NI Technical Symposium ni.com

Size: px
Start display at page:

Download "NI Technical Symposium ni.com"

Transcription

1 NI Technical Symposium

2 Build 5G Systems Today Avichal Kulshrestha 2

3 How We Consume Data is Changing 3

4 Where We Are Today Explosion of wireless data and connected devices Last year s mobile data traffic was nearly 30 times the size of the ENTIRE global Internet in

5 Global Mobile Data Forecast Source: Cisco VNI Mobile,

6 And the Trend is Just Beginning 1.9 BILLION SMART PHONES 85% EMBEDDED DEVICES TODAY ARE UNCONNECTED 50 BILLION DEVICES CONNECTED BY

7 5G What will it do? Figures via Samsung 5G Vision Document

8 ITU-R Vision for IMT-2020 and Beyond Enhanced Mobile Broadband (embb) Massive Machine Type Communication(mMTC) Ultra Reliable MTC (umtc) Gigabytes In Seconds 3D Video, UHD Smart Home The Cloud Augmented Reality Industry Automation Smart City Mission Critical (ex. Health Care) Autonomous Driving 8

9 ITU-R Vision for IMT-2020 and Beyond 8 Capabilities Peak Data Rate High Med User Experience Data Rate Area Traffic Capacity Low Spectrum Efficiency Network Energy Efficiency Mobility Connection Density Latency embb umtc, UR/LL mmtc Source ITU-R M.[IMT.VISION] 9

10 Candidate 5G Technologies In Need of Prototyping New Modulation New MIMO Tech New Spectrum Higher Density PHY Waveforms Massive MIMO mmwave Densification Explore alternatives to OFDM such as NOMA, GFDM, FBMC, UFMC that can increase PHY flexibility. Dramatically increase spectral efficiency in existing cell bands by increasing antennas at the basestation by orders of magnitude. Explore extremely wide bandwidths at higher frequencies once thought impractical for commercial wireless. Increase access point density across a geography for reduces power, improves spectrum reuse for increased data rates. 28 GHz, 38 GHz, 60 GHz, and 72 GHz 10

11 Prototyping Is Critical for Algorithm Research Experience shows that the real world often breaks some of the assumptions made in theoretical research, so testbeds are an important tool for evaluation under very realistic operating conditions development of a testbed that is able to test radical ideas in a complete, working system is crucial 1 NSF Workshop on Future Wireless Communication Research 11

12 Communications System Architecture (PHY-SISO) TRANSMITTER DAT A CODING CHANNEL/ SOURCE MODULATOR FM/QAM/ PSK MULTIPLE ACCESS OFDMA/ WCDMA DIGITAL TO ANALOG CONVERTER I-Q UPCONVETER RF I-Q MODULATOR DIGITAL UPCONVETER MULTIPLE CODING ANALOG ACCESS CONVERTER CHANNEL/ FM/QAM/ SOURCE OFDMA/ PSK WCDMA 12

13 Communications System Architecture (PHY-SISO) TRANSMITTER DAT A CODING CHANNEL/ SOURCE MODULATOR FM/QAM/ PSK MULTIPLE ACCESS OFDMA/ WCDMA DIGITAL TO ANALOG CONVERTER I-Q UPCONVETER RF DATA DE- CODING CHANNEL/ SOURCE DE- MODULATOR FM/QAM/ PSK MULTIPLE ACCESS OFDMA/ WCDMA ANALOG TO DIGITAL CONVERTER I-Q DOWN CONVETER RF RECEIVER 13

14 What is SDR? TRANSMITTER DAT A CODING SOFTWARE MODULATOR ALGORITHM MULTIPLE ACCESS CHANNEL/ SOURCE FM/QAM/ PSK OFDMA/ WCDMA RUNNING ON A PROCESSOR SOFTWARE DIGITAL TO TUNABLE I-Q ANALOG UPCONVETER CONVERTER RF FRONT END RF CPU FPGA DATA DE- CODING CHANNEL/ SOURCE DE- MODULATOR FM/QAM/ PSK MULTIPLE ACCESS OFDMA/ WCDMA ANALOG TO DIGITAL CONVERTER I-Q DOWN CONVETER RF RECEIVER 14

15 What is SDR? SOFTWARE ALGORITHM RUNNING ON A PROCESSOR SOFTWARE TUNABLE RF FRONT END CPU FPGA Write and run algorithms Give commands to RF front End Run FPGA Algorithms Upconvert Baseband to RF 15

16 Steps for Wireless Prototyping Single, Cohesive Toolchain Algorithm Development System Mapping Design Exploration System Implementation Collaborative Design Team 16

