Many-antenna base stations are interesting systems. Lin Zhong

Size: px
Start display at page:

Download "Many-antenna base stations are interesting systems. Lin Zhong"

Transcription

1 Many-antenna base stations are interesting systems Lin Zhong

2 2

3 How we got started Why many-antenna base station What we have learned What we are doing now 3

4 How we started Why a mobile system guy got interested in massive MIMO 4

5 Wireless consumes a lot of power Power (mw) HTC Wizard October Power profile!=energy profile 5

6 First insight Wi-Fi more efficient than cellular MobiSys 07 6

7 Why is Wi-Fi more efficient? P TX = a*d 2 D 7

8 Horribly wasteful 8

9 Directional transmission! 9

10 Passive directional antenna to save energy (MobiCom 10) No power overhead Fixed bean patterns 10

11 Beamforming to save energy (MobiCom 11) Extra transceivers Steerable beams 11

12 Power by multi-antenna systems (uplink) P Circuit P PA =P TX / η Baseband Signal DAC Filter Mixer Filter PA 1 Frequency Synthesizer N P Shared Baseband Signal DAC Filter Mixer Filter PA N P = P shared + N P Circuit + P TX / η 12

13 Circuit vs. radiation power tradeoff P=P shared + 1 P Circuit + P TX / η Fixed receiver SNR

14 Circuit vs. radiation power tradeoff P=P shared + 2 P Circuit + P TX / η Fixed receiver SNR

15 Circuit vs. radiation power tradeoff P=P shared + 3 P Circuit + P TX / η Fixed receiver SNR

16 Circuit vs. radiation power tradeoff P=P shared + 4 P Circuit + P TX / η Fixed receiver SNR

17 Circuit vs. radiation power tradeoff Optimal number of antennas for efficiency N = a P /P b P

18 Hardware is cheap & getting cheaper P = P shared + N P Circuit + P TX / η Transmitter Power Consumption (mw) SISO 2x2 MIMO Year Sources: IEEE Int. Solid-State Circuits Conferences (ISSCC) and IEEE Journal of Solid-State Circuits (JSSC)

19 Hardware is cheap & getting cheaper P = P shared + N P Circuit + P TX / η Sources: IEEE Int. Solid-State Circuits Conferences (ISSCC) and IEEE Journal of Solid-State Circuits (JSSC)

20 Circuit vs. radiation power tradeoff is increasingly profitable N = a P /P b P The most energy-efficient way is to use all the antennas 20

21 Beyond a single link 21

22 What the carrier wants: Use all your antennas! 22

23 Guiding principles distilled Spectrum is scarce Hardware is cheap, and getting cheaper 23

24 You can t really fit a lot of antennas in a mobile device L 24

25 Got a call from Erran Li, Bell Labs Spring

26 3590 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 11, NOVEMBER 2010 Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas Thomas L. Marzetta 26

27 Clay Shepard went to Bell Labs Summer

28 Why many-antenna base station? 28

29 Omni-directional base station Data 1 Poor spatial reuse; poor power efficiency; high inter-cell interference 29

30 Sectored base station Data 1 Better spatial reuse; better power efficiency; high inter-cell interference 30

31 Single-user beamforming base station Data 1 Data 3 Better spatial reuse; best power efficiency; reduced inter-cell interference 31

32 Multi-user MIMO base station Data 2 Data 1 Data 5 M: # of BS antennas K: # of clients (K M) Best spatial reuse; best power efficiency; reduced inter-cell interference 32

33 Why massive? More antennas è Higher spectral efficiency More antennas è Higher energy efficiency Marzetta s key result Simple baseband technique becomes effective T.L. Marzetta. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. on Wireless Comm.,

34 How multi-user MIMO works H M: # of BS antennas K: # of clients M K 34

35 Multi-user MIMO: Precoding s s! = f (s, H) (Kx1 matrix) (M x 1 matrix) H M: # of BS antennas K: # of clients M K 35

36 Linear Precoding s (Kx1 matrix) s! = W s (M x 1 matrix) H M: # of BS antennas K: # of clients M K 36

37 Linear Precoding I: Zero-forcing Beamforming Null Data 1 Null Null 37

38 Zero-forcing Beamforming Data 2 Null Null 38

39 Zero-forcing Beamforming W = c H * (H T H * ) 1 Data 2 Data 1 Data 5 39

40 Zero-forcing does not scale well W = c H * (H T H * ) 1 Inversion of M X M matrix O(M*K 2 ) 40

41 Linear precoding II: Conjugate Beamforming Data 1 41

42 With more antennas Data 1 42

43 With even more antennas Data 1 43

44 Conjugate Multi-user Beamforming W = c H * Data 2 Data 1 Data 5 Conjugate approaches Zeroforcing as M/Kè

45 Conjugate scales very well W = c H * O(K) per antenna Marzetta s key result: Conjugate approaches Zeroforcing as M/Kè 45

