05-VAWT Generator Testing

Size: px
Start display at page:

Download "05-VAWT Generator Testing"

Transcription

1 Introduction The purpose of this module is to measure and calculate the generated voltage as a function of the rotational velocity (revolutions per second). This will be accomplished by connect the generator shaft to a drill press chuck, varying the drill speed and using a Digital Voltmeter (DVM) measure the generator voltage and the voltage frequency. A tachometer will be used to measure shaft rotation rate in revolutions per minute (RPM) and related to the voltage frequency. At the end of this module you will know how many volts are generated per shaft revolution. Sinewave Voltage Waveform The generator we will be testing uses four magnets and four coils. Faraday s Law tells us that for a four pole generator, each shaft revolution produces two sinewaves, or 2Hz and a revolution per second (60RPM). Refer to for a more complete discussion of sinusoidal waves. A brief summary of related facts follows: 1 Sine waves per pair of magnetic poles E RMS = 0.707E P E P For a 4 Pole generator ( Frequency in Hz) = (Shaft Revolutions per second)/2 F (Hz) = rps/2 Revolutions per minute (RPM) = Revolutions per second x 60 Root-Mean-Square Voltage (RMS) From the figure you can see that a sinewave is a alternating voltage (AC) that has both positive and negative values. An average of these values is zero. However, a sinusoidal electric current will heat a resistive load just like a battery or DC current will. The value of that voltage is of the peak voltage ( Ep ). This means for a given electrical load (RL) the AC-RMS voltage will produce the same heat (power) a battery of the same value ( 10 v-rms = 10 v-dc). In this module all AV voltages will be measured as RMS voltages. We will not have to know the Ep value. Jbernardini Fall 2016 Page 1

2 Generator Test Procedure 1. Align the turbine shaft in the drill press chuck. (See figure below) Generator Test Setup 2. Carefully tighten the chuck, allowing the shaft to center itself. 3. Connect the DVM to the generator coils. (the ones not connected to anything). 4. Measure the resistance using the ohmmeter. You should the total coil resistance plus the test lead resistance (approximately 14 ohms). If you do not get this troubleshoot the problem (loose wire?) 5. Change the DVM to ac Volts. 6. Turn the power supply voltage knob the extreme counter clockwise position. 7. Turn on the power supply. 8. Adjust the power supply to start turn the shaft. You should start to see waveform appear on the DVM screen. Jbernardini Fall 2016 Page 2

3 9. Continue to increase the voltage until you get close to the target RPM and frequency. 10. Record the actual voltage, RPM and frequency. 11. Repeat the procedure for the target values in the table below. 12. Repeat the steps to obtain the LOAD Test data. 13. Record all data in your journal. Prototype Wind Turbine Drill Press Data -No Load Target Values Measured (Actual) Calculate RPM rev/min F (Hz) 4-Pole Z (rps) rev/sec RPM rev/min F (Hz) 4-Pole V rms -MES (volts) Z (rps) rev/sec V rms -CAL (volts) Load Testing Procedure This involves connection various resistors across the output of the generator (DVM) terminals and measuring the resulting voltage (V L ). Load Resistors 1. Adjust the drill speed to 480 RPM. 2. Using a jumper connector connect a load resistor starting with the highest value. 3. Measure the resulting voltage with the DVM. 4. Repeat the measurements for all load resistor values. 5. The frequency should remain the same for all measurements. Jbernardini Fall 2016 Page 3

4 R g = RPM rev/min F (Hz) 4-Pole Load R L (ohms) Measured Load Volts V L Calculated Load Volts V L The following variables and equation will allow us to predict the open circuit voltage generated by the turbine. Data Analysis Fill in the table below for your analysis Value N-Number of loops of wire A Area of enclosed loop (m2) P Number of poles 4 B Magnet strength (Tesla) Z- revolutions per second ( Variable F Frequency Variable Sample Data Nominal N - Number of loops of wire 888 A - Area enclosed by loop (m 2 ) P - Number of Magnetic poles 4 B - Magnetic pole strength (Tesla) 0.1 Calculated No-Load rms Voltage Z - Rotational velocity of magnets (rps) below V rms = * N *A *P *B *Z F - Frequency of Voltage (Hz) below 1. Using the generator equation produce the Excel spreadsheet as shown below. Place all information in the cells indicated in the example. Jbernardini Fall 2016 Page 4