17 Candidate 5G Technologies In Need of Prototyping New Modulation New MIMO Tech New Spectrum Higher Density PHY Waveforms Massive MIMO mmwave Densification Explore alternatives to OFDM such as NOMA, GFDM, FBMC, UFMC that can increase PHY flexibility. Dramatically increase spectral efficiency in existing cell bands by increasing antennas at the basestation by orders of magnitude. Explore extremely wide bandwidths at higher frequencies once thought impractical for commercial wireless. Increase access point density across a geography for reduces power, improves spectrum reuse for increased data rates. 28 GHz, 38 GHz, 60 GHz, and 72 GHz 17

18 New Waveform Research at TU Dresden Dr. Gerhard Fettweis 5G lab and testbed in TUD (Germany) 5G PHY exploration and prototyping First GFDM MIMO prototype (CeBIT 2015) 18

19 LTE Receiver Results with OFDM Interference 19

20 NI USRP RIO Software Defined Radio Coming Early Q2 Applications 5G wireless prototyping High channel count MIMO Wide bandwidth, low latency Features 2 Channel TX/RX, RF options 50 MHz 6 GHz Customizable Xilinx Kintex 7 FPGA, K7410T Optimized RF Performance (400 point characterization) Powered by the LabVIEW RIO Architecture 40 MHz Real-time Bandwidth PCIe x4, 800 MB/s streaming GPS Disciplined Clock option Audience Industry Research Mil/Aero/Gov Academic Research Front Back 20

21 Candidate 5G Technologies In Need of Prototyping New Modulation New MIMO Tech New Spectrum Higher Density PHY Waveforms Massive MIMO mmwave Densification Explore alternatives to OFDM such as NOMA, GFDM, FBMC, UFMC that can increase PHY flexibility. Dramatically increase spectral efficiency in existing cell bands by increasing antennas at the basestation by orders of magnitude. Explore extremely wide bandwidths at higher frequencies once thought impractical for commercial wireless. Increase access point density across a geography for reduces power, improves spectrum reuse for increased data rates. 28 GHz, 38 GHz, 60 GHz, and 72 GHz 21

22 Massive MIMO in Cellular Networks Give basestation a large array of antennas (> 10X higher than current systems) Time-division duplexing (TDD) Excess antennas guarantee good channel with high probability Large number of users can be served simultaneously T. L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas, IEEE Trans. Wireless Comm., vol. 9, no. 11,

23 Massive MIMO at Lund University, Sweden Goal: Build a 100x10 massive MIMO system to validate theoretical results with real time processing Prof Ove Edfos Prof Fredrik Tufvesson 23

24 Candidate 5G Technologies In Need of Prototyping New Modulation New MIMO Tech New Spectrum Higher Density PHY Waveforms Massive MIMO mmwave Densification Explore alternatives to OFDM such as NOMA, GFDM, FBMC, UFMC that can increase PHY flexibility. Dramatically increase spectral efficiency in existing cell bands by increasing antennas at the basestation by orders of magnitude. Explore extremely wide bandwidths at higher frequencies once thought impractical for commercial wireless. Increase access point density across a geography for reduces power, improves spectrum reuse for increased data rates. 28 GHz, 38 GHz, 60 GHz, and 72 GHz 24

25 mmwave 5G Technology Vision Existing cellular bands are crowded and expensive The next frontier is mmwave frequencies to provide High throughput (> 10 Gb/s) Lower latency (< 1ms) Enables ultra-definition media and tactile applications image from electronicdesign.com 25

26 Receiver Transmitter mmwave Channel Sounding Key Facts NYU mmwave channel measurement campaign uses sliding correlator PN code can be generated on the FPGA and streamed via AT 1120 NI Quicksyn (20GHz) & Quicksyn lite (10GHz) provides LO to IF mixer and mmwave RF Freq doubler module for mmwave RFIC RX Side: NIBaseband NI

27 Cellular Access Point System LabVIEW mmwave User Device (Handset) System LabVIEW Host PC PXI FlexRIO Baseband RF and Antenna 27 RF and Antenna PXI FlexRIO Baseband Host PC

28 Candidate 5G Technologies In Need of Prototyping New Modulation New MIMO Tech New Spectrum Higher Density PHY Waveforms Massive MIMO mmwave Densification Explore alternatives to OFDM such as NOMA, GFDM, FBMC, UFMC that can increase PHY flexibility. Dramatically increase spectral efficiency in existing cell bands by increasing antennas at the basestation by orders of magnitude. Explore extremely wide bandwidths at higher frequencies once thought impractical for commercial wireless. Increase access point density across a geography for reduces power, improves spectrum reuse for increased data rates. 28 GHz, 38 GHz, 60 GHz, and 72 GHz 28

29 5G Networks Design Directions Hyper dense networks Software defined networking (SDN) Cloud radio access network (cran) Cellular/ coexistence and co-ordination Next generation stack 29