46 Many-antenna vs. small cell Capital Expenditure (CAPEX) of Cell Site Major wireless equipment only 35% Just get the site to work: >50% China Mobile White Paper: C-RAN: The Road Towards Green RAN (Oct, 2011) 46

47 Total Cost of Ownership (TCO) Operating & Maintenance (O&M) Operating Expenditure (OPEX) The most effective way to reduce TCO is to decrease the number of sites. China Mobile White Paper: C-RAN: The Road Towards Green RAN (Oct, 2011) 47

48 If you ve got a site, better use as many antennas as you can 48

49 After a summer at Bell Labs 10-antenna prototype in the anechoic chamber at Bell Labs 49

50 ArgosV1 (MobiCom 12) 50

51 Central Controller WARP Modules Argos Interconnects Sync Distribution Argos Hub Clock Distribution Ethernet Switch51

52 What we have learned 52

53 Good news: Linear gains as # of users increases Capacity vs. K, with M = 64 53

54 Linear gains as # of BS antennas increases even as total P TX scaled with 1/M Capacity vs. M, with K = 15 54

55 Disappointment: Conjugate not approaching Zero-forcing up to 64 antennas Capacity vs. M, with K = 15 55

56 Disappointment: Conjugate not approaching Zero-forcing up to 64 antennas Capacity vs. M, with K = 4 Total Capacity (bps/hz) Zero forcing Conjugate Local Conj. SUBF Single Ant Base Station Antennas 56

57 The dirty secret of massive MIMO s s! = f (s, H) (Kx1 matrix) (M x 1 matrix) H M: # of BS antennas K: # of clients M K 57

58 The dirty secret of massive MIMO s s! = f (s, H) (Kx1 matrix) (M x 1 matrix) H M: # of BS antennas K: # of clients M K 58

59 Sounding-feedback does not scale s s! = f (s, H) (Kx1 matrix) (M x 1 matrix) M: # of BS antennas K: # of clients M K 59

60 One must use time-division duplex and client-sent pilot s s! = f (s, H) (Kx1 matrix) (M x 1 matrix) M: # of BS antennas K: # of clients M K 60

61 What happens in a single coherence period Listen to pilot Send data Calculate BF weights Receive data Time Send pilot Receive data Send data Time Within coherence time 61

62 Both theory and our experiments only consider Listen to pilot Send data Calculate BF weights Receive data Time Send pilot Receive data Send data Time 62

63 What if we factor all in? Listen to pilot Send data Calculate BF weights Receive data Time Send pilot Receive data Send data Time The base station can receive during calculation but the opportunity is limited due to downlink/uplink asymmetry 63

64 What if we factor all in? Listen to pilot Send data Calculate BF weights Receive data Time Client mobility Channel coherence time Number of clients Time to listen to pilot Computation hardware on base station Time to calculate BF weights 64

65 M = 64 K = 15 Type S L Inv. Type Sym. Super Infiniband 40 Gbps 1 µs FPGA Cluster 4x10GbE 40 Gbps 20 µs 8xIntel i7 High 2x10GbE 20 Gbps 20 µs 4xIntel i7 Mid 10GbE 10 Gbps 20 µs 2xIntel i7 F Low GbE 1Gbps 20 µs Intel i7 N Zeroforcing with various hardware configurations 65

66 Achieved Capacity (bps/hz) O(K) O(MK 2 ) Zero Forcing Conjugate Number of Users Fixed coherence time of 30 ms with low-end hardware. 66

67 What we have learned Computational resources matter significantly Simplistic Conjugate beamforming works Not in Marzetta s theoretical sense Need adaptive solutions # of clients; client mobility Precoding methods: Conjugate vs. Zero-forcing 67

68 What we are working on 68

69 Going for more antennas ArgosV2 (2013) 12 WARP V3 (48 antennas) per rack Polycarbonate, dado-style shelf Anti-static spray and thermal vent Battery-powered ArgosMobile 69

