RF power measurement in. three-mixer method

Size: px
Start display at page:

Download "RF power measurement in. three-mixer method"

Transcription

1 RF power measurement in D-band using downconverter calibrated by three-mixer method Katsumi Fujii a), Toshihide Tosaka, Kaori Fukunaga, and Yasushi Matsumoto National Institute of Information and Communications Technology Nukui-Kitamachi, Koganei-shi, Tokyo , Japan a) katsumi@nict.go.jp Abstract: To establish an RF power standard above 110 GHz, we have developed a measurement system using a down-conversion mixer with a spectrum analyzer, and the conversion loss of the mixer was determined by the three-mixer method. This method measures the three transmission S-parameters S ) of three mixer pairs using a vector network analyzer. The experimental results proved that the three-mixer method can determine the conversion loss of mixers with an uncertainty of 0.5 db level of confidence: 95%) in the entire range of the D-band. Using this uncertainty and the uncertainty of the spectrum analyzer, the proposed system can measure the RF power in the D-band with an uncertainty of less than 2.0 db. Keywords: D-band, reciprocal mixer, RF power standard, conversion loss Classification: Microwave and millimeter wave devices, circuits, and systems References [1] Hewlett Packard, Improving Network Analyzer Measurements of Frequency-Translating Devices, Application Note , [2] T. Tosaka, K. Fujii, K. Fukunaga, and Y. Matsumoto, Measurement of frequency conversion losses with 3-mixer method for traceable mmwave power measurement method in D-band, IRWWM-THz, Sept Accepted). 1 Introduction With the progress of wideband and high-speed wireless communication systems such as a real-time transmission system for HDTV high definition television), the demand for the establishment of an RF power standard for millimeter waves, i.e., electromagnetic waves above 110 GHz, has been rapidly 1096

2 growing. The present de jure international RF power standard, however, has only been established up to 110 GHz, and there is no calibration service for higher frequencies. To promote the use of millimeter wave wireless communication, we have developed an RF power measurement system for calibration in the D-band whose frequency range is from 110 GHz to 170 GHz. The system uses a down-conversion mixer with a spectrum analyzer to measure the IF signal power. When the conversion loss of the mixer is accurately calibrated by the three-mixer method, values obtained by the spectrum analyzer can be corrected. The effectiveness of this method was verified by comparing the conversion loss calibrated by the three-mixer method with the loss determined by the well-established substitution method using a conventional RF power meter that is traceable to the national standard at 110 GHz. Then, the conversion losses up to a frequency of 170 GHz, were calibrated. Finally, we estimated the uncertainty of the newly developed measurement system. 2 Power-measuring system A down-conversion method using an external mixer with a spectrum analyzer, which measures the IF power emitted from the mixer, has been commonly used to measure the RF power. The input RF power in the D-band, P in,can be obtained using the following equation: P in [dbm] = P meas. [dbm] + C [db], 1) where P meas. is the power indicated by the spectrum analyzer and C is the conversion loss of the down-conversion mixer. Since a de jure RF power standard above 110 GHz has not been established, the RF power in the D-band is measured by the down-conversion method. In this method, the accuracy of calibration of the conversion loss of the mixer determines the total uncertainty. 3 Three-mixer method The conversion loss of mixers can be determined by the three-mixer method [1, 2]. Figure 1 a) shows the measurement setup used to determine the conversion loss. When two of the three mixers are connected in series with a band-pass filter for a target frequency in the D-band, the transmission S- parameter S ) is measured using a network analyzer. Assuming that mixer X is a reciprocal mixer, the three different combinations of the three mixers give three equations that can be used to calculate the conversion loss of each mixer in terms of S in db as follows see Appendix A): C X [db] = 1 2 C Y [db] = 1 2 C Z [db] = 1 2 S YX) + S XZ) S YZ) S F ) ) S YX) S XZ) + S YZ) S F ) ) S YX) + S XZ) + S YZ) S F ) ) 2) 3) 4) 1097

3 Fig. 1. Three-mixer method and internal structure of mixers under calibration. where S YX), S YZ) and S XZ) are the transmission S-parameters in db for the, of the filter, three mixer pairs including the transmission S-parameter, S F) which is measured previously. Subscripts 1 and 2 indicate port numbers of the network analyzer used. Superscripts YX), YZ) and XZ) indicate the mixer pairs. For example, in the case of the pair YX), mixer X is applied to an up-converter and mixer Y is applied to a down-converter. To yield the Eqs. 2) 4), mixer X must be a reciprocal mixer, which means the conversion loss as the down-converter is equal to that as the up-converter. 4 Conversion loss measurements The conversion losses of the three mixers were calibrated by the three-mixer method using a conventional vector network analyzer that is traceable to the national standard with PC-3.5 coaxial connectors. To suppress unwanted signals such as the leakage of the LO signal and spurious signals, the bandpass filter for the measuring frequency is inserted between the RF ports of 1098