30 Architecture for Protocol Stack Explorations LTE MTC IoT Open Source Upper Layer Stack (e.g. ns-3) Ref Design LTE Ref Design PHY/MAC Stack in LabVIEW NI Hardware 30

31 Thank You

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

Building Complex Systems with COTS Software Defined Radios

Building Complex Systems with COTS Software Defined Radios Building Complex Systems with COTS Software Defined Radios Sarah Yost Product Marketing Manager, National Instruments ni.com ITU-R Vision for 5G >10 Gb/s Peak Rate embb 100X More Devices mmtc umtc, UR/LL

More information

Bringing Wireless Communications Classes into the Modern Day

Bringing Wireless Communications Classes into the Modern Day 1 Bringing Wireless Communications Classes into the Modern Day Engaging students by using real world hardware. Michel Nassar Academic Field Sales Engineer National Instruments Systems are Everywhere Tesla

More information

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Jin Bains Vice President R&D, RF Products, National Instruments 1 We live in a Hyper Connected World Data rate

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Bridge RF Design and Test Applications with NI SDR Platforms

Bridge RF Design and Test Applications with NI SDR Platforms Bridge RF Design and Test Applications with NI SDR Platforms Jason Strydom Application Engineer National Instruments - Midrand The National Instruments Vision To do for test and measurement what the spreadsheet

More information

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017 Ettus Research USRP Tom Tsou tom.tsou@ettus.com 3rd OpenAirInterface Workshop April 28, 2017 Agenda Company Overview USRP Software Ecosystem Product Line B-Series (Bus) N-Series (Network) X-Series (High

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

5G Outlook Test and Measurement Aspects Mark Bailey

5G Outlook Test and Measurement Aspects Mark Bailey 5G Outlook Test and Measurement Aspects Mark Bailey mark.bailey@rohde-schwarz.com Application Development Rohde & Schwarz Outline ı Introduction ı Prospective 5G requirements ı Global 5G activities and

More information

New Technologies for Software Defined Radio. Farris Alhorr. National Instruments Business Development Manager, IndRAA

New Technologies for Software Defined Radio. Farris Alhorr. National Instruments Business Development Manager, IndRAA New Technologies for Software Defined Radio Farris Alhorr National Instruments Business Development Manager, IndRAA Farris.alhorr@ni.com ni.com The World of Converged Devices More capability defined in

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica 5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica! 2015.05.29 Key Trend (2013-2025) Exponential traffic growth! Wireless traffic dominated by video multimedia! Expectation of ubiquitous broadband

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave?

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? Robert W. Heath Jr. The University of Texas at Austin Wireless Networking and Communications Group www.profheath.org

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

Enabling Future Wireless Technology Research through Flexible & Modular Platforms

Enabling Future Wireless Technology Research through Flexible & Modular Platforms Enabling Future Wireless Technology Research through Flexible & Modular Platforms Richard Silley Business Development Manager RF & Communications Evolution of Wireless Communications How can we increase

More information

Spectral Monitoring/ SigInt

Spectral Monitoring/ SigInt RF Test & Measurement Spectral Monitoring/ SigInt Radio Prototyping Horizontal Technologies LabVIEW RIO for RF (FPGA-based processing) PXI Platform (Chassis, controllers, baseband modules) RF hardware

More information

5G 무선통신시스템설계 : WLAN/LTE/5G

5G 무선통신시스템설계 : WLAN/LTE/5G 1 5G 무선통신시스템설계 : WLAN/LTE/5G 김종남 Application Engineer 2017 The MathWorks, Inc. 2 Agenda Innovations in Mobile Communications Waveform Generation and End-to-end Simulation WLAN, LTE, 5G (FBMC, UFMC) RF

More information

Contributions for 5G Development at Brazil. Dr. Henry Douglas Rodrigues May 22 nd 2018

Contributions for 5G Development at Brazil. Dr. Henry Douglas Rodrigues May 22 nd 2018 Contributions for 5G Development at Brazil Dr. Henry Douglas Rodrigues May 22 nd 2018 Agenda Motivations for 5G Inatel Contributions for 5G Demos and Performance Future Work Conclusions Motivations Motivations

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

When technology meets spectrum: Bring 5G vision into Reality

When technology meets spectrum: Bring 5G vision into Reality When technology meets spectrum: Bring 5G vision into Reality 5G India 2018, 2 nd international conference (May 17-18, 2018) WU Yong www.huawei.com 5G Vision: Enabling a full connected world Enhance Mobile

More information

Design of mmwave massive MIMO cellular systems

Design of mmwave massive MIMO cellular systems Design of mmwave massive MIMO cellular systems Abbas Kazerouni and Mainak Chowdhury Faculty mentor: Andrea Goldsmith Wireless Systems Lab, Stanford University March 23, 2015 Future cellular networks Higher

