The software developed for DC motor speed control system provides the user interface to

Size: px
Start display at page:

Download "The software developed for DC motor speed control system provides the user interface to"

Transcription

1 5.1 Introduction The software developed for DC motor speed control system provides the user interface to enter the set point, tune controller parameters by using the Matrix type keypad and display the P,PI, and PID logic controller parameter values and key variables like measured speed, set point speed in RPM etc., on Liquid Crystal Display. The complete software is divided into three major parts viz., Measurement, Control and Display. Besides the three major tasks of measurement, control and display, the software first declares and initializes all program variables, constants, and functions. The software then enters the measurement control programs and display them. In measurement, the software acquires the voltage proportional to the speed of the DC motor through A/D converter, substitutes it into the liner equation of the curve between frequency and voltage to find the frequency and hence the actual speed in RPM, and displays it on the LCD. On other hand in control, the software computes the error and change-in-error and applies them to one of the control algorithms P, PI, and PID to generate the control action. Since control action is a digital value, the software sends through D/A converter to get it converted to analog voltage to enable outside world understand the analog signal as the actuating signal for final control element. 121

2 The following section describes the software development for Proportional [P], Proportional plus Integral[PI], and Proportional plus Integral plus Derivate[PID] logics for DC motor speed control system and implementation of P, PI, and PID logic controllers in C language in detail. The necessary algorithm, flowchart and C language programs, software features and C-cross compiler are presented and thoroughly discussed. 5.2 C -Language Cross Compilers In the present market there are a number of cross compilers available like Keil s-ide, Silicon-Laboratory IDE, Cygnal IDE and Ride-IDE etc. The developed tools allow the user to efficiently develop and debug application code. The C programming language and standard libraries are altered or enhanced to address the peculiarities of an embedded target processor. The C programming language is a general-purpose programming language that provides code efficiency elements of structured programming and a rich set of operations. Its generality combined with its absence of restrictions, makes C a convenient and effective programming solution for a wide variety of software tasks. Many applications can be solved more easily and efficiently with C than with other more specialized languages. The compiler offers a number of control directives, which are used to control compilation. Directivities are composed of one or more letters or digits and, unless otherwise specified, can be specified after the filename on the command line or within a source file. 122

3 The program consists of all control directives such as Symbols, Code, and Debug. The DEBUG directive instructs the compiler to include debugging information in the object file. By default debugging, information is excluded from the generated object file. Debug information is necessary for the symbolic testing of programs. This information contains both global and local variable definition and their addresses, as well as function names and their line numbers. Debug information contained in each object module remains valid through the link/locate procedure. This information may be used by the p Vision2 debugger or by any of the Intel-compatible emulators. In the present study, Keil and Si-Lab IDE compilers are used to develop C code for D.C motor speed control. The two C- compilers are optimizing C compiler, which is a complete implementation of the American National standard institute (ANSI) standard for the C language. The Keil and Si-Lab is a ground-up implementation dedicated to generating extremely fast and compact code for the 8051 Microcontroller. The Si-Lab.IDE supports lx, 2x, 3x and 4x Cygnal Microcontrollers and Keil IDE p version is used for simulation purpose. The Keil IDE simulation supports the microcontrollers such as Atmel, Philips, Motorola, Dolphin, Cygnal, Analog devices, Maxim, and Intel etc. 5.3 Experimental Implementation The experimental implementation of the three controllers such as P, PI and PID logic speed controllers for DC motor is accomplished by developing the necessary software for the hardware. The control algorithms are realized on Cygnal Microcontroller using C language in C-cross compiler Si-Lab IDE. The following discussion epitomizes the 123

4 design methodology of P, PI and PID logic controllers for fhe proposed system. The controller provides the reasonable tracking of the motor speed to a pre-specified reference speed [1]. The sensing optocupler and D.C motor arranged properly and it is interfaced with Cygnal microcontroller. The microcontroller acquires the voltage proportional to the speed of the motor through built-in 12-bit A/D converter and substitutes in a wellcalibrated equation to evaluate the actual speed of the motor. The frequency versus voltage (acquired by the Microcontroller) plot is fitted to the following linear equation using MATLAB [2]. Frequency= (vl )/( ) where vl is the voltage acquired by the microcontroller. From the above equation, the speed in RPM is calculated as follows, Speed = (Frequency *1/P)*60 RPM where P represents the number of pluses per one rotation of disk. After evaluation of the speed, the Cygnal microcontroller determines the error (reference speed - measured speed) and change in error (present error - previous error), and applies to P, PI and PID control algorithms. The necessary variables are used in CTanguage to calculate the error and implementing P, PI, and PID logics with the help of Silicon Laboratory IDE C-cross compiler. 124