4 two mixers as shown in Fig. 1 a). Figure 1 c) shows the internal structure of the mixers. The main part of each mixer is a single balanced mixer that is driven as a subharmonic mixer. A diplexer with an amplifier was connected to the LO port. The IF frequency was fixed to 4 GHz. The port has a band-pass filter to suppress unwanted signals. The input power was set to about 20 dbm to avoid the saturation of the main mixers. The 6 db fixed attenuator was connected to the RF port of the mixer to improve the reflection coefficient, S 11. The conversion losses were determined at 110 GHz, 120 GHz and 170 GHz as shown in Fig. 2. The red circles indicate the conversion loss of mixer Y which was only driven as a down-converter. The error bars indicate expanded uncertainties of 0.5 db level of confidence: 95%). The conversion loss at 110 GHz was compared with the value obtained by a conventional method that uses a conventional power meter with a waveguide taper transition from WR-10 W-band) to WR-06 D-band), for which the insertion loss was known. The green square in Fig. 2 shows the value obtained by the conventional method. The difference between the two methods was 0.3 db. This result proves that the three-mixer method is effective for practical use. In addition, another measurement, as shown in Fig. 1 b), was performed. The RF ports of two mixers were connected with a network analyzer with millimeter wave expanders for the D-band, and the IF ports were connected via a coaxial cable whose characteristics were known. The conversion loss obtained in this configuration is shown as a blue solid line in Fig. 2, and the blue dotted lines indicate the expanded uncertainties level of confidence: 95%). The deviations at 110 GHz, 120 GHz and 170 GHz are below 0.7 db, providing that the experimental results obtained by the different measurements are in good agreement. Fig. 2. Calibration results for the conversion loss of mixer Y. 1099

5 5 Uncertainty of RF power measurement The uncertainty of RF power measurement in the D-band is obtained by combining the uncertainty derived from the determined conversion loss determination and the uncertainty of the spectrum analyzer itself. Table I shows the budget of uncertainty for RF power measurement. The conversion loss is calibrated with an uncertainty of 0.5 db level of confidence: 95%). The accuracy of the spectrum analyzer according to the specification is 1.6 db worst case). The mismatch between the IF port of the mixer and the input port of the spectrum analyzer with the coaxial cable is less than 0.1 db measured). Thus, the maximum expanded uncertainty of RF power measurement is 2.0 db level of confidence: 95%). Table I. Uncertainty of RF power measurement in the D- band by the proposed system. 6 Conclusion To establish an RF power standard above 110 GHz, a measuring system has been developed that consists of a down-conversion mixer and a spectrum analyzer. The conversion loss of the mixer in the D-band is determined by the three-mixer method with an uncertainty of 0.5 db, and the total uncertainty of RF power measurement is estimated to be 2.0 db level of confidence: 95%) by adding the uncertainty of the spectrum analyzer. In the future work, we will evaluate the linearity of the mixer to improve the accuracy of the RF power measurement to realize a calibration service for frequencies above 110 GHz. Acknowledgments The authors would like to thank Dr. K. Shimaoka, Dr. M. Horibe, Mr. M. Kinoshita and Ms. R. Kishikawa of the National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology AIST/ NMIJ) for their helpful advice. 1100

6 A. S-parameter between two mixers The configuration and signal flow graph of the method used to measure the transmission S-parameter S ) between two mixers with a filter is shown in Fig. A.1. The measurement data of S YX) is expressed in terms of the S-parameter of each component as S YX) = S X) 12 SF) SY) ) 1 S X) ) 11 SF) 11 1 S Y) 11 SF) 22 S X) 11 SY) 11 SF) SF) 12 A.1) where the superscripts indicate mixer numbers. This equation is rewritten in db as follows: S YX) = S X) 12 + SF) + SY) M in db, A.2) where M is the mismatch factor between the two mixers and the filter and is expressed as, { M = 20 log 10 1 S X) ) 11 SF) 11 1 S Y) ) 11 SF) 22 S X) } 11 SY) 11 SF) SF) 12 in db. A.3) The value of M can be corrected by measuring the S-parameter of each component. However, in this paper, M is included in the budget of uncertainty of the mixer calibration because the value of M is smaller than any other factors of uncertainty. Fig. A.1. Signal flow graph of the three-mixer method. 1101

Path Loss Model at 300 GHz for Indoor Mobile Service Applications

Path Loss Model at 300 GHz for Indoor Mobile Service Applications This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol.1, 1 6 Path Loss Model at 300 GHz for Indoor Mobile Service

More information

2-3 Calibration of Standard Voltage and Current Generator

2-3 Calibration of Standard Voltage and Current Generator 2-3 Calibration of Standard Voltage and Current Generator Katsumi FUJII, Kojiro SAKAI, Tsutomu SUGIYAMA, Kouichi SEBATA, and Iwao NISHIYAMA This paper describes the calibration method of standard voltage

More information

Harmonic Mixers And their application with Spectrum Analysers Application Note Revision: February 2009

Harmonic Mixers And their application with Spectrum Analysers Application Note Revision: February 2009 General A harmonic mixer is another term for a sub-harmonic mixer (SHM) but is more commonly used for systems using higher multiples of the input local oscillator (LO) to produce the mixing LO. They lend

More information

SWR/Return Loss Measurements Using System IIA

SWR/Return Loss Measurements Using System IIA THE GLOBAL SOURCE FOR PROVEN TEST SWR/Return Loss Measurements Using System IIA SWR/Return Loss Defined Both SWR and Return Loss are a measure of the divergence of a microwave device from a perfect impedance

More information

Vector Network Analyzer

Vector Network Analyzer Vector Network Analyzer VNA Basics VNA Roadshow Budapest 17/05/2016 Content Why Users Need VNAs VNA Terminology System Architecture Key Components Basic Measurements Calibration Methods Accuracy and Uncertainty

More information

3-2 Evaluation of Uncertainty of Horn Antenna Calibration with the Frequency range of 1 GHz to 18 GHz.