More information

5 th Generation Non-Orthogonal Waveforms for Asynchronous Signaling. Final Review. Brussels, Work Package 5

5 th Generation Non-Orthogonal Waveforms for Asynchronous Signaling. Final Review. Brussels, Work Package 5 5 th Generation Non-Orthogonal Waveforms for Asynchronous Signaling Final Review Brussels, 24.06.2015 Work Package 5 Outline Work Package Overview Motivation Demonstrators FBMC UFMC GFDM System Simulator

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

Millimeter wave: An excursion in a new radio interface for 5G

Millimeter wave: An excursion in a new radio interface for 5G Millimeter wave: An excursion in a new radio interface for 5G Alain Mourad Cambridge Wireless, London 03 February 2015 Creating the Living Network Outline 5G radio interface outlook Millimeter wave A new

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand Advanced PXI Technologies Signal Recording, FPGA s, and Synchronization Outline Introduction to the PXI Architecture

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Tabrez Khan Application Engineering Group 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies 5G development

More information

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia COSMOS Millimeter Wave June 1 2018 Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia srangan@nyu.edu, hk2532@columbia.edu Millimeter Wave Communications Vast untapped spectrum

More information

RF and Microwave Test and Design Roadshow Cape Town & Midrand

RF and Microwave Test and Design Roadshow Cape Town & Midrand RF and Microwave Test and Design Roadshow Cape Town & Midrand Advanced PXI Technologies Signal Recording, FPGA s, and Synchronization Philip Ehlers Outline Introduction to the PXI Architecture PXI Data

More information

5G Mobile Communications

5G Mobile Communications 5G Mobile Communications Key Enabling Technologies and Recent R&D Results Innovation of Mobile Communications 5G 2G 3G 4G BW 200 khz 1.25 MHz 5 MHz 20 MHz Legacy Bands + mmwave Bands Peak Data Rate 115.2

More information

TU Dresden uses National Instruments Platform for 5G Research

TU Dresden uses National Instruments Platform for 5G Research TU Dresden uses National Instruments Platform for 5G Research Wireless consumers insatiable demand for bandwidth has spurred unprecedented levels of investment from public and private sectors to explore

More information

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies A Flexible Testbed for 5G Waveform Generation & Analysis Greg Jue Keysight Technologies Agenda Introduction 5G Research: Waveforms and Frequencies Desired Testbed Attributes and Proposed Approach Wireless

More information

5G Synchronization Aspects

5G Synchronization Aspects 5G Synchronization Aspects Michael Mayer Senior Staff Engineer Huawei Canada Research Centre WSTS, San Jose, June 2016 Page 1 Objective and outline Objective: To provide an overview and summarize the direction

More information

What is New in Wireless System Design

What is New in Wireless System Design What is New in Wireless System Design Houman Zarrinkoub, PhD. houmanz@mathworks.com 2015 The MathWorks, Inc. 1 Agenda Landscape of Wireless Design Our Wireless Initiatives Antenna-to-Bit simulation Smart

More information

Developing and Prototyping Next-Generation Communications Systems

Developing and Prototyping Next-Generation Communications Systems Developing and Prototyping Next-Generation Communications Systems Dr. Amod Anandkumar Team Lead Signal Processing and Communications Application Engineering Group 2015 The MathWorks, Inc. 1 Proliferation

More information

Contents. Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G

Contents. Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G Contents Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G Technical requirements & Timelines Technical requirements Key Performance Indices (KPIs) 5G Timelines

More information

Massive MIMO and mmwave

Massive MIMO and mmwave Massive MIMO and mmwave Why 5G is Not 4G++ Technology Insights and Challenges Bob Cutler, Principal Solutions Architect Roger Nichols, 5G Program Manager Keysight Technologies Page What is 5G? Today, 5G

More information

(some) Device Localization, Mobility Management and 5G RAN Perspectives

(some) Device Localization, Mobility Management and 5G RAN Perspectives (some) Device Localization, Mobility Management and 5G RAN Perspectives Mikko Valkama Tampere University of Technology Finland mikko.e.valkama@tut.fi +358408490756 December 16th, 2016 TAKE-5 and TUT, shortly

More information

How to tackle 5G challenges Dr. Dominique Noguet Head of Communication and Security Technologies Dpt CEA-LETI

How to tackle 5G challenges Dr. Dominique Noguet Head of Communication and Security Technologies Dpt CEA-LETI How to tackle 5G challenges Dr. Dominique Noguet Head of Communication and Security Technologies Dpt CEA-LETI Dr. Emilio Calvanese Strinati Smart Devices & Telecommunications Strategy Program Director

More information

FPGA implementation of Generalized Frequency Division Multiplexing transmitter using NI LabVIEW and NI PXI platform