70 96-antenna configuration

71

72

73 Ongoing Work: ArgosLab Software Framework for Rapid Prototyping Out-of-the-box Functionality Time/Frequency Synchronization Calibration CSI Collection Scheduled frame-based real-time Transmission

74 From Argos to ArgosNet 10 GbE ArgosBS 1 (Outdoor) Inter-cell interference management Pilot contamination Client grouping & scheduling Cloud RAN 10 Server GbE NetFPGA 10 GbE ArgosBS 4 (Indoor) NetFPGA Server 10 GbE NetFPGA Server 10 GbE ArgosCloud 10 GbE 10 GbE ArgosBS 2 (Outdoor) ArgosBS 3 (Outdoor) A network of massive MU-MIMO base stations 74

75 In summary 75

76 More BS antennas + MU-MIMOè Higher efficiency & lower interference Data 2 Data 1 Data 5

77 More BS antennas + MU-MIMOè Higher efficiency & lower interference Data 3 Data 1 Data 6 Data 12 Data 9 Data 10

78 Guiding Principles Spectrum is scarce Hardware is cheap, and getting cheaper 78

79 Acknowledgments 79

Beamforming on mobile devices: A first study

Beamforming on mobile devices: A first study Beamforming on mobile devices: A first study Hang Yu, Lin Zhong, Ashutosh Sabharwal, David Kao http://www.recg.org Two invariants for wireless Spectrum is scarce Hardware is cheap and getting cheaper 2

More information

Massive MIMO Full-duplex: Theory and Experiments

Massive MIMO Full-duplex: Theory and Experiments Massive MIMO Full-duplex: Theory and Experiments Ashu Sabharwal Joint work with Evan Everett, Clay Shepard and Prof. Lin Zhong Data Rate Through Generations Gains from Spectrum, Densification & Spectral

More information

Argos: Practical Base Stations for Large-scale Beamforming. Clayton W. Shepard

Argos: Practical Base Stations for Large-scale Beamforming. Clayton W. Shepard Argos: Practical Base Stations for Large-scale Beamforming Clayton W. Shepard Collaborators Hang Yu Narendra Anand Erran Li Thomas Marzetta Richard Yang Lin Zhong 2 = Background Beamforming Power Gain

More information

Practical Performance of MU-MIMO Precoding in Many-Antenna Base Stations

Practical Performance of MU-MIMO Precoding in Many-Antenna Base Stations Practical Performance of MU-MIMO Precoding in Many-Antenna Base Stations Clayton Shepard, Narendra Anand, and Lin Zhong Rice University, Houston, TX {cws, nanand, lzhong}@rice.edu Equal Contribution ABSTRACT

More information

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica 5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica! 2015.05.29 Key Trend (2013-2025) Exponential traffic growth! Wireless traffic dominated by video multimedia! Expectation of ubiquitous broadband

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave?

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? Robert W. Heath Jr. The University of Texas at Austin Wireless Networking and Communications Group www.profheath.org

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

5G India Demystifying 5G, Massive MIMO and Challenges

5G India Demystifying 5G, Massive MIMO and Challenges Demystifying 5G, Massive MIMO and Challenges 5G India 2017 Ramarao Anil Head Product Support, Development & Applications Rohde & Schwarz India Pvt. Ltd. COMPANY RESTRICTED Agenda ı 5G Vision ı Why Virtualization

More information

S. Mohammad Razavizadeh. Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST)

S. Mohammad Razavizadeh. Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST) S. Mohammad Razavizadeh Mobile Broadband Network Research Group (MBNRG) Iran University of Science and Technology (IUST) 2 Evolution of Wireless Networks AMPS GSM GPRS EDGE UMTS HSDPA HSUPA HSPA+ LTE LTE-A

More information

ArgosNet: A Multi-Cell Many-Antenna MU-MIMO Platform

ArgosNet: A Multi-Cell Many-Antenna MU-MIMO Platform ArgosNet: A Multi-Cell Many-Antenna MU-MIMO Platform Clayton Shepard, Rahman Doost-Mohammady, Jian Ding, Ryan E. Guerra, and Lin Zhong Department of Electrical and Computer Engineering, Rice University,

More information

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison Prof. Xinyu Zhang Dept. of Electrical and Computer Engineering University of Wisconsin-Madison 1" Overview of MIMO communications Single-user MIMO Multi-user MIMO Network MIMO 3" MIMO (Multiple-Input Multiple-Output)