3-2 Evaluation of Uncertainty of Horn Antenna Calibration with the Frequency range of 1 GHz to 18 GHz. 3-2 Evaluation of Uncertainty of Horn Antenna Calibration with the Frequency range of 1 GHz to 18 GHz. SAKASAI Makoto, MASUZAWA Hiroshi, FUJII Katsumi, SUZUKI Akira, KOIKE Kunimasa, and YAMANAKA Yukio

More information

Amplifier Characterization in the millimeter wave range. Tera Hertz : New opportunities for industry 3-5 February 2015

Amplifier Characterization in the millimeter wave range. Tera Hertz : New opportunities for industry 3-5 February 2015 Amplifier Characterization in the millimeter wave range Tera Hertz : New opportunities for industry 3-5 February 2015 Millimeter Wave Converter Family ZVA-Z500 ZVA-Z325 Y Band (WR02) ZVA-Z220 J Band (WR03)

More information

Ultra High Frequency Measurements

Ultra High Frequency Measurements Ultra High Frequency Measurements Desmond Fraser desmond@rheintech.com 703.689.0368 360 Herndon Parkway Suite 1400 Herndon, VA 20170 IEEE EMC DC / N. VA Chapter 31 January 2012 Overview We ll review Millimeter

More information

Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators

Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators Haiyong Xu, Gerhard S. Schoenthal, Robert M. Weikle, Jeffrey L. Hesler, and Thomas W. Crowe Department of Electrical and Computer

More information

Application Note 57-2 Noise Figure Measurement Accuracy

Application Note 57-2 Noise Figure Measurement Accuracy application Application Note 57- Noise Figure Measurement Accuracy Table of contents Chapter Introduction..................................................... Accurate noise figure measurements mean money..................

More information

Subharmonic Mixer (SHM) Operational Manual

Subharmonic Mixer (SHM) Operational Manual 217 Subharmonic Mixer (SHM) Operational Manual 979 Second Street SE, Suite 39 Charlottesville, VA 2292-6172 (USA) Tel: 434.297.3257; Fax: 434.297.3258 www.vadiodes.com 217 Virginia Diodes, Inc All Rights

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

ME1000 RF Circuit Design. Lab 4. Filter Characterization using Vector Network Analyzer (VNA)

ME1000 RF Circuit Design. Lab 4. Filter Characterization using Vector Network Analyzer (VNA) ME1000 RF Circuit Design Lab 4 Filter Characterization using Vector Network Analyzer (VNA) This courseware product contains scholarly and technical information and is protected by copyright laws and international

More information

Agilent PNA Microwave Network Analyzers

Agilent PNA Microwave Network Analyzers Agilent PNA Microwave Network Analyzers Application Note 1408-3 Improving Measurement and Calibration Accuracy using the Frequency Converter Application Table of Contents Introduction................................................................2

More information

Keysight Technologies Gustaaf Sutorius

Keysight Technologies Gustaaf Sutorius 1 1 mmw Seminar 2017 Keysight Technologies 18-04-2018 Gustaaf Sutorius Introduction & Agenda Why mmwave Industry needs & mmwave challenges Generating mmwave Analyzing mmwave Characterizing mmwave components

More information

PHASE NOISE MEASUREMENT SYSTEMS

PHASE NOISE MEASUREMENT SYSTEMS PHASE NOISE MEASUREMENT SYSTEMS Item Type text; Proceedings Authors Lance, A. L.; Seal, W. D.; Labaar, F. Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

Waveguide Calibration with Copper Mountain Technologies VNA

Waveguide Calibration with Copper Mountain Technologies VNA Clarke & Severn Electronics Ph: +612 9482 1944 BUY NOW www.cseonline.com.au Introduction Waveguide components possess certain advantages over their counterpart devices with co-axial connectors: they can

More information

Optimize External Mixer Operation for Improved Conversion Loss Performance.

Optimize External Mixer Operation for Improved Conversion Loss Performance. Optimize External Mixer Operation for Improved Conversion Loss Performance. Introduction Harmonic mixers can overcome the inherent microwave limitation in spectrum analyzers for millimeter wave measurements.

More information

ME7220A. Radar Test System (RTS) Target Simulation & Signal Analysis for Automotive Radar Exceptional Performance at an Affordable Price.

ME7220A. Radar Test System (RTS) Target Simulation & Signal Analysis for Automotive Radar Exceptional Performance at an Affordable Price. ME7220A Test System (RTS) 76 to 77 GHz Target Simulation & Signal Analysis for Automotive Exceptional Performance at an Affordable Price The Challenge The installation of collision warning and Adaptive

More information

Agilent PNA Microwave Network Analyzers

Agilent PNA Microwave Network Analyzers Agilent PNA Microwave Network Analyzers Application Note 1408-1 Mixer Transmission Measurements Using The Frequency Converter Application Introduction Frequency-converting devices are one of the fundamental

More information

Novel Method for Vector Mixer Characterization and Mixer Test System Vector Error Correction. White Paper

Novel Method for Vector Mixer Characterization and Mixer Test System Vector Error Correction. White Paper Novel Method for Vector Mixer Characterization and Mixer Test System Vector Error Correction White Paper Abstract This paper presents a novel method for characterizing RF mixers, yielding magnitude and

More information

HP Archive. This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web!