5 5.3. a. Design of P, PI, and PID speed controllers The basics of the P, PI, and PID controller are already discussed in chapter 1. The designing of mathematical expression for P, PI, and PID controls is presented below Proportional control [P] The most common controller action used in process control is one or a combination of continuous controller modes. In these modes, the output of the controller changes smoothly in response to the error or rate of changes of error. The natural extension of this concept is the proportional mode, where a smooth, linear relationship exists between the controller output and the error. Thus, over some range of error about the set point, each value of error has a unique value of controller output in one-to-one correspondence. The Proportional mode is expressed by P=Kpep where ep= en-e.i Kp=proportional gain ep= error (set point value-measured value) Vn ~ Vn-l + Kp (e - en-i) where, Kp is proportional constant Vn_i is the previous control action en, en.i are the present and previous errors respectively 125

6 Proportional plus Integral [PI] In the proportional mode error occurs because the controller cannot adapt to changing external conditions i.e. changing loads. In other words, the zero error output is a fixed value. The integral mode eliminates this problem by allowing the controller to adapt to changing external conditions by changing the zero-error output. The need for integral action is to it is correct the proportional error as the error does not go to zero in time. PI is a combination of the proportional mode and the integral mode, the analytical expression of PI is P=Kp[ep + Ki 1 epdt] Vn = V _i + Kp (e - e -i) + IQ en T where, Kp, and Kj are proportional, and integral constants Vn.i is the previous control action en, e,,.] are the present and previous errors respectively cycle time T is equal to 1 Proportional plus Integral plus Derivate [PID] One of the most powerful controller operation which combines the proportional, integral and derivate mode. This system can be used for virtually for any process condition. The analytical expression of PID logic for speed control is P=Kp[ep+Kjepdt + K,! dep/dt] 126

7 The well known the mathematical expression for the velocity type PID controller is given as [3-7], Vn= Vn-1 + Kp (e,, - e 4) + K; e T+ Kd/T [(en - 2en.i + en-2)] The above equation representing the velocity algorithm is modified into improved PID difference equation by using trapezoidal rule and interpolation technique that is given by the following equation. V = Vn., + Kp (en - Cn-i) + Ki (e + enj)/2t + K4/6T [(e - 2en_, - 6en.2 + 2en.3 + 2e d)] where, Kp, Kj and Kj are proportional, integral and derivative constants respectively Vn.i is the previous control action e, en-i are the present and previous errors respectively en-2, en-3, and en-4 are previous to previous errors In the present application, the best-tuned Kp, Kj, and Kd values are found to be equal to 68.8, 0.41, and 5.0 respectively and cycle time T is equal to Flowchart of the Proportional Program [P] The flowchart is so drawn that it is self-explanatory and gives the complete idea of how computer sequentially does the different steps involved in measurement and control. The flowchart of Cygnal Microcontroller based Proportional control for DC motor speed control system is shown in Fig to and Fig

8 START Fig Flowchart of the Cygnal Microcontroller based Proportional [P] logic for DC motor speed control system 128

9 (a) (c) Fig A/D conversion (b) P computation and (c) D/A conversion routines 129

10 START i Initialization of all variables and function ofuarto, 12-bit ADC, 12-bit DAC and system clock Displayed set point, P, I values On LCD User enters to set point speed, Kp and press the Start key Read the current speed of D.C motor from F/V converter through 12 A/D converter......i... Computing the speed in RPM Frequency = (vl )/( ) Speed = (Frequency* 60)/12 in RPM and speed value stored in to memory 1 r Compute the error (en= set-point spee d - measured) 'r Fig Flowchart of the Cygnal Microcontroller based Proportional plus integral Program [PI] for logic DC motor speed control system 130