More information

Design of mmwave massive MIMO cellular systems

Design of mmwave massive MIMO cellular systems Design of mmwave massive MIMO cellular systems Abbas Kazerouni and Mainak Chowdhury Faculty mentor: Andrea Goldsmith Wireless Systems Lab, Stanford University March 23, 2015 Future cellular networks Higher

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

5G: implementation challenges and solutions

5G: implementation challenges and solutions 5G: implementation challenges and solutions University of Bristol / Cambridge Wireless 18 th September 2018 Matthew Baker Nokia Bell-Labs Head of Radio Physical Layer & Coexistence Standardisation Higher

More information

Control Channel Design for Many-Antenna MU-MIMO

Control Channel Design for Many-Antenna MU-MIMO Control Channel Design for Many-Antenna MU-MIMO Clayton Shepard, Abeer Javed, and Lin Zhong Department of Electrical and Computer Engineering Rice University, Houston, TX {cws, abeer.javed, lzhong}@rice.edu

More information

Wireless InSite. Simulation of MIMO Antennas for 5G Telecommunications. Copyright Remcom Inc. All rights reserved.

Wireless InSite. Simulation of MIMO Antennas for 5G Telecommunications. Copyright Remcom Inc. All rights reserved. Wireless InSite Simulation of MIMO Antennas for 5G Telecommunications Overview To keep up with rising demand and new technologies, the wireless industry is researching a wide array of solutions for 5G,

More information

Next Generation Mobile Communication. Michael Liao

Next Generation Mobile Communication. Michael Liao Next Generation Mobile Communication Channel State Information (CSI) Acquisition for mmwave MIMO Systems Michael Liao Advisor : Andy Wu Graduate Institute of Electronics Engineering National Taiwan University

More information

Power Consumption by Wireless Communication. Lin Zhong ELEC518, Spring 2011

Power Consumption by Wireless Communication. Lin Zhong ELEC518, Spring 2011 Power Consumption by Wireless Communication Lin Zhong ELEC518, Spring 2011 Power consumption (SMT5600) Cellular network, 17, 1% Flight mode: Sleep, 3, 0% Lighting: Keyboard, 73, 3% Lighting: Display I,

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

Hybrid Transceivers for Massive MIMO - Some Recent Results

Hybrid Transceivers for Massive MIMO - Some Recent Results IEEE Globecom, Dec. 2015 for Massive MIMO - Some Recent Results Andreas F. Molisch Wireless Devices and Systems (WiDeS) Group Communication Sciences Institute University of Southern California (USC) 1

More information

Massive MIMO and mmwave

Massive MIMO and mmwave Massive MIMO and mmwave Why 5G is Not 4G++ Technology Insights and Challenges Bob Cutler, Principal Solutions Architect Roger Nichols, 5G Program Manager Keysight Technologies Page What is 5G? Today, 5G

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

MIMO and Beamforming in the 5G Context SBrT 2017

MIMO and Beamforming in the 5G Context SBrT 2017 MIMO and Beamforming in the 5G Context SBrT 2017 05/09/2017 Created by Will Sitch Presented by Bruno Duarte A Brief History of Keysight 1939 1998: Hewlett-Packard years A company founded on electronic

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges

Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges Interference Mitigation by MIMO Cooperation and Coordination - Theory and Implementation Challenges Vincent Lau Dept of ECE, Hong Kong University of Science and Technology Background 2 Traditional Interference

More information

On the Complementary Benefits of Massive MIMO, Small Cells, and TDD

On the Complementary Benefits of Massive MIMO, Small Cells, and TDD On the Complementary Benefits of Massive MIMO, Small Cells, and TDD Jakob Hoydis (joint work with K. Hosseini, S. ten Brink, M. Debbah) Bell Laboratories, Alcatel-Lucent, Germany Alcatel-Lucent Chair on

More information

Hang Yu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE. Master of Science

Hang Yu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE. Master of Science RICE UNIVERSITY Beamforming on Mobile Devices: A First Study by Hang Yu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE Master of Science APPROVED, THESIS COMMITTEE: Lin Zhong,

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Massive MIMO: Ten Myths and One Critical Question. Dr. Emil Björnson. Department of Electrical Engineering Linköping University, Sweden

Massive MIMO: Ten Myths and One Critical Question. Dr. Emil Björnson. Department of Electrical Engineering Linköping University, Sweden Massive MIMO: Ten Myths and One Critical Question Dr. Emil Björnson Department of Electrical Engineering Linköping University, Sweden Biography 2007: Master of Science in Engineering Mathematics, Lund,