HP Archive. This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web! HP Archive This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web! On-line curator: Glenn Robb This document is for FREE distribution only!

More information

On-Wafer Noise Parameter Measurements using Cold-Noise Source and Automatic Receiver Calibration

On-Wafer Noise Parameter Measurements using Cold-Noise Source and Automatic Receiver Calibration Focus Microwaves Inc. 970 Montee de Liesse, Suite 308 Ville St.Laurent, Quebec, Canada, H4T-1W7 Tel: +1-514-335-67, Fax: +1-514-335-687 E-mail: info@focus-microwaves.com Website: http://www.focus-microwaves.com

More information

Using the OML Millimeter Wave Vector Network Analyzer Frequency Extension Modules with the HP 8510 Vector Network Analyzer

Using the OML Millimeter Wave Vector Network Analyzer Frequency Extension Modules with the HP 8510 Vector Network Analyzer Using the OML Millimeter Wave Vector Network Analyzer Frequency Extension Modules with the HP 8510 Vector Network Analyzer OML has developed a series of millimeter wave Frequency Extension Modules (Modules)

More information

325 to 500 GHz Vector Network Analyzer System

325 to 500 GHz Vector Network Analyzer System 325 to 500 GHz Vector Network Analyzer System By Chuck Oleson, Tony Denning and Yuenie Lau OML, Inc. Abstract - This paper describes a novel and compact WR-02.2 millimeter wave frequency extension transmission/reflection

More information

Agilent AN Applying Error Correction to Network Analyzer Measurements

Agilent AN Applying Error Correction to Network Analyzer Measurements Agilent AN 287-3 Applying Error Correction to Network Analyzer Measurements Application Note 2 3 4 4 5 6 7 8 0 2 2 3 3 4 Table of Contents Introduction Sources and Types of Errors Types of Error Correction

More information

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA DESCRIPTION LT5578 Demonstration circuit 1545A-x is a high linearity upconverting mixer featuring the LT5578. The LT 5578 is a high performance upconverting mixer IC optimized for output frequencies in

More information

Microwave. Accessories for Microwave Scalar and System Analyzers

Microwave.  Accessories for Microwave Scalar and System Analyzers Microwave Accessories for Microwave Scalar and System Analyzers The following optional accessories are designed for use with the 6200B series of Microwave Test Sets, the 6820 series Scalar Analyzers and

More information

Configuration of PNA-X, NVNA and X parameters

Configuration of PNA-X, NVNA and X parameters Configuration of PNA-X, NVNA and X parameters VNA 1. S-Parameter Measurements 2. Harmonic Measurements NVNA 3. X-Parameter Measurements Introducing the PNA-X 50 GHz 43.5 GHz 26.5 GHz 13.5 GHz PNA-X Agilent

More information

A Noise-Temperature Measurement System Using a Cryogenic Attenuator

A Noise-Temperature Measurement System Using a Cryogenic Attenuator TMO Progress Report 42-135 November 15, 1998 A Noise-Temperature Measurement System Using a Cryogenic Attenuator J. E. Fernandez 1 This article describes a method to obtain accurate and repeatable input

More information

VSWR MEASUREMENT APPLICATION NOTE ANV004.

VSWR MEASUREMENT APPLICATION NOTE ANV004. APPLICATION NOTE ANV004 Bötelkamp 31, D-22529 Hamburg, GERMANY Phone: +49-40 547 544 60 Fax: +49-40 547 544 666 Email: info@valvo.com Introduction: VSWR stands for voltage standing wave ratio. The ratio

More information

Overcoming Mixer Measurement Challenges

Overcoming Mixer Measurement Challenges Overcoming Mixer Measurement Challenges October 10, 2002 presented by: Robb Myer Dave Ballo Today we will be looking at overcoming measurements challenges associated with frequency translating devices

More information

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY 11788 hhausman@miteq.com Abstract Microwave mixers are non-linear devices that are used to translate

More information

Evaluating VNA post-calibration residual errors using the ripple technique at millimetre wavelengths in rectangular waveguide

Evaluating VNA post-calibration residual errors using the ripple technique at millimetre wavelengths in rectangular waveguide Evaluating VNA post-calibration residual errors using the ripple technique at millimetre wavelengths in rectangular waveguide Abstract C P Eiø and N M Ridler RF & Microwave Guided Wave Metrology Group,

More information

Millimeter Wave Product Catalogue VivaTech Consulting S.A.R.L.

Millimeter Wave Product Catalogue VivaTech Consulting S.A.R.L. VivaTech Consulting S.A.R.L. sales@vivatech.biz Telephone: +33 04 89 01 14 61 Fax: +33 04 93 87 08 66 Table of Contents Millimeter Wave Low Noise Amplifiers VTLNA Series...3 Millimeter Wave Power Amplifiers

More information

FieldFox Handheld Education Series Part 3: Calibration Techniques for Precise Field Measurements

FieldFox Handheld Education Series Part 3: Calibration Techniques for Precise Field Measurements FieldFox Handheld Education Series Part 3: Calibration Techniques for Precise Field Measurements FieldFox Handheld Education Series Interference Testing Cable and Antenna Measurements Calibration Techniques

More information

Vector Network Analysis

Vector Network Analysis Portfolio Brochure Vector Network Analysis Product Portfolio Vector Network Analysis VNA Innovation Timeline In 1965, Anritsu filed the patent that defined the first modern Vector Network Analyzer (VNA).

