Jade 40 min) Miami University s Approach A Global (Carrie and Casey 1 hour) at de Universite de Cocody

More information

Robotics Enabling Autonomy in Challenging Environments

Robotics Enabling Autonomy in Challenging Environments Robotics Enabling Autonomy in Challenging Environments Ioannis Rekleitis Computer Science and Engineering, University of South Carolina CSCE 190 21 Oct. 2014 Ioannis Rekleitis 1 Why Robotics? Mars exploration

More information

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors In the 2001 International Symposium on Computational Intelligence in Robotics and Automation pp. 206-211, Banff, Alberta, Canada, July 29 - August 1, 2001. Cooperative Tracking using Mobile Robots and

More information

Cooperative navigation: outline

Cooperative navigation: outline Positioning and Navigation in GPS-challenged Environments: Cooperative Navigation Concept Dorota A Grejner-Brzezinska, Charles K Toth, Jong-Ki Lee and Xiankun Wang Satellite Positioning and Inertial Navigation

More information

MULTI ROBOT COMMUNICATION AND TARGET TRACKING SYSTEM AND IMPLEMENTATION OF ROBOT USING ARDUINO

MULTI ROBOT COMMUNICATION AND TARGET TRACKING SYSTEM AND IMPLEMENTATION OF ROBOT USING ARDUINO MULTI ROBOT COMMUNICATION AND TARGET TRACKING SYSTEM AND IMPLEMENTATION OF ROBOT USING ARDUINO K. Sindhuja 1, CH. Lavanya 2 1Student, Department of ECE, GIST College, Andhra Pradesh, INDIA 2Assistant Professor,

More information

COS Lecture 7 Autonomous Robot Navigation

COS Lecture 7 Autonomous Robot Navigation COS 495 - Lecture 7 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

MTRX 4700 : Experimental Robotics

MTRX 4700 : Experimental Robotics Mtrx 4700 : Experimental Robotics Dr. Stefan B. Williams Dr. Robert Fitch Slide 1 Course Objectives The objective of the course is to provide students with the essential skills necessary to develop robotic

More information

COGNITIVE MODEL OF MOBILE ROBOT WORKSPACE

COGNITIVE MODEL OF MOBILE ROBOT WORKSPACE COGNITIVE MODEL OF MOBILE ROBOT WORKSPACE Prof.dr.sc. Mladen Crneković, University of Zagreb, FSB, I. Lučića 5, 10000 Zagreb Prof.dr.sc. Davor Zorc, University of Zagreb, FSB, I. Lučića 5, 10000 Zagreb

More information

POSITIONING AN AUTONOMOUS OFF-ROAD VEHICLE BY USING FUSED DGPS AND INERTIAL NAVIGATION. T. Schönberg, M. Ojala, J. Suomela, A. Torpo, A.

POSITIONING AN AUTONOMOUS OFF-ROAD VEHICLE BY USING FUSED DGPS AND INERTIAL NAVIGATION. T. Schönberg, M. Ojala, J. Suomela, A. Torpo, A. POSITIONING AN AUTONOMOUS OFF-ROAD VEHICLE BY USING FUSED DGPS AND INERTIAL NAVIGATION T. Schönberg, M. Ojala, J. Suomela, A. Torpo, A. Halme Helsinki University of Technology, Automation Technology Laboratory

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 Yu DongDong, Liu Yun, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

Visual Perception Based Behaviors for a Small Autonomous Mobile Robot

Visual Perception Based Behaviors for a Small Autonomous Mobile Robot Visual Perception Based Behaviors for a Small Autonomous Mobile Robot Scott Jantz and Keith L Doty Machine Intelligence Laboratory Mekatronix, Inc. Department of Electrical and Computer Engineering Gainesville,

More information

Visual compass for the NIFTi robot

Visual compass for the NIFTi robot CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY IN PRAGUE Visual compass for the NIFTi robot Tomáš Nouza nouzato1@fel.cvut.cz June 27, 2013 TECHNICAL REPORT Available at https://cw.felk.cvut.cz/doku.php/misc/projects/nifti/sw/start/visual

More information

IoT Wi-Fi- based Indoor Positioning System Using Smartphones

IoT Wi-Fi- based Indoor Positioning System Using Smartphones IoT Wi-Fi- based Indoor Positioning System Using Smartphones Author: Suyash Gupta Abstract The demand for Indoor Location Based Services (LBS) is increasing over the past years as smartphone market expands.