5 2. From the analysis calculate the generated volts per 100 RPM from both the generator equations and the measured data. 3. This can be calculated for data or the data graph Volts per 100 RPM Generator equations Measurements Jbernardini Fall 2016 Page 5

6 Jbernardini Fall 2016 Page 6

05-VAWT Generator Testing

05-VAWT Generator Testing Introduction The purpose of this module is to measure and calculate the generated voltage as a function of the rotational velocity (revolutions per second). This will be accomplished by connect the generator

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Page 2 A 42% B 50% C 84% D 100% (Total 1 mark)

Page 2 A 42% B 50% C 84% D 100% (Total 1 mark) Q1.A transformer has 1150 turns on the primary coil and 500 turns on the secondary coil. The primary coil draws a current of 0.26 A from a 230 V ac supply. The current in the secondary coil is 0.50 A.

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

11. AC-resistances of capacitor and inductors: Reactances.

11. AC-resistances of capacitor and inductors: Reactances. 11. AC-resistances of capacitor and inductors: Reactances. Purpose: To study the behavior of the AC voltage signals across elements in a simple series connection of a resistor with an inductor and with

More information

MSK4310 Demonstration

MSK4310 Demonstration MSK4310 Demonstration The MSK4310 3 Phase DC Brushless Speed Controller hybrid is a complete closed loop velocity mode controller for driving a brushless motor. It requires no external velocity feedback

More information

Safety Hazards Instrumentation Laboratory Room 214

Safety Hazards Instrumentation Laboratory Room 214 Safety Hazards Instrumentation Laboratory Room 214 HAZARD: Rotating Equipment / Machine Tools Personal Protective Equipment: Safety Goggles; Standing Shields, Sturdy Shoes No: Loose clothing; Neck Ties/Scarves;

More information

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator Exercise 1 Voltage-Versus-Speed Characteristic of a Wind Turbine Generator EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principle of electromagnetic induction.

More information

INSTALLATION & OPERATION MANUAL

INSTALLATION & OPERATION MANUAL INSTALLATION & OPERATION MANUAL AN25 Totalizer/ Rate Indicator DOC#: MN-AN25.doc Sponsler Co., Inc. AN25 Totalizer/Rate Indicator pg. 2 DOC#: MN-AN25 SPECIFICATIONS Temperature: Operating 0 to 70 C Storage

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

+ 24V 3.3K - 1.5M. figure 01

+ 24V 3.3K - 1.5M. figure 01 ELECTRICITY ASSESSMENT 35 questions Revised: 08 Jul 2013 1. Which of the wire sizes listed below results in the least voltage drop in a circuit carrying 10 amps: a. 16 AWG b. 14 AWG c. 18 AWG d. 250 kcmil

More information

Section 2. AC Circuits

Section 2. AC Circuits Section 2 AC Circuits Chapter 12 Alternating Current Objectives After completing this chapter, the student should be able to: Describe how an AC voltage is produced with an AC generator. Define alternation,

More information

Contents. Core information about Unit

Contents. Core information about Unit 1 Contents Core information about Unit UEENEEH114A - Troubleshoot resonance circuits......3 UEENEEG102A Solve problems in low voltage AC circuits...5 TextBook...7 Topics and material Week 1...9 2 Core

More information

Current Loop Interface Module M 2025D

Current Loop Interface Module M 2025D CONTROLS Current Loop Interface Module M 2025D Current-to-Voltage Analog Converter used with the M 2001 Series Digital Tapchanger Control and M-2948 Tap Position Sensors to provide positive tap position