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A LT5517 Demonstration circuit 678A is a 40MHz to 900MHz Direct Conversion Quadrature Demodulator featuring the LT5517. The LT 5517 is a direct

More information

Development of high cost performance signal analyzer MS2830A -044/045

Development of high cost performance signal analyzer MS2830A -044/045 Development of high cost performance signal analyzer MS2830A -044/045 Yuji Kishi, Shuichi Matsuda, Koichiro Tomisaki, Kozo Yokoyama, Yoshiaki Yasuda, Tsukasa Yasui, Kota Kuramitsu [Summary] We have developed

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

Performance evaluation of two RF power limiters based on PIN diodes

Performance evaluation of two RF power limiters based on PIN diodes Performance evaluation of two RF power limiters based on PIN diodes Marta Bautista Durán, José A. López-Pérez December 2017 IT-CDT 2017-19 Observatorio de Yebes Apdo. 148, E-19080 Guadalajara SPAIN 1 1

More information

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources A Method for Gain over Temperature Measurements Using Two Hot Noise Sources Vince Rodriguez and Charles Osborne MI Technologies: Suwanee, 30024 GA, USA vrodriguez@mitechnologies.com Abstract P Gain over

More information

2-2 Power Meter Calibration Power Meter Calibration 1 (1 mw, 50 ohm)

2-2 Power Meter Calibration Power Meter Calibration 1 (1 mw, 50 ohm) esearch and evelopment of Calibration Technology - ower eter Calibration --1 ower eter Calibration 1 (1 mw, 50 ohm) Tsutomu UGIYAA, ojiro AAI, ouichi EBATA, Iwao NIHIYAA, and atsumi FUJII NICT performs

More information

Agilent 86030A 50 GHz Lightwave Component Analyzer Product Overview

Agilent 86030A 50 GHz Lightwave Component Analyzer Product Overview Agilent 86030A 50 GHz Lightwave Component Analyzer Product Overview 2 Characterize 40 Gb/s optical components Modern lightwave transmission systems require accurate and repeatable characterization of their

More information

and GHz. ECE Radiometer. Technical Description and User Manual

and GHz. ECE Radiometer. Technical Description and User Manual E-mail: sales@elva-1.com http://www.elva-1.com 26.5-40 and 76.5-90 GHz ECE Radiometer Technical Description and User Manual November 2008 Contents 1. Introduction... 3 2. Parameters and specifications...

More information

Keysight Technologies Accurate Mixer Measurements Using the ENA RF Networks Analyzers Frequency-Offset Mode. Application Note

Keysight Technologies Accurate Mixer Measurements Using the ENA RF Networks Analyzers Frequency-Offset Mode. Application Note Keysight Technologies Accurate Mixer Measurements Using the ENA RF Networks Analyzers Frequency-Offset Mode Application Note 1 Measurement Parameters of the Mixer The ENA FOM offers two advanced mixer

More information

Keysight Technologies mm-wave Source Modules from OML, Inc. for PSG Signal Generators. Technical Overview

Keysight Technologies mm-wave Source Modules from OML, Inc. for PSG Signal Generators. Technical Overview Keysight Technologies mm-wave Source Modules from OML, Inc. for PSG Signal Generators Technical Overview 02 Keysight mm-wave Source Modules from OML, Inc. for PSG Signal Generators - Technical Overview

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION TECHNICAL INFORMATION TECHNOLOGY Y-Junction circulator PORT 1 PORT 2 PORT 3 FIG. 1 The Y-junction circulator uses spinel ferrites or garnet ferrites in the presence of a magnetic bias field, to provide

More information

FREQUENCY MULTIPLIERS

FREQUENCY MULTIPLIERS MULTIPLIERS A series of broadband frequency multipliers is available with output frequencies between 18 and 110 GHz. The use of GaAs diodes on a suspended substrate circuit allows an extremely compact

More information

Keysight Technologies 10 Hints for Making Successful Noise Figure Measurements

Keysight Technologies 10 Hints for Making Successful Noise Figure Measurements Keysight Technologies 10 Hints for Making Successful Noise Figure Measurements Optimize Your Measurements and Minimize the Uncertainties Application Note 02 Keysight 10 Hints for Making Successful Noise

More information

Circuit Characterization with the Agilent 8714 VNA

Circuit Characterization with the Agilent 8714 VNA Circuit Characterization with the Agilent 8714 VNA By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1) To examine the concepts of reflection, phase shift, attenuation,

More information

Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz

Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz Focus Microwaves Inc. 277 Lakeshore Road Pointe-Claire, Quebec H9S-4L2, Canada Tel 514-630-6067 Fax 514-630-7466 Product Note No 2 Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz This note

More information

. /, , #,! 45 (6 554) &&7

. /, , #,! 45 (6 554) &&7 ! #!! % &! # ( )) + %,,. /, 01 2 3+++ 3, #,! 45 (6 554)15546 3&&7 ))5819:46 5) 55)9 3# )) 8)8)54 ; 1150 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 51, NO. 6, DECEMBER 2002 Effects of DUT

More information

Keysight Technologies Achieving Accurate E-band Power Measurements with E8486A Waveguide Power Sensors. Application Note

Keysight Technologies Achieving Accurate E-band Power Measurements with E8486A Waveguide Power Sensors. Application Note Keysight Technologies Achieving Accurate E-band Power Measurements with Waveguide Power Sensors Application Note Introduction The 60 to 90 GHz spectrum, or E-band, has been gaining more millimeter wave