More information

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Reinaldo A. Valenzuela, Director, Wireless Communications Research Dept., Bell Laboratories Rutgers, December, 2007 Need to greatly

More information

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, and Intae Hwang, Non-Member, IEEE Abstract Massive MIMO (also

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

Reconfigurable antennas for WiFi networks. Daniele Piazza Founder and CTO Adant Technologies Inc

Reconfigurable antennas for WiFi networks. Daniele Piazza Founder and CTO Adant Technologies Inc Reconfigurable antennas for WiFi networks Daniele Piazza Founder and CTO Adant Technologies Inc Company Overview Adant Padova, Italy Adant SF Bay Area Adant Taiwan Adant designs, licenses, and manufactures

More information

Beyond 4G: Millimeter Wave Picocellular Wireless Networks

Beyond 4G: Millimeter Wave Picocellular Wireless Networks Beyond 4G: Millimeter Wave Picocellular Wireless Networks Sundeep Rangan, NYU-Poly Joint work with Ted Rappaport, Elza Erkip, Mustafa Riza Akdeniz, Yuanpeng Liu Sept 21, 2013 NJ ACS, Hoboken, J 1 Outline

More information

Designing Energy Efficient 5G Networks: When Massive Meets Small

Designing Energy Efficient 5G Networks: When Massive Meets Small Designing Energy Efficient 5G Networks: When Massive Meets Small Associate Professor Emil Björnson Department of Electrical Engineering (ISY) Linköping University Sweden Dr. Emil Björnson Associate professor

More information

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol., 1 6 Experimental evaluation of massive MIMO at GHz

More information

Bringing the Magic of Asymptotic Analysis to Wireless Networks

Bringing the Magic of Asymptotic Analysis to Wireless Networks Massive MIMO Bringing the Magic of Asymptotic Analysis to Wireless Networks Dr. Emil Björnson Department of Electrical Engineering (ISY) Linköping University, Linköping, Sweden International Workshop on

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

Understanding Real Many-Antenna. MU-MIMO channels.

Understanding Real Many-Antenna. MU-MIMO channels. Understanding Real Many-Antenna MU-MIMO Channels Clayton Shepard, Jian Ding, Ryan E. Guerra, and Lin Zhong Department of Electrical and Computer Engineering Rice University, Houston, TX Skylark Wireless

More information

5G Massive MIMO and mmw Design and Test Solution

5G Massive MIMO and mmw Design and Test Solution 5G Massive MIMO and mmw Design and Test Solution Jan. 2017 Philip Chang Senior Project Manager 1 Agenda Communications Page 2 Overview of 5G Technologies 5G Key Radio Technologies mmwave Massive MIMO Keysight

More information

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Millimeter Wave Communication in 5G Wireless Networks By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Outline 5G communication Networks Why we need to move to higher frequencies? What are

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEM 2017, VOLUME: 08, ISSUE: 03 DOI: 10.21917/ijct.2017.0228 ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM

More information

MIMO: State of the Art, and the Future in Focus Mboli Sechang Julius

MIMO: State of the Art, and the Future in Focus Mboli Sechang Julius MIMO: State of the Art, and the Future in Focus Mboli Sechang Julius Abstract-Antennas of transmitters and receivers have been manipulated to increase the capacity of transmission and reception of signals.

More information

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array Progress In Electromagnetics Research Letters, Vol. 65, 15 21, 2017 A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array Hong-Wei Yuan 1, 2, *, Guan-Feng Cui 3, and Jing Fan 4 Abstract

More information

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Gabor Fodor Ericsson Research Royal Institute of Technology 5G: Scenarios & Requirements Traffic

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Tabrez Khan Application Engineering Group 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies 5G development

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Saeid Haghighatshoar Communications and Information Theory Group (CommIT) Technische Universität Berlin CoSIP Winter Retreat Berlin,

More information

LTE Direct Overview. Sajith Balraj Qualcomm Research

LTE Direct Overview. Sajith Balraj Qualcomm Research MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION This technical data may be subject to U.S. and international export, re-export, or transfer ( export ) laws. Diversion contrary to U.S.