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. Domestic users in the United Kingdom are supplied with mains electricity at a root mean square voltage of 230V. (a) State what is meant by root mean square voltage.......... (1) (b) Calculate the peak

More information

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt 3 phase Power All we need electricity for is as a source of transport for energy. We can connect to a battery, which is a source of stored energy. Or we can plug into and electric socket at home or in

More information

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field Exercise 9 Electromagnetism and Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concepts of magnetism, magnets, and magnetic field, as well as electromagnetism

More information

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW 1. This question is about electric circuits. (a) (b) Define (i) (ii) electromotive force

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

1525-BRS INFORMATION MANUAL SERV O D YN A M ICS. D y n ad r iv e Ave Crocker Suite 10 Valencia, CA

1525-BRS INFORMATION MANUAL SERV O D YN A M ICS. D y n ad r iv e Ave Crocker Suite 10 Valencia, CA 28231 Ave Crocker Suite 10 Valencia, CA 91355 818-700-8600 Servodynamics.com INFORMATION MANUAL 1525-BRS SERV O D YN A M ICS U SA www.servodynamics.com D y n ad r iv e Bru sh INDEX Page INTRODUCTION 2

More information

5. Experiment s title: The Optical Tachogenerator AMEM 211

5. Experiment s title: The Optical Tachogenerator AMEM 211 5. Experiment s title: The Optical Tachogenerator AMEM 211 I. Objectives To Investigate an opto-transmissive sensor for speed measurement. To Produce a calibration graph of rotary speed against input voltage.

More information

Exercise MM About the Multimeter

Exercise MM About the Multimeter Exercise MM About the Multimeter Introduction Our world is filled with devices that contain electrical circuits in which various voltage sources cause currents to flow. Electrical currents generate heat,

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

Trade of Electrician. Introduction to AC

Trade of Electrician. Introduction to AC Trade of Electrician Standards Based Apprenticeship Introduction to AC Phase 2 Module No. 2.1 Unit No. 2.1.9 COURSE NOTES Created by Gerry Ryan - Galway TC Revision 1. April 2000 by Gerry Ryan - Galway

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS ANALOG Metering devices Provides monotonous (continuous) movement. ELECTRICAL MEASURING INSTRUMENTS ANALOG METERS A d Arsonval galvanometer (Moving

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

Phasor. Phasor Diagram of a Sinusoidal Waveform

Phasor. Phasor Diagram of a Sinusoidal Waveform Phasor A phasor is a vector that has an arrow head at one end which signifies partly the maximum value of the vector quantity ( V or I ) and partly the end of the vector that rotates. Generally, vectors

More information

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel.

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel. Review 6 1. The two characteristics of all magnets are: they attract and hold Iron, and, if free to move, they will assume roughly a south - north position. 2. Lines of flux always leave the north pole

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

EQUIVALENT EQUIPMENT CIRCUITS

EQUIVALENT EQUIPMENT CIRCUITS INTRODUCTION EQUIVALENT EQUIPMENT CIRCUITS The student will analyze the internal properties of the equipment used in lab. The input resistance of the oscilloscope and digital multimeter when used as a

More information

Tutorial #2: Simulating Transformers in Multisim. In this tutorial, we will discuss how to simulate two common types of transformers in Multisim.