More information

Return Loss Bridge Basics

Return Loss Bridge Basics 1.0 Introduction Return loss bridges have many useful applications for the two-way radio technician These bridges are particularly helpful when used with the tracking generator feature of many service

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #10 Microstrip Circuits and Measurements 1. Objective The objective of Experiment #8 is to investigate the application of microstrip technology. A precision

More information

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality Technical Overview with Self-Guided Demonstration, Option 219 The noise figure measurement personality, available on the Agilent

More information

Oblique incidence measurement setup for millimeter wave EM absorbers

Oblique incidence measurement setup for millimeter wave EM absorbers Oblique incidence measurement setup for millimeter wave EM absorbers Shinichiro Yamamoto a) and Kenichi Hatakeyama Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji-shi, Hyogo 671

More information

5G and mmwave Testing

5G and mmwave Testing 5G and mmwave Testing 5G and mmwave Testing The development and deployment of 5G technology is changing the way wireless carriers and internet service providers think about meeting the ever increasing

More information

Gain Lab. Image interference during downconversion. Images in Downconversion. Course ECE 684: Microwave Metrology. Lecture Gain and TRL labs

Gain Lab. Image interference during downconversion. Images in Downconversion. Course ECE 684: Microwave Metrology. Lecture Gain and TRL labs Gain Lab Department of Electrical and Computer Engineering University of Massachusetts, Amherst Course ECE 684: Microwave Metrology Lecture Gain and TRL labs In lab we will be constructing a downconverter.

More information

Contents. CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer

Contents. CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer This document contains the verification procedures for the National Instruments PXIe-5668R (NI 5668R) vector signal analyzer (VSA)

More information

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality Technical Overview with Self-Guided Demonstration Option 219 The noise figure measurement personality, available on the Agilent

More information

Frequency Doubler 4-8 GHz based on HMC204MS

Frequency Doubler 4-8 GHz based on HMC204MS Frequency Doubler 4-8 GHz based on HMC204MS Matthias, DD1US, December 2 nd 2018, Rev 2.0 Hello, recently, PCBs with the Hittite HMC204MS passive frequency doubler became available for very low cost on

More information

Compact Series: S5065 & S5085 Vector Network Analyzers KEY FEATURES

Compact Series: S5065 & S5085 Vector Network Analyzers KEY FEATURES Compact Series: S5065 & S5085 Vector Network Analyzers KEY FEATURES Frequency range: 9 khz - 6.5 or 8.5 GHz Measured parameters: S11, S12, S21, S22 Wide output power adjustment range: -50 dbm to +5 dbm

More information

Reconfigurable 6 GHz RF Vector Signal Transceiver with 1 GHz Bandwidth

Reconfigurable 6 GHz RF Vector Signal Transceiver with 1 GHz Bandwidth CALIBRATION PROCEDURE PXIe-5840 Reconfigurable 6 GHz RF Vector Signal Transceiver with 1 GHz Bandwidth This document contains the verification procedures for the PXIe-5840 vector signal transceiver. Refer

More information

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved Data Sheet SC5317 & SC5318A 6 GHz to 26.5 GHz RF Downconverter www.signalcore.com 2018 SignalCore, Inc. All Rights Reserved Definition of Terms 1 Table of Contents 1. Definition of Terms... 2 2. Description...

More information

Abstract: Stringent system specifications impose tough performance requirements on the RF and microwave cables used in aerospace and defense

Abstract: Stringent system specifications impose tough performance requirements on the RF and microwave cables used in aerospace and defense 1 Abstract: Stringent system specifications impose tough performance requirements on the RF and microwave cables used in aerospace and defense communication systems. With typical tools, it can be very

More information

Keysight Technologies 10 Hints for Making Successful Noise Figure Measurements

Keysight Technologies 10 Hints for Making Successful Noise Figure Measurements Keysight Technologies 10 Hints for Making Successful Noise Figure Measurements Application Note Optimize Your Measurements and Minimize the Uncertainties Introduction Noise figure is often the key to characterizing

More information

772D coaxial dual-directional coupler 773D coaxial directional coupler. 775D coaxial dual-directional coupler 776D coaxial dual-directional coupler

772D coaxial dual-directional coupler 773D coaxial directional coupler. 775D coaxial dual-directional coupler 776D coaxial dual-directional coupler 72 772D coaxial dual-directional coupler 773D coaxial directional coupler 775D coaxial dual-directional coupler 776D coaxial dual-directional coupler 777D coaxial dual-directional coupler 778D coaxial

More information

W-band vector network analyzer based on an audio lock-in amplifier * Abstract

W-band vector network analyzer based on an audio lock-in amplifier * Abstract SLAC PUB 7884 July 1998 W-band vector network analyzer based on an audio lock-in amplifier * R. H. Siemann Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309 Abstract The design

More information

Agilent 8510 Network Analyzer Product Note A

Agilent 8510 Network Analyzer Product Note A Agilent 8510 Network Analyzer Product Note 8510-7A Discontinued Product Information For Support Reference Only Information herein, may refer to products/services no longer supported. We regret any inconvenience

More information

Shielding Effectiveness Summary Results for RadiaShield Technologies, Inc. RadiaShield Fabric