11 (a) (c) Fig A/D conversion (b) PI computation and (c) D/A conversion routines 131

12 START Fig Flowchart of the Cygnal Microcontroller based Proportional plus Integral plus Derivative Program [PIDJ for logic DC motor speed control system 132

13 (a) (c) Fig A/D conversion (b) PID computation and (c) D/A conversion routines 133

14 5.5 Pseudo code The following steps are involved in the controlling of D.C motor speed 1. All the parameters P or Kp and speed of the D.C motor are displayed on LCD. 2. Press Enter or SET function key after the user enters the SP (set point of the D.C motor speed in RPM), and control variables (Kp,Ki and Kd). After entering into the each value pressing Set, then the value is stored into the corresponding variable 3. Otherwise default values are stored in the corresponding variables. 4. The motor is not run until Start key is pressed. 5. The present speed voltage is read with the help of built-in 12-bit DAC, external F/V converter, and opto-coupler in the digital format. 6. The speed value is applied into the frequency equation, then frequency is converted to Speed in RPM unit and stored into the RAM memory and the error is computed and control action (P or PI or PID) is performed. 7. The calculated action (error correction) value is sent through built-in ADC and external PWM and Darlington pair, etc. 8. Again the 5th step to 7th step is repeated until the set time is reached (counter) 9. The speed data is stored in RAM memory and is sent to Personal Computer to investigate the speed performance for control action in graphical format. 10. The first step (main program) is repeated again and the cycle continued. 134

15 References [1] M. S. Mostafa, M. A. EI-Bardini, S. M. Sharaf, and M. M. Sharaf, Fuzzy neural networks for identification and control of dc drive systems, in Proc. of IEEE Int. Conf. on Control Applications, pp , [2] William J. Palm, Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, 2nd ed., [3] Neil Munro, The systematic design of PID controllers, IEE Colloquium of Symbolic Computation for Control, pp ,17 June [4] K. J. Astrom and T. Hagglund, Automatic Tuning of PID Controllers, in: The Control Handbook, Ed. W. S. Levine, IEEE Press, pp , [5] Ibrahim Kaya, Nusret Tan, and Derek P. Atherton, A simple procedure for improving performance of PID controllers, IEEE Proceedings on Int. Conf. on Control Applications, vol. 2, pp , [6] Jose L.. Tong and James P. Bobis, A model for designing digital PID controllers, IEEE Proc., pp , [7] Nusret Tan, Ibrahim Kaya, and Derek P. Atherton, Computation of stabilizing PI and PID controllers, IEEE Proc. of Int. Conf. on Control Applications, vol, 2, pp , June [8] P. Bhaskar, Parvathi C.S., L. Shrimanth Sudheer, and A. B. Kulkami, Computer based DC micromotor speed control system, J. Instrum. Soc. India, vol. 34, no. 4, pp ,

16 [9] Jose L. Tong and James P. Bobis, A model for designing digital PID controllers, IEEE Proc., pp ,1992. [10] Farzan Rashidi', Mehran Rashidi: and Arash Hashemi-Hoseinit, Speed Regulation of DC Motors Using Intelligent Controllers, IEEE, pp ,2003. [11] Y. S. Ettomi, S. B. M. Noor, S. M.'Bashi and M. k. Hassan, Micro Controller Based AdjustableClosed-Loop DC Motor Speed Controller,IEEE, pp

Project Proposal. Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen

Project Proposal. Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen Project Proposal Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen Advisor Dr. Gary Dempsey Bradley University Department of Electrical Engineering December

More information

Design and Simulation of PID Controller using FPGA

Design and Simulation of PID Controller using FPGA IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Design and Simulation of PID Controller using FPGA Ankur Dave PG Student Department

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 2, February -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 SIMULATION

More information

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS M.LAKSHMISWARUPA 1, G.TULASIRAMDAS 2 & P.V.RAJGOPAL 3 1 Malla Reddy Engineering College,

More information

Total Hours Registration through Website or for further details please visit (Refer Upcoming Events Section)

Total Hours Registration through Website or for further details please visit   (Refer Upcoming Events Section) Total Hours 110-150 Registration Q R Code Registration through Website or for further details please visit http://www.rknec.edu/ (Refer Upcoming Events Section) Module 1: Basics of Microprocessor & Microcontroller