Tutorial #2: Simulating Transformers in Multisim. In this tutorial, we will discuss how to simulate two common types of transformers in Multisim. SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #2: Simulating Transformers in Multisim INTRODUCTION In

More information

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics 15-830 Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics J. Zico Kolter October 9, 2012 1 Generators Basic AC Generator Rotating Magnet Loop of Wire 2 Generator operation Voltage

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Electrical Theory 2 Lessons for Fall Semester:

Electrical Theory 2 Lessons for Fall Semester: Electrical Theory 2 Lessons for Fall Semester: Lesson 1 Magnetism Lesson 2 Introduction to AC Theory Lesson 3 Lesson 4 Capacitance and Capacitive Reactance Lesson 5 Impedance and AC Circuits Lesson 6 AC

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

Yaskawa Electric America Unit Troubleshooting Manual Section Two: Power Checks GPD 506/P5 and GPD 515/G5 (0.4 ~ 160kW)

Yaskawa Electric America Unit Troubleshooting Manual Section Two: Power Checks GPD 506/P5 and GPD 515/G5 (0.4 ~ 160kW) Yaskawa Electric America Unit Troubleshooting Manual Section Two: Power Checks GPD 506/P5 and GPD 515/G5 (0.4 ~ 160kW) Page 1 Section Two: Power Checks Page 2 Check box when completed Power Checks TEST

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS

815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS 815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS USER GUIDE September 2004 Important Notice This document is subject to the following conditions and restrictions: This document contains proprietary information

More information

DynaDrive INFORMATION MANUAL SDFP(S)

DynaDrive INFORMATION MANUAL SDFP(S) DynaDrive INFORMATION MANUAL SDFP(S)1525-17 SERVO DYNAMICS CORP. 28231 Avenue Crocker, Santa Clarita, CA. 91355 (818) 700-8600 Fax (818) 718-6719 www.servodynamics.com INDEX Page INTRODUCTION 2 ELECTRICAL

More information

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS Version 1.1 1 of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors,

More information

Massachusetts Institute of Technology. Lab 2: Characterization of Lab System Components

Massachusetts Institute of Technology. Lab 2: Characterization of Lab System Components OBJECTIVES Massachusetts Institute of Technology Department of Mechanical Engineering 2.004 System Dynamics and Control Fall Term 2007 Lab 2: Characterization of Lab System Components In the future lab

More information

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity.

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity. Ac fundamentals and AC CIRCUITS Q1. Explain and derive an expression for generation of AC quantity. According to Faradays law of electromagnetic induction when a conductor is moving within a magnetic field,

More information

Producing Electric Current

Producing Electric Current Electromagnetic Induction Working independently in 181, Michael Faraday in Britain and Joseph Henry in the United States both found that moving a loop of wire through a magnetic field caused an electric

More information

Construction Electrician/Industrial Electrician/Power Electrician Common Core Level 2

Construction Electrician/Industrial Electrician/Power Electrician Common Core Level 2 Common Core Level 2 Unit: B1 Commercial Electrical Code Level: Two Duration: 60 hours Theory: Practical: 60 hours 0 hours Overview: This unit is designed to provide the apprentice with the knowledge about

More information

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance Introduction Electron spin resonance (ESR) (or electron paramagnetic resonance (EPR) as it is sometimes

More information

Electrical Motor Power Measurement & Analysis

Electrical Motor Power Measurement & Analysis Electrical Motor Power Measurement & Analysis Understand the basics to drive greater efficiency Test&Measurement Energy is one of the highest cost items in a plant or facility, and motors often consume

More information

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS Name: Partners: PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS The electricity produced for use in homes and industry is made by rotating coils of wire in a magnetic field, which results in alternating

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

Basic Measurement and M-G Set with the 208V L-L Motor

Basic Measurement and M-G Set with the 208V L-L Motor Basic Measurement and M-G Set with the 208V L-L Motor OBJECTIVE This goal is to 1) get acquainted with measurement equipment and 2) experiment with the relationships between real power, apparent power,

More information

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2018 Objectives At the end of this presentation the learner will be able to: Identify the characteristics of Sine

More information

Construction Electrician Level 2

Construction Electrician Level 2 Level 2 Rev. September 2008 Unit: B1 Electrical Code II Level: Two Duration: 120 hours Theory: Practical: 99 hours 21 hours Overview: This unit of instruction is designed to provide the Electrician apprentice

More information

Experiment #2 Half Wave Rectifier

Experiment #2 Half Wave Rectifier PURPOSE: ELECTRONICS 224 ETR620S Experiment #2 Half Wave Rectifier This laboratory session acquaints you with the operation of a diode power supply. You will study the operation of half-wave and the effect

More information

Experiment 1 LRC Transients

Experiment 1 LRC Transients Physics 263 Experiment 1 LRC Transients 1 Introduction In this experiment we will study the damped oscillations and other transient waveforms produced in a circuit containing an inductor, a capacitor,

More information

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors In this exercise you will explore the use of the potentiometer and the tachometer as angular position and velocity sensors.