Shielding Effectiveness Summary Results for RadiaShield Technologies, Inc. RadiaShield Fabric Test Date(s): July 9 through July 19, 2010 UST Project Number: 10-0164 Summary Results for Product Description The Sample Under Test (SUT) is the. The SUT is a textile which is used as a protective shield

More information

Emission of mm-wave and THz Scanners

Emission of mm-wave and THz Scanners Emission of mm-wave and THz Scanners Thomas Kleine-Ostmann Working Group 2.21 Electromagnetic Fields and Antenna Measuring Techniques THz Security Workshop Davos, Switzerland, 29 th May, 2015 1 Content

More information

10 Hints for Making Successful Noise Figure Measurements

10 Hints for Making Successful Noise Figure Measurements 10 Hints for Making Successful Noise Figure Measurements Application Note 57-3 Our products help you see all types noise so that you can minimize its impact on your product. Table of Contents Introduction...

More information

SSB0260A Single Sideband Mixer GHz

SSB0260A Single Sideband Mixer GHz Single Sideband Mixer.2 6. GHz FEATURES LO/RF Frequency: Input IP3: Sideband Suppression: LO Leakage: LO Power: DC Power:.2 6. GHz +32 dbm -45 dbc (Typical) -5 dbm (Typical) -1 to +1 dbm +5V @ 5 ma DESCRIPTION

More information

Analysis of RF transceivers used in automotive

Analysis of RF transceivers used in automotive Scientific Bulletin of Politehnica University Timisoara TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Volume 60(74), Issue, 0 Analysis of RF transceivers used in automotive Camelia Loredana Ţeicu Abstract

More information

Frequency Doubler 3,2 6,4 GHz to 6,2 12,8 GHz based on HMC204MS

Frequency Doubler 3,2 6,4 GHz to 6,2 12,8 GHz based on HMC204MS Frequency Doubler 3,2 6,4 GHz to 6,2 12,8 GHz based on HMC204MS Matthias, DD1US, January 4 th 2018, Rev 3.0 Hello, as I just finished refurbishing a R&S SMIQ06 signal generator, which covers the frequency

More information

Agilent 8360B/8360L Series Synthesized Swept Signal/CW Generators 10 MHz to 110 GHz

Agilent 8360B/8360L Series Synthesized Swept Signal/CW Generators 10 MHz to 110 GHz Agilent 8360B/8360L Series Synthesized Swept Signal/CW Generators 10 MHz to 110 GHz ity. l i t a ers V. n isio c e r P. y t i l i ib Flex 2 Agilent 8360 Synthesized Swept Signal and CW Generator Family

More information

Page 2 of 20. Table of contents. Page

Page 2 of 20. Table of contents. Page Page 2 of 20 Table of contents Page 1. Summary of Test... 3 1.1 Purpose of test... 3 1.2 Standards... 3 1.3 List of applied test to the EUT... 3 1.4 Modification to the EUT by laboratory... 3 2. Equipment

More information

HP Archive. This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web!

HP Archive. This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web! HP Archive This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web! On-line curator: Glenn Robb This document is for FREE distribution only!

More information

E-series E9300 Average Power Sensor Specifications

E-series E9300 Average Power Sensor Specifications E-series E9300 Average Power Sensor Specifications The E-series E9300 wide dynamic range, average power sensors are designed for use with the EPM family of power meters. These specifications are valid

More information

PLANAR 814/1. Vector Network Analyzer

PLANAR 814/1. Vector Network Analyzer PLANAR 814/1 Vector Network Analyzer Frequency range: 100 khz 8 GHz Measured parameters: S11, S12, S21, S22 Wide output power range: -60 dbm to +10 dbm >150 db dynamic range (1 Hz IF bandwidth) Direct

More information

High-Speed Optical Modulators and Photonic Sideband Management

High-Speed Optical Modulators and Photonic Sideband Management 114 High-Speed Optical Modulators and Photonic Sideband Management Tetsuya Kawanishi National Institute of Information and Communications Technology 4-2-1 Nukui-Kita, Koganei, Tokyo, Japan Tel: 81-42-327-7490;

More information

5 ESSENTIAL HINTS TO IMPROVE Millimeter-wave Network Analysis

5 ESSENTIAL HINTS TO IMPROVE Millimeter-wave Network Analysis 5 ESSENTIAL HINTS TO IMPROVE Millimeter-wave Network Analysis Contents 5 Essential Hints to Improve Millimeter-wave Network Analysis Ensure Accurate, Repeatable Results Go to Hint 1 > Calibrate for Better

More information

Improving Amplitude Accuracy with Next-Generation Signal Generators

Improving Amplitude Accuracy with Next-Generation Signal Generators Improving Amplitude Accuracy with Next-Generation Signal Generators Generate True Performance Signal generators offer precise and highly stable test signals for a variety of components and systems test

More information

Lightning D Vector Network Analyzers. Network Analysis Solutions for Design and Manufacturing. 40 MHz to 65 GHz

Lightning D Vector Network Analyzers. Network Analysis Solutions for Design and Manufacturing. 40 MHz to 65 GHz Lightning 37000D Vector Network Analyzers 40 MHz to 65 GHz Network Analysis Solutions for Design and Manufacturing Vector Network Analyzers that offer... The 37000D Lightning Vector Network Analyzers are

More information

1 Hines Rd. Ottawa, Ontario K2K 3C7. PCS Low Power Repeater. 303 River Road, R.R. 5 Ottawa, Ontario K1V 1H2. Authorized By:

1 Hines Rd. Ottawa, Ontario K2K 3C7. PCS Low Power Repeater. 303 River Road, R.R. 5 Ottawa, Ontario K1V 1H2. Authorized By: Test Report: 3W06968 Applicant: Spotwave Wireless Inc. 1 Hines Rd. Ottawa, Ontario K2K 3C7 Equipment Under Test: (EUT) SpotCell 111/112 CU PCS Low Power Repeater In Accordance With: FCC Part 24, Subpart

More information

Contents. CALIBRATION PROCEDURE NI PXIe-5698

Contents. CALIBRATION PROCEDURE NI PXIe-5698 CALIBRATION PROCEDURE NI PXIe-5698 This document contains the verification and adjustment procedures for the National Instruments PXIe-5698 (NI 5698). See ni.com/calibration for more information about

More information

Harmonic Mixer. R&S FS-Z90 (40 GHz to 60 GHz) R&S FS-Z60 R&S FS-Z75. R&S FS-Z110 (50 GHz to 75 GHz) Operating Manual. (60 GHz to 90 GHz)

Harmonic Mixer. R&S FS-Z90 (40 GHz to 60 GHz) R&S FS-Z60 R&S FS-Z75. R&S FS-Z110 (50 GHz to 75 GHz) Operating Manual. (60 GHz to 90 GHz) Operating Manual Harmonic Mixer R&S FSZ60 R&S FSZ90 ( GHz to 60 GHz) (60 GHz to 90 GHz) 1089.0799.02 1089.0899.02 R&S FSZ75 R&S FSZ110 (50 GHz to 75 GHz) (75 GHz to 110 GHz) 1089.0847.02 1089.0947.04 Printed

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR 304/1 DATA SHEET Frequency range: 300 khz to 3.2 GHz Measured parameters: S11, S21, S12, S22 Dynamic range of transmission measurement magnitude: 135 db Measurement time

More information

FREQUENCY MULTIPLIERS

FREQUENCY MULTIPLIERS FREQUENCY MULTIPLIERS ISO 9001 REGISTERED COMPANY PASSIVE AND ACTIVE Doublers Triplers Higher-Order Products TABLE OF CONTENTS CONTENTS PAGE INTRODUCTION 2 TECHNICAL OVERVIEW 2 Technical Discussion 3 Design

More information

What s inside. Highlights. Welcome. Mixer test third in a series. New time-domain technique for measuring mixer group delay

What s inside. Highlights. Welcome. Mixer test third in a series. New time-domain technique for measuring mixer group delay What s inside 2 New time-domain technique for measuring mixer group delay 3 Uncertainty in mixer group-delay measurements 5 Isolation a problem? Here s how to measure mixer group delay 6 Low-power mixer

More information

Contents. CALIBRATION PROCEDURE NI PXIe GHz and 14 GHz RF Vector Signal Analyzer

Contents. CALIBRATION PROCEDURE NI PXIe GHz and 14 GHz RF Vector Signal Analyzer CALIBRATION PROCEDURE NI PXIe-5665 3.6 GHz and 14 GHz RF Vector Signal Analyzer This document contains the verification procedures for the National Instruments PXIe-5665 (NI 5665) RF vector signal analyzer

More information

A 600 GHz Varactor Doubler using CMOS 65nm process

A 600 GHz Varactor Doubler using CMOS 65nm process A 600 GHz Varactor Doubler using CMOS 65nm process S.H. Choi a and M.Kim School of Electrical Engineering, Korea University E-mail : hyperleonheart@hanmail.net Abstract - Varactor and active mode doublers

More information

Keysight Technologies Noise Figure Measurement Accuracy: The Y-Factor Method

Keysight Technologies Noise Figure Measurement Accuracy: The Y-Factor Method Keysight Technologies Noise Figure Measurement Accuracy: The Y-Factor Method Application Note 1.6 1.4 Measurement uncertainty (db) 1.2 1 0.8 0.6 0.4 0.2 0 DUT noise figure (db) 2 4 6 30 25 20 DUT gain

More information

Signal Generator Extension Modules Operational Manual

Signal Generator Extension Modules Operational Manual 216 Signal Generator Extension Modules Operational Manual 979 Second Street SE, Suite 39 Charlottesville, VA 2292-6172 (USA) Tel: 434.297.327; Fax: 434.297.328 www.vadiodes.com 21 Virginia Diodes, Inc

More information

On site RF troubleshooting for installation and maintenance

On site RF troubleshooting for installation and maintenance On site RF troubleshooting for installation and maintenance Measure of interferers, high power for microwave links or low power for Base Stations uplink Troubleshooting of cables, or waveguides, and antennas

More information

S-Parameter Measurements with the Bode 100

S-Parameter Measurements with the Bode 100 Page 1 of 10 with the Bode 100 Page 2 of 10 Table of Contents 1 S-Parameters...3 2 S-Parameter Measurement with the Bode 100...4 2.1 Device Setup...4 2.2 Calibration...5 2.3 Measurement...7 2.3.1 S11 and

More information

Optimize Your Measurements and Minimize the Uncertainties

Optimize Your Measurements and Minimize the Uncertainties 10 Hints for Making Successful Noise Figure Measurements Application Note Optimize Your Measurements and Minimize the Uncertainties Table of Contents Introduction... 3 HINT 1: Select the Appropriate Noise

More information