More information

Lab 23 Microcomputer-Based Motor Controller

Lab 23 Microcomputer-Based Motor Controller Lab 23 Microcomputer-Based Motor Controller Page 23.1 Lab 23 Microcomputer-Based Motor Controller This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing,

More information

Real-Time Angular Position Control of a Faulhaber DC Micromotor through MATLAB

Real-Time Angular Position Control of a Faulhaber DC Micromotor through MATLAB International Journal of Electronics Engineering, 4 (1), 2012, pp. 103 107 Serials Publications, ISSN : 0973-7383 Real-Time Angular Position Control of a Faulhaber DC Micromotor through MATLAB Manjunatha

More information

An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model

An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model Akshay Dhanda 1 and Dharam Niwas 2 1 M. Tech. Scholar, Indus Institute of Engineering and Technology,

More information

Speed Control of the DC Motor through Temperature Variations using Labview and Aurdino

Speed Control of the DC Motor through Temperature Variations using Labview and Aurdino Proc. of Int. Conf. on Current Trends in Eng., Science and Technology, ICCTEST Speed Control of the DC Motor through Temperature Variations using Labview and Aurdino Vineetha John Tharakan 1 and Jai Prakash

More information

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:02 38 Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm Shahrizal Saat 1 *, Mohd Nabil

More information

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING 83 PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING B L Chua 1, F.S.Tai 1, N.A.Aziz 1 and T.S.Y Choong 2 1 Department of Process and Food Engineering, 2 Department of Chemical and Environmental

More information

Application Note #2442

Application Note #2442 Application Note #2442 Tuning with PL and PID Most closed-loop servo systems are able to achieve satisfactory tuning with the basic Proportional, Integral, and Derivative (PID) tuning parameters. However,

More information

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card N. KORONEOS, G. DIKEAKOS, D. PAPACHRISTOS Department of Automation Technological Educational Institution of Halkida Psaxna 34400,

More information

Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement

Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement Fong Mak, Ram Sundaram, Varun Santhaseelan, and Sunil Tandle Gannon University, mak001@gannon.edu,

More information

Design of an electronic platform based on FPGA-DSP for motion control applications

Design of an electronic platform based on FPGA-DSP for motion control applications Design of an electronic platform based on FPGA-DSP for motion control applications Carlos Torres-Hernandez, Juvenal Rodriguez-Resendiz, Universidad Autónoma de Querétaro Cerro de Las Campanas, s/n, Las

More information

Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW

Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW Komal Sampatrao Patil & D.R.Patil Electrical Department, Walchand college of Engineering, Sangli E-mail :

More information

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model Sumit 1, Ms. Kajal 2 1 Student, Department of Electrical Engineering, R.N College of Engineering, Rohtak,

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Control System for a Segway

Control System for a Segway Control System for a Segway Jorge Morantes, Diana Espitia, Olguer Morales, Robinson Jiménez, Oscar Aviles Davinci Research Group, Militar Nueva Granada University, Bogotá, Colombia. Abstract In order to

More information

Resistance Furnace Temperature Control System Based on OPC and MATLAB

Resistance Furnace Temperature Control System Based on OPC and MATLAB 569257MAC0010.1177/0020294015569257Resistance Furnace Temperature Control System Based on and MATLABResistance Furnace Temperature Control System Based on and MATLAB research-article2015 Themed Paper Resistance

More information

Fundamentals of Industrial Control

Fundamentals of Industrial Control Fundamentals of Industrial Control 2nd Edition D. A. Coggan, Editor Practical Guides for Measurement and Control Preface ix Contributors xi Chapter 1 Sensors 1 Applications of Instrumentation 1 Introduction

More information

Design and implementation of GSM based and PID assisted speed control of DC motor

Design and implementation of GSM based and PID assisted speed control of DC motor Design and implementation of GSM based and PID assisted speed control of DC motor Prithviraj Shetti 1, Shital S. Bhosale 2, Amrut Ubare 3 Lecturer, Dept. of ECE, Ashokrao Mane Polytechnic, Wathar, Kolhapur-416