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Basic Measurement and M-G Set OBJECTIVE

Basic Measurement and M-G Set OBJECTIVE Basic Measurement and M-G Set OBJECTIVE This goal is to 1) get acquainted with measurement equipment and 2) experiment with the relationships between real power, apparent power, reactive power, power factor

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018 PURPOSE The purpose of this project is for you to become familiar with some of the language, parts, and tools used in electrical engineering. You will also be introduced to some simple rule and laws. MATERIALS

More information

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? ) in the box next to your answer. ...

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? ) in the box next to your answer. ... Q1.The diagram shows a transformer. (a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? Put a tick ( ) in the box next to your answer. a step-up

More information

Alternating Current Page 1 30

Alternating Current Page 1 30 Alternating Current 26201 11 Page 1 30 Calculate the peak and effective voltage of current values for AC Calculate the phase relationship between two AC waveforms Describe the voltage and current phase

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

Oscilloscope Measurements

Oscilloscope Measurements PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

More information

Motomatic Servo Control

Motomatic Servo Control Exercise 2 Motomatic Servo Control This exercise will take two weeks. You will work in teams of two. 2.0 Prelab Read through this exercise in the lab manual. Using Appendix B as a reference, create a block

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-12 Three Phase AC Circuits Three Phase AC Supply 2 3 In general, three-phase systems are preferred over single-phase systems for the transmission

More information

MFJ-249B HF/VHF SWR ANALYZER

MFJ-249B HF/VHF SWR ANALYZER TABLE OF CONTENTS MFJ-249B... 2 Introduction... 2 Powering The MFJ-249B... 3 Battery Installation... 3 Alkaline Batteries... 3 NiCd Batteries... 4 Power Saving Mode... 4 Operation Of The MFJ-249B...5 SWR

More information

Chapt ha e pt r e r 11 Inductors

Chapt ha e pt r e r 11 Inductors Chapter 11 Inductors The Basic Inductor When a length of wire is formed onto a coil, it becomes a basic inductor Magnetic lines of force around each loop in the winding of the coil effectively add to the

More information

1. A sinusoidal ac power supply has rms voltage V and supplies rms current I. What is the maximum instantaneous power delivered?

1. A sinusoidal ac power supply has rms voltage V and supplies rms current I. What is the maximum instantaneous power delivered? 1. A sinusoidal ac power supply has rms voltage V and supplies rms current I. What is the maximum instantaneous power delivered? A. VI B. VI C. VI D. VI. An alternating current supply of negligible internal

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions designed to see whether you understand the main concepts of the chapter. 1. The four areas in Figure 20.34 are in a magnetic field.

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Static electricity 2 Repulsion and attraction 3 Electric circuits 4 Circuit symbols 5 Currents 6 Resistance 7 Thermistors and light dependent resistors 8 Series circuits

More information

PHY 132 Summer 2000 LAB 9: LRC Circuit (Phases) 1

PHY 132 Summer 2000 LAB 9: LRC Circuit (Phases) 1 PHY 132 Summer 2000 LAB 9: LRC Circuit (Phases) 1 Introduction In this lab we will measure the phases (voltage vs current) for each component in a series LRC circuit. Theory L C V_in R Fig. 1 Generic series

More information

Experiment P-10 Ohm's Law

Experiment P-10 Ohm's Law 1 Experiment P-10 Ohm's Law Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors PC + NeuLog application

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

Generic Lab Manual: An overview on the major functionalities of the equipment.