FPGA implementation of Generalized Frequency Division Multiplexing transmitter using NI LabVIEW and NI PXI platform FPGA implementation of Generalized Frequency Division Multiplexing transmitter using NI LabVIEW and NI PXI platform Ivan GASPAR, Ainoa NAVARRO, Nicola MICHAILOW, Gerhard FETTWEIS Technische Universität

More information

5G India Demystifying 5G, Massive MIMO and Challenges

5G India Demystifying 5G, Massive MIMO and Challenges Demystifying 5G, Massive MIMO and Challenges 5G India 2017 Ramarao Anil Head Product Support, Development & Applications Rohde & Schwarz India Pvt. Ltd. COMPANY RESTRICTED Agenda ı 5G Vision ı Why Virtualization

More information

Millimeter Wave Wireless Communications Workshop #1: 5G Cellular Communications

Millimeter Wave Wireless Communications Workshop #1: 5G Cellular Communications Millimeter Wave Wireless Communications Workshop #1: 5G Cellular Communications Miah Md Suzan, Vivek Pal 30.09.2015 5G Definition (Functinality and Specification) The number of connected Internet of Things

More information

Vehicle-to-X communication for 5G - a killer application of millimeter wave

Vehicle-to-X communication for 5G - a killer application of millimeter wave 2017, Robert W. W. Heath Jr. Jr. Vehicle-to-X communication for 5G - a killer application of millimeter wave Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical

More information

Panel Session: 5G Test and Measurement

Panel Session: 5G Test and Measurement IEEE 5G Summit Panel Session: 5G Test and Measurement Malcolm Robertson, Keysight Jon Martens, Anritsu Chris Scholz, Rohde & Schwarz Jason White, National Instruments Moderator: Kate A. Remley, NIST So

More information

Production Test and Spectral Monitoring

Production Test and Spectral Monitoring 1 Production Test and Spectral Monitoring Stephen Plumb Key RF Building Blocks Symbol Name Types Function Amplifier (2 port) Power Amplifier Low Noise Amplifier Amplify signal before transmission (high

More information

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications)

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications) K E Y S I G H T I N 5 G Mombasawala Mohmedsaaed 18.05.2018 General Manager (Applications) EPC 1 e M B B m M T C u R L C C CP+ UP UP The first NR specification (3GPP Release 15) supports increased data

More information

Vehicle-to-X communication using millimeter waves

Vehicle-to-X communication using millimeter waves Infrastructure Person Vehicle 5G Slides Robert W. Heath Jr. (2016) Vehicle-to-X communication using millimeter waves Professor Robert W. Heath Jr., PhD, PE mmwave Wireless Networking and Communications

More information

PoC #1 On-chip frequency generation

PoC #1 On-chip frequency generation 1 PoC #1 On-chip frequency generation This PoC covers the full on-chip frequency generation system including transport of signals to receiving blocks. 5G frequency bands around 30 GHz as well as 60 GHz

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Farris Alhorr Business Development Manager RF & Wireless Communication Farris.alhorr@ New Demands in Modern RF and Microwave Test In semiconductor

More information

Tokyo Tech, Sony, JRC and KDDI Labs have jointly developed a 40 GHz and 60 GHz wave-based high-throughput wireless access network

Tokyo Tech, Sony, JRC and KDDI Labs have jointly developed a 40 GHz and 60 GHz wave-based high-throughput wireless access network March 1, 2016 News Release Tokyo Institute of Technology Sony Corporation Japan Radio Co. Ltd KDDI R&D Laboratories, Inc. Tokyo Tech, Sony, JRC and KDDI Labs have jointly developed a 40 GHz and 60 GHz

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

AIS Annual Investor Day 2016 Digital Transformation at AIS. 18 November 2016

AIS Annual Investor Day 2016 Digital Transformation at AIS. 18 November 2016 AIS Annual Investor Day 2016 Digital Transformation at AIS 18 November 2016 Addressing consumer s future demand with AIS technology roadmap Kriengsak Wanichnatee Chief Technology Officer 1 Global Technology

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

Towards 100 Gbps: Ultra-high Spectral Efficiency using massive MIMO with 3D Antenna Configurations

Towards 100 Gbps: Ultra-high Spectral Efficiency using massive MIMO with 3D Antenna Configurations Towards 100 Gbps: Ultra-high Spectral Efficiency using massive with 3D Antenna Configurations ICC 2013, P10 12.06.2013 Budapest, Hungaria Eckhard Grass, grass@ihp-microelectronics.com grass@informatik.hu-berlin.de

More information

Does anybody really know what 5G is? Does anybody really care?