More information

Controlling an AC Motor

Controlling an AC Motor Controlling an AC Motor Elias Badillo Ibarra James Smith December 7, 2010 EE 554 Embedded Control Systems Abstract The goal of this project was to implement a PID motor controller to control velocity in

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

Speed Control of BLDC Motor Using FPGA

Speed Control of BLDC Motor Using FPGA Speed Control of BLDC Motor Using FPGA Jisha Kuruvilla 1, Basil George 2, Deepu K 3, Gokul P.T 4, Mathew Jose 5 Assistant Professor, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam,

More information

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW Hare Ram Jha,

More information

PID Controller tuning and implementation aspects for building thermal control

PID Controller tuning and implementation aspects for building thermal control PID Controller tuning and implementation aspects for building thermal control Kafetzis G. (Technical University of Crete) Patelis P. (Technical University of Crete) Tripolitakis E.I. (Technical University

More information

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller Philip A. Adewuyi Mechatronics Engineering Option, Department of Mechanical and Biomedical Engineering, Bells University

More information

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO B. Udaya Kumar 1, Dr. M. Ramesh Patnaik 2 1 Associate professor, Dept of Electronics and Instrumentation,

More information

ISSN Vol.05,Issue.01, January-2017, Pages:

ISSN Vol.05,Issue.01, January-2017, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.05,Issue.01, January-2017, Pages:0028-0032 Digital Control Strategy for Four Quadrant Operation of Three Phase BLDC Motor with Load Variations MD. HAFEEZUDDIN 1, KUMARASWAMY

More information

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station RESEARCH ARTICLE OPEN ACCESS Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station Shaunak Chakrabartty 1, Dr.I.Thirunavukkarasu 2 And Mukul Kumar Shahi 3 1 Department

More information

Implementation of Conventional and Neural Controllers Using Position and Velocity Feedback

Implementation of Conventional and Neural Controllers Using Position and Velocity Feedback Implementation of Conventional and Neural Controllers Using Position and Velocity Feedback Expo Paper Department of Electrical and Computer Engineering By: Christopher Spevacek and Manfred Meissner Advisor:

More information

Microcontroller Based Closed Loop Speed and Position Control of DC Motor

Microcontroller Based Closed Loop Speed and Position Control of DC Motor International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-3, Issue-5, June 2014 Microcontroller Based Closed Loop Speed and Position Control of DC Motor Panduranga Talavaru,

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

A Do-and-See Approach for Learning Mechatronics Concepts

A Do-and-See Approach for Learning Mechatronics Concepts Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 2018 Paper No. 124 DOI: 10.11159/cdsr18.124 A Do-and-See Approach for

More information

OverLoad Protection using Microprocessor based OverVoltage Relay:Proteous Simulation

OverLoad Protection using Microprocessor based OverVoltage Relay:Proteous Simulation OverLoad Protection using Microprocessor based OverVoltage Relay:Proteous Simulation Paruchuri Anwitha Electrical and Electronics Department Chaitanya Bharathi Institute of Technology Gandipet, Hyderabad,

More information

IN MANY industrial applications, ac machines are preferable

IN MANY industrial applications, ac machines are preferable IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 111 Automatic IM Parameter Measurement Under Sensorless Field-Oriented Control Yih-Neng Lin and Chern-Lin Chen, Member, IEEE Abstract

More information

An Expert System Based PID Controller for Higher Order Process

An Expert System Based PID Controller for Higher Order Process An Expert System Based PID Controller for Higher Order Process K.Ghousiya Begum, D.Mercy, H.Kiren Vedi Abstract The proportional integral derivative (PID) controller is the most widely used control strategy

More information

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller Sukumar Kamalasadan Division of Engineering and Computer Technology University of West Florida, Pensacola, FL, 32513

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM J. Arulvadivu, N. Divya and S. Manoharan Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, Tamilnadu,

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS 1 RAKSHA A R, 2 KAVYA B, 3 PRAVEENA ANAJI, 4 NANDESH K N 1,2 UG student, 3,4 Assistant Professor Department of

More information

New PID Tuning Rule Using ITAE Criteria

New PID Tuning Rule Using ITAE Criteria New PID Tuning Rule Using ITAE Criteria Ala Eldin Abdallah Awouda Department of Mechatronics and Robotics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, 83100, Malaysia rosbi@fke.utm.my

More information

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr.