Generic Lab Manual: An overview on the major functionalities of the equipment. Generic Lab Manual: This being a generic lab manual is not a complete description or tutorial on everything that the test equipment is capable of measuring. But rather a quick guide on how each piece of

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

1. The induced current in the closed loop is largest in which one of these diagrams?

1. The induced current in the closed loop is largest in which one of these diagrams? PSI AP Physics C Electromagnetic Induction Multiple Choice Questions 1. The induced current in the closed loop is largest in which one of these diagrams? (A) (B) (C) (D) (E) 2. A loop of wire is placed

More information

I = I 0 cos 2 θ (1.1)

I = I 0 cos 2 θ (1.1) Chapter 1 Faraday Rotation Experiment objectives: Observe the Faraday Effect, the rotation of a light wave s polarization vector in a material with a magnetic field directed along the wave s direction.

More information

Lab 2: Capacitors. Integrator and Differentiator Circuits

Lab 2: Capacitors. Integrator and Differentiator Circuits Lab 2: Capacitors Topics: Differentiator Integrator Low-Pass Filter High-Pass Filter Band-Pass Filter Integrator and Differentiator Circuits The simple RC circuits that you built in a previous section

More information

Power Electrician Level 3

Power Electrician Level 3 s Power Electrician Level 3 Rev. September 2008 Power Electrician Unit: C1 Electrical Code III Level: Three Duration: 60 hours Theory: Practical: 60 hours 0 hours Overview: This unit of instruction is

More information

AP Physics Electricity and Magnetism #7 Inductance

AP Physics Electricity and Magnetism #7 Inductance Name Period AP Physics Electricity and Magnetism #7 Inductance Dr. Campbell 1. Do problems Exercise B page 589 and problem 2, 3, 8, 9 page 610-1. Answers at the end of the packet. 2. A 20-turn wire coil

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit CHAPTER 2 Basic Concepts, Three-Phase Review, and Per Unit 1 AC power versus DC power DC system: - Power delivered to the load does not fluctuate. - If the transmission line is long power is lost in the

More information

RC and RL Circuits. Figure 1: Capacitor charging circuit.

RC and RL Circuits. Figure 1: Capacitor charging circuit. RC and RL Circuits Page 1 RC and RL Circuits RC Circuits In this lab we study a simple circuit with a resistor and a capacitor from two points of view, one in time and the other in frequency. The viewpoint

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

[ECEN 1400] Introduction to Digital and Analog Electronics R. McLeod. HW #4: Power Supply

[ECEN 1400] Introduction to Digital and Analog Electronics R. McLeod. HW #4: Power Supply 1 Why Not Use Batteries? (10 pts) HW #4: Power Supply Work this problem in symbols, then clearly state the values of any parameters you need before plugging in to get final numbers. 1.1 How much current

More information

Alternating current. Interesting Fact: Current and voltage

Alternating current. Interesting Fact: Current and voltage Alternating current Most students learning about electricity begin with what is known as direct current (DC), which is electricity flowing in one direction only. DC is the kind of electricity made by a

More information

Experiment 6. Electromagnetic Induction and transformers

Experiment 6. Electromagnetic Induction and transformers Experiment 6. Electromagnetic Induction and transformers 1. Purpose Confirm the principle of electromagnetic induction and transformers. 2. Principle The PASCO scientific SF-8616 Basic Coils Set and SF-8617

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

The Harvard Research Carrier Signal Conditioner User s Manual

The Harvard Research Carrier Signal Conditioner User s Manual The Harvard Research Carrier Signal Conditioner User s Manual TABLE OF CONTENTS SECTION TITLE PAGE I GENERAL INFORMATION INTRODUCTION 1.1 SPECIFICATIONS 1.1 II INSTALLATION 2.1 GENERAL 2.1 2.2 INITIAL

More information