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

LTE Base Station Equipments Usable with W-CDMA System

LTE Base Station Equipments Usable with W-CDMA System LTE Base Station Equipments Usable with W-CDMA System LTE Base Station Equipment W-CDMA/LTE Shared System Special Articles on Xi (Crossy) LTE Service Toward Smart Innovation 1. Introduction LTE Base Station

More information

Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture

Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture Han Yan, Shailesh Chaudhari, and Prof. Danijela Cabric Dec. 13 th 2017 Intro: Tracking in mmw MIMO MMW network features

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

Fractional Delay Filter Based Wideband Self- Interference Cancellation

Fractional Delay Filter Based Wideband Self- Interference Cancellation , pp.22-27 http://dx.doi.org/10.14257/astl.2013 Fractional Delay Filter Based Wideband Self- Interference Cancellation Hao Liu The National Communication Lab. The University of Electronic Science and Technology

More information

Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed?

Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Ahmed Alkhateeb*, Geert Leus #, and Robert W. Heath Jr.* * Wireless Networking and Communications Group, Department

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

Massive MIMO Systems: Signal Processing Challenges and Research Trends

Massive MIMO Systems: Signal Processing Challenges and Research Trends Massive MIMO Systems: Signal Processing Challenges and Research Trends Rodrigo C. de Lamare CETUC, PUC-Rio, Brazil Communications Research Group, Department of Electronics, University of York, U.K. delamare@cetuc.puc-rio.br

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

From massive MIMO to C-RAN: the OpenAirInterface 5G testbed

From massive MIMO to C-RAN: the OpenAirInterface 5G testbed From massive MIMO to C-RAN: the OpenAirInterface 5G testbed Florian Kaltenberger, Xiwen Jiang, Raymond Knopp EURECOM, Campus SophiaTech, 06410 Biot, France firstnamelastname@eurecomfr Abstract 5G will

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Adaptive Beamforming towards 5G systems. Whitepaper 1

Adaptive Beamforming towards 5G systems. Whitepaper 1 Adaptive Beamforming towards 5G systems Whitepaper 1 Abstract MIMO has been the undisputed candidate for wireless communications. It provides high diversity order and increased data-rate. Beamforming is

More information

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20 Challenges of 5G mmwave RF Module Ren-Jr Chen rjchen@itri.org.tw M300/ICL/ITRI 2018/06/20 Agenda 5G Vision and Scenarios mmwave RF module considerations mmwave RF module solution for OAI Conclusion 2 5G

More information

A key parameters based vision

A key parameters based vision A key parameters based vision of trends in Wireless systems Alain Sibille Telecom ParisTech Outline What do we speak about? Tradeoff between key parameters Technology progress From low-end to high-end

More information

AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved.

AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved. AEROHIVE NETWORKS 802.11ax DAVID SIMON, SENIOR SYSTEMS ENGINEER 1 2018 Aerohive Networks. All Rights Reserved. 2 2018 Aerohive Networks. All Rights Reserved. 8802.11ax 802.11n and 802.11ac 802.11n and

More information

Frequency Reuse How Do I Maximize the Value of My Spectrum?

Frequency Reuse How Do I Maximize the Value of My Spectrum? Frequency Reuse How Do I Maximize the Value of My Spectrum? Eric Wilson VP Systems Management, Vyyo Broadband Wireless Forum, February 20, 2001 Spectrum Reuse Outline Definition / concept Alternatives

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Li Tian 1 1 Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand Abstract Abstract

More information

MIDU: Enabling MIMO Full Duplex

MIDU: Enabling MIMO Full Duplex MIDU: Enabling MIMO Full Duplex Ehsan Aryafar Princeton NEC Labs Karthik Sundaresan NEC Labs Sampath Rangarajan NEC Labs Mung Chiang Princeton ACM MobiCom 2012 Background AP Current wireless radios are

More information

Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network

Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network International Journal of Information and Electronics Engineering, Vol. 6, No. 3, May 6 Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network Myeonghun Chu,

More information

Transforming MIMO Test

Transforming MIMO Test Transforming MIMO Test MIMO channel modeling and emulation test challenges Presented by: Kevin Bertlin PXB Product Engineer Page 1 Outline Wireless Technologies Review Multipath Fading and Antenna Diversity

More information

NI Technical Symposium ni.com

NI Technical Symposium ni.com NI Technical Symposium 2016 1 Build 5G Systems Today Avichal Kulshrestha 2 How We Consume Data is Changing 3 Where We Are Today Explosion of wireless data and connected devices Last year s mobile data