Does anybody really know what 5G is? Does anybody really care? Does anybody really know what 5G is? Does anybody really care? Dean Mischke P.E., V.P. Finley Engineering Company, Inc. What is 5G? Salvation for Wireless Companies *Qualcomm CEO Steve Mollenkopf s keynote

More information

Transforming Wireless Design with MATLAB

Transforming Wireless Design with MATLAB n(m,9); end in(n,2); end rst 12 membrane 5, 15.19725192, 2*pi 8488, 5*pi^2, 5*pi^2, 3 1 2 1]; olar coordinates )); ones(2*m,1)./sin(t 3 17 19... ] * 2/3, 16 20... ] * 2/3, (e 21... ] * 2/3, (mul ; a));

More information

Faculty of Information Engineering & Technology. The Communications Department. Course: Advanced Communication Lab [COMM 1005] Lab 6.

Faculty of Information Engineering & Technology. The Communications Department. Course: Advanced Communication Lab [COMM 1005] Lab 6. Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 6.0 NI USRP 1 TABLE OF CONTENTS 2 Summary... 2 3 Background:... 3 Software

More information

flexicon.ee.columbia.edu Harish Krishnaswamy, Gil Zussman, Jin Zhou, Jelena (Marašević) Diakonikolas, Tolga Dinc, Negar Reiskarimian, Tingjun Chen

flexicon.ee.columbia.edu Harish Krishnaswamy, Gil Zussman, Jin Zhou, Jelena (Marašević) Diakonikolas, Tolga Dinc, Negar Reiskarimian, Tingjun Chen Full-Duplex in a Hand-held Device - From Fundamental Physics to Complex Integrated Circuits, Systems and Networks: An Overview of the Columbia FlexICoN project Harish Krishnaswamy, Gil Zussman, Jin Zhou,

More information

MASTER THESIS PROJECT PROPOSALS: SIGNAL PROCESSING FOR WIRELESS AND SATELLITE COMMUNICATIONS

MASTER THESIS PROJECT PROPOSALS: SIGNAL PROCESSING FOR WIRELESS AND SATELLITE COMMUNICATIONS MASTER THESIS PROJECT PROPOSALS: SIGNAL PROCESSING FOR WIRELESS AND SATELLITE COMMUNICATIONS Prof. Claudio Sacchi Academic year 2015-2016 Outlines General rules; Project P1: LTE-A Small Cell Wireless Backhauling;

More information

5G.The Road Ahead. Thomas Cameron, PhD Analog Devices, Inc. All rights reserved.

5G.The Road Ahead. Thomas Cameron, PhD Analog Devices, Inc. All rights reserved. 5G The Road Ahead Thomas Cameron, PhD 2017 Analog Devices, Inc All rights reserved CONNECTIVITY noun: the state or extent of being connected or interconnected 2 2017 Analog Devices, Inc All rights reserved

More information

Stagnation in Physical Layer Research an Industry Perspective

Stagnation in Physical Layer Research an Industry Perspective Stagnation in Physical Layer Research an Industry Perspective NAE-NATF Event, 23.11.2013, Chantilly, France Wireless Broadband Session Stephan ten Brink tenbrink@inue.uni-stuttgart.de University of Stuttgart

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

Millimeter Waves. Millimeter Waves. mm- Wave. 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz. Infrared Light. Far IR. THz. Microwave.

Millimeter Waves. Millimeter Waves. mm- Wave. 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz. Infrared Light. Far IR. THz. Microwave. Millimeter Waves Millimeter Waves 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz 30 GHz 300 GHz Frequency Wavelength Microwave mm- Wave THz Far IR Infrared Light UV 10 cm 1 cm 1 mm 100 µm 10 µm 1 µm Page

More information

Why Time-Reversal for Future 5G Wireless?

Why Time-Reversal for Future 5G Wireless? Why Time-Reversal for Future 5G Wireless? K. J. Ray Liu Department of Electrical and Computer Engineering University of Maryland, College Park Acknowledgement: the Origin Wireless Team What is Time-Reversal?

More information

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Millimeter Wave Communication in 5G Wireless Networks By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Outline 5G communication Networks Why we need to move to higher frequencies? What are

More information

Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems

Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems Florian Kaltenberger and Raymond Knopp EURECOM Sophia-Antipolis, France Martin Danneberg

More information

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015 : New Air Interface and Radio Access Virtualization HUAWEI WHITE PAPER April 2015 5 G Contents 1. Introduction... 1 2. Performance Requirements... 2 3. Spectrum... 3 4. Flexible New Air Interface... 4

More information

5G Overview Mobile Technologies and the Way to 5G. Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing

5G Overview Mobile Technologies and the Way to 5G. Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing 5G Overview Mobile Technologies and the Way to 5G Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing Contents LTE and evolution (IOT and unlicensed) 5G use cases (incl. first deployments)