More information

Cognitive robotics using vision and mapping systems with Soar

Cognitive robotics using vision and mapping systems with Soar Cognitive robotics using vision and mapping systems with Soar Lyle N. Long, Scott D. Hanford, and Oranuj Janrathitikarn The Pennsylvania State University, University Park, PA USA 16802 ABSTRACT The Cognitive

More information

An Autonomous Tour-Guide Robot for Public Places

An Autonomous Tour-Guide Robot for Public Places An Autonomous Tour-Guide Robot for Public Places JESÚS SALIDO, VICENTE FELIÚ, ANTONIO ADÁN, LUIS SÁNCHEZ, JOSÉ A. SOMOLINOS & PEDRO L. RONCERO Dpt. of Automatic Control and Systems Engineering (ISA) Castilla-La

More information

Team S.S. Minnow RoboBoat 2015

Team S.S. Minnow RoboBoat 2015 1 Team RoboBoat 2015 Abigail Butka Daytona Beach Homeschoolers Palm Coast Florida USA butkaabby872@gmail.com Nick Serle Daytona Beach Homeschoolers Flagler Beach, Florida USA Abstract This document describes

More information

3D ULTRASONIC STICK FOR BLIND

3D ULTRASONIC STICK FOR BLIND 3D ULTRASONIC STICK FOR BLIND Osama Bader AL-Barrm Department of Electronics and Computer Engineering Caledonian College of Engineering, Muscat, Sultanate of Oman Email: Osama09232@cceoman.net Abstract.

More information

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders Fuzzy Behaviour Based Navigation of a Mobile Robot for Tracking Multiple Targets in an Unstructured Environment NASIR RAHMAN, ALI RAZA JAFRI, M. USMAN KEERIO School of Mechatronics Engineering Beijing

More information

The project. General challenges and problems. Our subjects. The attachment and locomotion system

The project. General challenges and problems. Our subjects. The attachment and locomotion system The project The Ceilbot project is a study and research project organized at the Helsinki University of Technology. The aim of the project is to design and prototype a multifunctional robot which takes

More information

What is a robot? Introduction. Some Current State-of-the-Art Robots. More State-of-the-Art Research Robots. Version:

What is a robot? Introduction. Some Current State-of-the-Art Robots. More State-of-the-Art Research Robots. Version: What is a robot? Notion derives from 2 strands of thought: Introduction Version: 15.10.03 - Humanoids human-like - Automata self-moving things Robot derives from Czech word robota - Robota : forced work

More information

DEMONSTRATION OF ROBOTIC WHEELCHAIR IN FUKUOKA ISLAND-CITY

DEMONSTRATION OF ROBOTIC WHEELCHAIR IN FUKUOKA ISLAND-CITY DEMONSTRATION OF ROBOTIC WHEELCHAIR IN FUKUOKA ISLAND-CITY Yutaro Fukase fukase@shimz.co.jp Hitoshi Satoh hitoshi_sato@shimz.co.jp Keigo Takeuchi Intelligent Space Project takeuchikeigo@shimz.co.jp Hiroshi

More information

A Mobile Robot Behavior Based Navigation Architecture using a Linear Graph of Passages as Landmarks for Path Definition