More information

Energy Efficient Multiple Access Scheme for Multi-User System with Improved Gain

Energy Efficient Multiple Access Scheme for Multi-User System with Improved Gain Volume 2, Issue 11, November-2015, pp. 739-743 ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Energy Efficient Multiple Access

More information

Handset MIMO antenna measurement using a Spatial Fading Emulator

Handset MIMO antenna measurement using a Spatial Fading Emulator Handset MIMO antenna measurement using a Spatial Fading Emulator Atsushi Yamamoto Panasonic Corporation, Japan Panasonic Mobile Communications Corporation, Japan NTT DOCOMO, INC., Japan Aalborg University,

More information

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Presented at: Huazhong University of Science and Technology (HUST), Wuhan, China S.M. Riazul Islam,

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System Arumugam Nallanathan King s College London Performance and Efficiency of 5G Performance Requirements 0.1~1Gbps user rates Tens

More information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 12 ǁ December. 2015 ǁ PP.14-19 Performance Analysis of Massive MIMO

More information

Discussion Points for HW-CSP Breakout Session. July 19, 2017 Jeyanandh Paramesh, Subhanshu Gupta, Greg LaCaille, Vishal Saxena, Sarah Yost

Discussion Points for HW-CSP Breakout Session. July 19, 2017 Jeyanandh Paramesh, Subhanshu Gupta, Greg LaCaille, Vishal Saxena, Sarah Yost Discussion Points for HW-CSP Breakout Session July 19, 2017 Jeyanandh Paramesh, Subhanshu Gupta, Greg LaCaille, Vishal Saxena, Sarah Yost Topics for Discussion (Tentative) What are the main issues at the

More information

Antennas Multiple antenna systems

Antennas Multiple antenna systems Channel Modelling ETIM10 Lecture no: 8 Antennas Multiple antenna systems Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-13

More information

Design, Simulation & Concept Verification of 4 4, 8 8 MIMO With ZF, MMSE and BF Detection Schemes

Design, Simulation & Concept Verification of 4 4, 8 8 MIMO With ZF, MMSE and BF Detection Schemes ISSN 2255-9159 (online) ISSN 2255-9140 (print) 2017, vol. 13, pp. 69 74 doi: 10.1515/ecce-2017-0010 https://www.degruyter.com/view/j/ecce Design, Simulation & Concept Verification of 4 4, 8 8 MIMO With

More information

NetPoint Pro. 6x2.4, 6x5.8, 3x2.4, 3x5.8. Wi-Fi base Stations Providing Superior Connectivity

NetPoint Pro. 6x2.4, 6x5.8, 3x2.4, 3x5.8. Wi-Fi base Stations Providing Superior Connectivity NetPoint Pro 6x2.4, 6x5.8, 3x2.4, 3x5.8 Wi-Fi base Stations Providing Superior Connectivity NetPoint Pro is an advanced Wi-Fi base station that provides superior connectivity and greater range. It enables

More information

Efficient and Low Complex Uplink Detection for 5G Massive MIMO Systems

Efficient and Low Complex Uplink Detection for 5G Massive MIMO Systems Efficient and Low Complex Uplink Detection for 5G Massive MIMO Systems Robin Chataut Robert Akl Department of Computer Science and Department of Computer Science and Engineering Engineering University

More information

flexicon.ee.columbia.edu Harish Krishnaswamy, Gil Zussman, Jin Zhou, Jelena (Marašević) Diakonikolas, Tolga Dinc, Negar Reiskarimian, Tingjun Chen

flexicon.ee.columbia.edu Harish Krishnaswamy, Gil Zussman, Jin Zhou, Jelena (Marašević) Diakonikolas, Tolga Dinc, Negar Reiskarimian, Tingjun Chen Full-Duplex in a Hand-held Device - From Fundamental Physics to Complex Integrated Circuits, Systems and Networks: An Overview of the Columbia FlexICoN project Harish Krishnaswamy, Gil Zussman, Jin Zhou,

More information

Beamforming algorithm for physical layer security of multi user large scale antenna network

Beamforming algorithm for physical layer security of multi user large scale antenna network , pp.35-40 http://dx.doi.org/10.14257/astl.2016.134.06 Beamforming algorithm for physical layer security of multi user large scale antenna network Zhou Wen-gang, Li Jing, Guo Hui-ling (School of computer

More information

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Abhishek Thakur 1 1Student, Dept. of Electronics & Communication Engineering, IIIT Manipur ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information