More information

SDR Platforms for Research on Programmable Wireless Networks

SDR Platforms for Research on Programmable Wireless Networks SDR Platforms for Research on Programmable Wireless Networks John Chapin jchapin@vanu.com Presentation to NSF NeTS Informational Meeting 2/5/2004 Outline SDR components / terminology Example SDR systems

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES THE USE OF 3300-3800 MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES 5G Spectrum and Policy Forum 29 June 2017, GSMA MWC Shanghai Global mobile Suppliers Association Hu Wang (wanghu.wanghu@huawei.com)

More information

FUTURE SPECTRUM WHITE PAPER DRAFT

FUTURE SPECTRUM WHITE PAPER DRAFT FUTURE SPECTRUM WHITE PAPER DRAFT FUTURE SPECTRUM WHITE PAPER Version: Deliverable Type Draft Version Procedural Document Working Document Confidential Level Open to GTI Operator Members Open to GTI Partners

More information

Massive MIMO for 5G below 6 GHz Achieving Spectral Efficiency, Link Reliability, and Low-Power Operation

Massive MIMO for 5G below 6 GHz Achieving Spectral Efficiency, Link Reliability, and Low-Power Operation Massive MIMO for 5G below 6 GHz Achieving Spectral Efficiency, Link Reliability, and Low-Power Operation Associate Professor Emil Björnson Department of Electrical Engineering (ISY) Linköping University

More information

Requirements on 5G Development Device manufacturer s perspective

Requirements on 5G Development Device manufacturer s perspective Requirements on 5G Development Device manufacturer s perspective ECC 5G Mobile Communications Workshop Mainz, Nov. 2 4 2016 Quan Yu, Chief Strategy Officer, Huawei Wireless Product Line 1 Europe s 5G Action

More information

Propsim C8 MIMO Extension. 4x4 MIMO Radio Channel Emulation

Propsim C8 MIMO Extension. 4x4 MIMO Radio Channel Emulation Propsim C8 MIMO Extension 4x4 MIMO Radio Channel Emulation Propsim C8 provides a flexible platform for Multiple Input Multiple Output (MIMO) development and evaluation. With a maximum number of 16 independent

More information

PERCEIVED INFINITE CAPACITY

PERCEIVED INFINITE CAPACITY WHY 5G? Prof. Rahim Tafazolli, University of Surrey, r.tafazolli@surrey.ac.uk All rights reserved PERCEIVED INFINITE CAPACITY New communication paradigm For 5G and Beyond 1 All rights reserved CONTENTS

More information

Cognitive Radio Platform Technology

Cognitive Radio Platform Technology Cognitive Radio Platform Technology Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu seskar (at) winlab (dot) rutgers (dot) edu Complexity/Performance Tradeoffs Efficient

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

5G Massive MIMO and mmw Design and Test Solution

5G Massive MIMO and mmw Design and Test Solution 5G Massive MIMO and mmw Design and Test Solution Jan. 2017 Philip Chang Senior Project Manager 1 Agenda Communications Page 2 Overview of 5G Technologies 5G Key Radio Technologies mmwave Massive MIMO Keysight

More information

Angel Lozano! Post-Cellular Wireless Networks

Angel Lozano! Post-Cellular Wireless Networks Angel Lozano! Post-Cellular Wireless Networks Outline 1 2 3 Flashback Coming Up: 5G A World Without Cells? 1 Flashback 1 st Breakthrough James C.! Maxwell! I do not think that the wireless waves I have

More information

Japan s Radio Policies Towards 5G

Japan s Radio Policies Towards 5G Japan s Radio Policies Towards 5G November 9, 2016 New-Generation Mobile Communications Office Land Mobile Communications Division Radio Department, Telecommunications Bureau Ministry of Internal Affairs

More information

On Practical Coexistence Gaps in. A. Zubow, P. Gawłowicz, S. Bayhan European Wireless 2018

On Practical Coexistence Gaps in. A. Zubow, P. Gawłowicz, S. Bayhan European Wireless 2018 On Practical Coexistence Gaps in Space for LTE-U/WiFi Coexistence A. Zubow, P. Gawłowicz, S. Bayhan European Wireless 2018 Motivation Rapid growth in the use of smart phones / tablets and appearance of

More information

RF Innovation and the Transition to 5G Wireless Technology WHITEPAPER

RF Innovation and the Transition to 5G Wireless Technology WHITEPAPER RF Innovation and the Transition to 5G Wireless Technology WHITEPAPER Table of Contents 1 Executive Summary... 3 2 What is the Vision for 5G?... 4 3 When Will 5G Transition from Vision to Reality?... 8

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

5G, WLAN, and LTE Wireless Design with MATLAB

5G, WLAN, and LTE Wireless Design with MATLAB 5G, WLAN, and LTE Wireless Design with MATLAB Marc Barberis Application Engineering Group 2017 The MathWorks, Inc. 1 Agenda The 5G Landscape Designing 5G Systems Generating waveforms Designing baseband