A Mobile Robot Behavior Based Navigation Architecture using a Linear Graph of Passages as Landmarks for Path Definition A Mobile Robot Behavior Based Navigation Architecture using a Linear Graph of Passages as Landmarks for Path Definition LUBNEN NAME MOUSSI and MARCONI KOLM MADRID DSCE FEEC UNICAMP Av Albert Einstein,

More information

A Cognitive Approach to Robot Self-Consciousness

A Cognitive Approach to Robot Self-Consciousness A Cognitive Approach to Robot Self-Consciousness Antonio Chella and Salvatore Gaglio Dipartimento di Ingegneria Informatica, Università di Palermo Viale delle Scienze, 90128, Palermo, Italy Abstract One

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people Space Research expeditions and open space work Education & Research Teaching and laboratory facilities. Medical Assistance for people Safety Life saving activity, guarding Military Use to execute missions

More information

Xavier: An Autonomous Mobile Robot on the Web

Xavier: An Autonomous Mobile Robot on the Web Xavier: An Autonomous Mobile Robot on the Web Reid Simmons, Joaquin Fernandez 1, Richard Goodwin 2, Sven Koenig 3, Joseph O Sullivan School of Computer Science, Carnegie Mellon University Pittsburgh, PA

More information

CONTACT: , ROBOTIC BASED PROJECTS

CONTACT: , ROBOTIC BASED PROJECTS ROBOTIC BASED PROJECTS 1. ADVANCED ROBOTIC PICK AND PLACE ARM AND HAND SYSTEM 2. AN ARTIFICIAL LAND MARK DESIGN BASED ON MOBILE ROBOT LOCALIZATION AND NAVIGATION 3. ANDROID PHONE ACCELEROMETER SENSOR BASED

More information

Robot: icub This humanoid helps us study the brain

Robot: icub This humanoid helps us study the brain ProfileArticle Robot: icub This humanoid helps us study the brain For the complete profile with media resources, visit: http://education.nationalgeographic.org/news/robot-icub/ Program By Robohub Tuesday,

More information

Saphira Robot Control Architecture

Saphira Robot Control Architecture Saphira Robot Control Architecture Saphira Version 8.1.0 Kurt Konolige SRI International April, 2002 Copyright 2002 Kurt Konolige SRI International, Menlo Park, California 1 Saphira and Aria System Overview

More information

TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014

TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014 TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014 2014 IARC ABSTRACT The paper gives prominence to the technical details of

More information

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Learning to avoid obstacles Outline Problem encoding using GA and ANN Floreano and Mondada

More information

Technology offer. Aerial obstacle detection software for the visually impaired

Technology offer. Aerial obstacle detection software for the visually impaired Technology offer Aerial obstacle detection software for the visually impaired Technology offer: Aerial obstacle detection software for the visually impaired SUMMARY The research group Mobile Vision Research

More information

Automated Mobility and Orientation System for Blind

Automated Mobility and Orientation System for Blind Automated Mobility and Orientation System for Blind Shradha Andhare 1, Amar Pise 2, Shubham Gopanpale 3 Hanmant Kamble 4 Dept. of E&TC Engineering, D.Y.P.I.E.T. College, Maharashtra, India. ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

RB-Ais-01. Aisoy1 Programmable Interactive Robotic Companion. Renewed and funny dialogs

RB-Ais-01. Aisoy1 Programmable Interactive Robotic Companion. Renewed and funny dialogs RB-Ais-01 Aisoy1 Programmable Interactive Robotic Companion Renewed and funny dialogs Aisoy1 II s behavior has evolved to a more proactive interaction. It has refined its sense of humor and tries to express

More information

A*STAR Unveils Singapore s First Social Robots at Robocup2010

A*STAR Unveils Singapore s First Social Robots at Robocup2010 MEDIA RELEASE Singapore, 21 June 2010 Total: 6 pages A*STAR Unveils Singapore s First Social Robots at Robocup2010 Visit Suntec City to experience the first social robots - OLIVIA and LUCAS that can see,

More information