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr. Observer-based Engine Cooling Control System (OBCOOL) Project Proposal Students: Andrew Fouts & Kurtis Liggett Advisor: Dr. Gary Dempsey Date: December 09, 2010 1 Introduction Control systems exist in

More information

Modeling, Simulation and Implementation of Speed Control of DC Motor Using PIC 16F877A

Modeling, Simulation and Implementation of Speed Control of DC Motor Using PIC 16F877A Modeling, Simulation and Implementation of Speed Control of DC Motor Using PIC 16F877A Payal P.Raval 1, Prof.C.R.mehta 2 1 PG Student, Electrical Engg. Department, Nirma University, SG Highway, Ahmedabad,

More information

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC Puran Lal 1, Mainak Roy 2 1 M-Tech (EL) Student, 2 Assistant Professor, Department of EEE, Lingaya s University, Faridabad, (India) ABSTRACT

More information

Peripheral Link Driver for ADSP In Embedded Control Application

Peripheral Link Driver for ADSP In Embedded Control Application Peripheral Link Driver for ADSP-21992 In Embedded Control Application Hany Ferdinando Jurusan Teknik Elektro Universitas Kristen Petra Siwalankerto 121-131 Surabaya 60236 Phone: +62 31 8494830, fax: +62

More information

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control Goals for this Lab Assignment: 1. Design a PD discrete control algorithm to allow the closed-loop combination

More information

Embedded based Automation System for Industrial Process Parameters

Embedded based Automation System for Industrial Process Parameters Embedded based Automation System for Industrial Process Parameters Godhini Prathyusha 1 Lecturer, Department of Physics (P.G), Govt.Degree College, Anantapur, Andhra Pradesh, India 1 ABSTRACT: Automation

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout Linear Motion Servo Plants: IP01 or IP02 Linear Experiment #0: Integration with WinCon IP01 and IP02 Student Handout Table of Contents 1. Objectives...1 2. Prerequisites...1 3. References...1 4. Experimental

More information

DC Motor Speed Control using Artificial Neural Network

DC Motor Speed Control using Artificial Neural Network International Journal of Modern Communication Technologies & Research (IJMCTR) ISSN: 2321-0850, Volume-2, Issue-2, February 2014 DC Motor Speed Control using Artificial Neural Network Yogesh, Swati Gupta,

More information

DSP BASED SYSTEM FOR SYNCHRONOUS GENERATOR EXCITATION CONTROLL

DSP BASED SYSTEM FOR SYNCHRONOUS GENERATOR EXCITATION CONTROLL DSP BASED SYSTEM FOR SYNCHRONOUS GENERATOR EXCITATION CONTROLL N. Bulic *, M. Miletic ** and I.Erceg *** Faculty of electrical engineering and computing Department of Electric Machines, Drives and Automation,

More information

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 130 CHAPTER 6 CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 6.1 INTRODUCTION Vibration control of rotating machinery is tougher and a challenging challengerical technical problem.

More information

Homework 9: Software Design Considerations

Homework 9: Software Design Considerations Homework 9: Software Design Considerations Team Code Name: Treasure Chess Group No. 2 Team Member Completing This Homework: Parul Schroff E-mail Address of Team Member: pschroff @ purdue.edu Evaluation:

More information

DMCode-MS(BL) MATLAB Library

DMCode-MS(BL) MATLAB Library Technosoft is a Third Party of Texas Instruments supporting the TMS320C28xx and TMS320F24xx DSP controllers of the C2000 family To help you get your project started rapidly, Technosoft offers the DMCode-MS(BL)

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

EE 308 Spring Preparation for Final Lab Project Simple Motor Control. Motor Control

EE 308 Spring Preparation for Final Lab Project Simple Motor Control. Motor Control Preparation for Final Lab Project Simple Motor Control Motor Control A proportional integral derivative controller (PID controller) is a generic control loop feedback mechanism (controller) widely used