More information

Path to 5G Radio Access Network

Path to 5G Radio Access Network Path to 5G Radio Access Network Eduardo Inzunza RF-Test Market Development Dec-2017 2016 2017 Viavi Solutions Inc. 1 Topics 5G RAN Introduction 5G Evolution 5G Revolution 2 Cellular evolution APPS 10101

More information

Massive MIMO Full-duplex: Theory and Experiments

Massive MIMO Full-duplex: Theory and Experiments Massive MIMO Full-duplex: Theory and Experiments Ashu Sabharwal Joint work with Evan Everett, Clay Shepard and Prof. Lin Zhong Data Rate Through Generations Gains from Spectrum, Densification & Spectral

More information

Exploring the Potential of mmwave for 5G Mobile Access

Exploring the Potential of mmwave for 5G Mobile Access White Paper Exploring the Potential of mmwave for 5G Mobile Access Prepared by Gabriel Brown Senior Analyst, Heavy Reading www.heavyreading.com on behalf of www.qualcomm.com June 2016 5G Vision & the Role

More information

A 5G Paradigm Based on Two-Tier Physical Network Architecture

A 5G Paradigm Based on Two-Tier Physical Network Architecture A 5G Paradigm Based on Two-Tier Physical Network Architecture Elvino S. Sousa Jeffrey Skoll Professor in Computer Networks and Innovation University of Toronto Wireless Lab IEEE Toronto 5G Summit 2015

More information

Speed to Insight Metrology and Measurement in 5G

Speed to Insight Metrology and Measurement in 5G Speed to Insight Metrology and Measurement in 5G IEEE 1 st International 5G Summit, Princeton. May 26 th 2015 Malcolm Robertson 5G: What Will it Be? From Vision to Fantasy or Reality? Amazingly Fast Great

More information

5GCHAMPION. mmw Hotspot Trial, Results and Lesson Learned. Dr. Giuseppe Destino, University of Oulu - CWC Dr. Gosan Noh, ETRI

5GCHAMPION. mmw Hotspot Trial, Results and Lesson Learned. Dr. Giuseppe Destino, University of Oulu - CWC Dr. Gosan Noh, ETRI 5GCHAMPION mmw Hotspot Trial, Results and Lesson Learned Dr. Giuseppe Destino, University of Oulu - CWC Dr. Gosan Noh, ETRI EU-KR Symposium on 5G From the 5G challenge to 5GCHAMPION Trials at Winter Olympic

More information

ni.com The NI PXIe-5644R Vector Signal Transceiver World s First Software-Designed Instrument

ni.com The NI PXIe-5644R Vector Signal Transceiver World s First Software-Designed Instrument The NI PXIe-5644R Vector Signal Transceiver World s First Software-Designed Instrument Agenda Hardware Overview Tenets of a Software-Designed Instrument NI PXIe-5644R Software Example Modifications Available

More information

Mario Maniewicz Deputy-Director, Radiocommunication Bureau Commonwealth Spectrum Management Forum London, October 2017

Mario Maniewicz Deputy-Director, Radiocommunication Bureau Commonwealth Spectrum Management Forum London, October 2017 ITU-R studies in support of the Internet of Things Mario Maniewicz Deputy-Director, Radiocommunication Bureau Commonwealth Spectrum Management Forum London, October 2017 1 Internet of Things (IoT, MTC,

More information

Advances in Wireless Communications: Standard Compliant Models and Software Defined Radio By Daniel Garcίa and Neil MacEwen

Advances in Wireless Communications: Standard Compliant Models and Software Defined Radio By Daniel Garcίa and Neil MacEwen Advances in Wireless Communications: Standard Compliant Models and Software Defined Radio By Daniel Garcίa and Neil MacEwen 2014 The MathWorks, Inc. 1 Advances in Wireless Communications Standard compliant

More information

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU Seunghak Lee (HY-SDR Research Center, Hanyang Univ., Seoul, South Korea; invincible@dsplab.hanyang.ac.kr); Chiyoung Ahn (HY-SDR

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Energy Efficient Transmitters for Future Wireless Applications

Energy Efficient Transmitters for Future Wireless Applications Energy Efficient Transmitters for Future Wireless Applications Christian Fager christian.fager@chalmers.se C E N T R E Microwave Electronics Laboratory Department of Microtechnology and Nanoscience Chalmers

More information

An Introduction to Software Radio

An Introduction to Software Radio An Introduction to Software Radio (and a bit about GNU Radio & the USRP) Eric Blossom eb@comsec.com www.gnu.org/software/gnuradio comsec.com/wiki USENIX / Boston / June 3, 2006 What's Software Radio? It's

More information