More information

Fuzzy Logic Based Speed Control System Comparative Study

Fuzzy Logic Based Speed Control System Comparative Study Fuzzy Logic Based Speed Control System Comparative Study A.D. Ghorapade Post graduate student Department of Electronics SCOE Pune, India abhijit_ghorapade@rediffmail.com Dr. A.D. Jadhav Professor Department

More information

DESIGN OF INTELLIGENT PID CONTROLLER BASED ON PARTICLE SWARM OPTIMIZATION IN FPGA

DESIGN OF INTELLIGENT PID CONTROLLER BASED ON PARTICLE SWARM OPTIMIZATION IN FPGA DESIGN OF INTELLIGENT PID CONTROLLER BASED ON PARTICLE SWARM OPTIMIZATION IN FPGA S.Karthikeyan 1 Dr.P.Rameshbabu 2,Dr.B.Justus Robi 3 1 S.Karthikeyan, Research scholar JNTUK., Department of ECE, KVCET,Chennai

More information

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Vivek Kumar Bhatt 1, Dr. Sandeep Bhongade 2 1,2 Department of Electrical Engineering, S. G. S. Institute of Technology

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Performance Evaluation of Negative Output Multiple Lift-Push-Pull Switched Capacitor Luo Converter

Performance Evaluation of Negative Output Multiple Lift-Push-Pull Switched Capacitor Luo Converter Australian Journal of Basic and Applied Sciences, 1(12) July 216, Pages: 126-13 AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 239-8414 Journal home page: www.ajbasweb.com Performance

More information

Design Of Low-Power Wireless Communication System Based On MSP430 Introduction:

Design Of Low-Power Wireless Communication System Based On MSP430 Introduction: Design Of Low-Power Wireless Communication System Based On MSP430 Introduction: Low power wireless networks provide a new monitoring and control capability for civil and military applications in transportation,

More information

EFFICIENT FPGA IMPLEMENTATION OF 2 ND ORDER DIGITAL CONTROLLERS USING MATLAB/SIMULINK

EFFICIENT FPGA IMPLEMENTATION OF 2 ND ORDER DIGITAL CONTROLLERS USING MATLAB/SIMULINK EFFICIENT FPGA IMPLEMENTATION OF 2 ND ORDER DIGITAL CONTROLLERS USING MATLAB/SIMULINK Vikas Gupta 1, K. Khare 2 and R. P. Singh 2 1 Department of Electronics and Telecommunication, Vidyavardhani s College

More information

MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER

MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER www.arpnjournals.com MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER M.K.Hat 1, B.S.K.K. Ibrahim 1, T.A.T. Mohd 2 and M.K. Hassan 2 1 Department

More information

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

International Journal of Technical Research and Applications e-issn: ,   Volume 4, Issue 3 (May-June, 2016), PP. DESIGNING OF ADVANCED PROCESS CONTROL USING FUZZY PID FOR SPEED CONTROL OF THE DC MOTOR & PERFORMANCE COMPARISON WITH THE CONVENTIONAL CONTROL ALGORITHMS Mahavir Teraiya, Prof. Nirav Tolia, Mr. Bhagathsinh

More information

FPGA-BASED PULSED-RF PHASE AND AMPLITUDE DETECTOR AT SLRI

FPGA-BASED PULSED-RF PHASE AND AMPLITUDE DETECTOR AT SLRI doi:10.18429/jacow-icalepcs2017- FPGA-BASED PULSED-RF PHASE AND AMPLITUDE DETECTOR AT SLRI R. Rujanakraikarn, Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand Abstract In this paper, the

More information

Design and fabrication of microcontroller based temperature control system for photoacoustic spectrometer

Design and fabrication of microcontroller based temperature control system for photoacoustic spectrometer International Journal of Electrical, Electronics and Computer Systems (IJEECS) Design and fabrication of microcontroller based temperature control system for photoacoustic spectrometer 1 Sapna, 2 Immanuel

More information

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018 ME375 Lab Project Bradley Boane & Jeremy Bourque April 25, 2018 Introduction: The goal of this project was to build and program a two-wheel robot that travels forward in a straight line for a distance

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL Experiment No. 1(a) : Modeling of physical systems and study of

More information

An External Command Reading White line Follower Robot

An External Command Reading White line Follower Robot EE-712 Embedded System Design: Course Project Report An External Command Reading White line Follower Robot 09405009 Mayank Mishra (mayank@cse.iitb.ac.in) 09307903 Badri Narayan Patro (badripatro@ee.iitb.ac.in)

More information

A SOFTWARE-BASED GAIN SCHEDULING OF PID CONTROLLER

A SOFTWARE-BASED GAIN SCHEDULING OF PID CONTROLLER A SOFTWARE-BASED GAIN SCHEDULING OF PID CONTROLLER Hussein Sarhan Department of Mechatronics Engineering, Faculty of Engineering Technology, Amman, Jordan ABSTRACT In this paper, a scheduled-gain SG-PID

More information

The MFT B-Series Flow Controller.

The MFT B-Series Flow Controller. The MFT B-Series Flow Controller. There are many options available to control a process flow ranging from electronic, mechanical to pneumatic. In the industrial market there are PLCs, PCs, valves and flow

More information

A PID Controller Design for an Air Blower System

A PID Controller Design for an Air Blower System 1 st International Conference of Recent Trends in Information and Communication Technologies A PID Controller Design for an Air Blower System Ibrahim Mohd Alsofyani *, Mohd Fuaad Rahmat, and Sajjad A.

More information

Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System

Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System Nishtha Bhagat 1, Praniti Durgapal 2, Prerna Gaur 3 Instrumentation and Control Engineering, Netaji Subhas Institute

More information

DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing

DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing M. I. Nassef (1), H. A. Ashour (2), H. Desouki (3) Department of Electrical and Control

More information

CHAPTER 4 FUZZY LOGIC CONTROLLER

CHAPTER 4 FUZZY LOGIC CONTROLLER 62 CHAPTER 4 FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Unlike digital logic, the Fuzzy Logic is a multivalued logic. It deals with approximate perceptive rather than precise. The effective and efficient

More information

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers Chapter 4 Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers 4.1. Introduction Data acquisition and control boards, also known as DAC boards, are used in virtually

More information

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control 1 Deepa Shivshant Bhandare, 2 Hafiz Shaikh and 3 N. R. Kulkarni 1,2,3 Department of Electrical Engineering,

More information

UNIVERSITY OF JORDAN Mechatronics Engineering Department Measurements & Control Lab Experiment no.2 Introduction to Fuzzy Logic Control

UNIVERSITY OF JORDAN Mechatronics Engineering Department Measurements & Control Lab Experiment no.2 Introduction to Fuzzy Logic Control Introduction UNIVERSITY OF JORDAN Mechatronics Engineering Department Measurements & Control Lab. 0908448 Experiment no.2 Introduction to Fuzzy Logic Control Traditional logic is based upon the idea that

More information

Classical Control Based Autopilot Design Using PC/104

Classical Control Based Autopilot Design Using PC/104 Classical Control Based Autopilot Design Using PC/104 Mohammed A. Elsadig, Alneelain University, Dr. Mohammed A. Hussien, Alneelain University. Abstract Many recent papers have been written in unmanned

More information

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER Archana G C 1 and Reema N 2 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College

More information

Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques

Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques Afshan Ilyas, Shagufta Jahan, Mohammad Ayyub Abstract:- This paper presents a method for tuning of conventional

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

1, 2, 3,

1, 2, 3, AUTOMATIC SHIP CONTROLLER USING FUZZY LOGIC Seema Singh 1, Pooja M 2, Pavithra K 3, Nandini V 4, Sahana D V 5 1 Associate Prof., Dept. of Electronics and Comm., BMS Institute of Technology and Management

More information

Design and Implementation of Fractional order controllers for DC Motor Position servo system

Design and Implementation of Fractional order controllers for DC Motor Position servo system American. Jr. of Mathematics and Sciences Vol. 1, No.1,(January 2012) Copyright Mind Reader Publications www.journalshub.com Design and Implementation of Fractional order controllers for DC Motor Position

More information

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331 PP 4-44 www.iosrjournals.org Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Self-tuning PID controller using Fuzzy Logic for Level Process P D Aditya Karthik *1, J Supriyanka 2 *1, 2 Department

More information

Chapter 5. Tracking system with MEMS mirror

Chapter 5. Tracking system with MEMS mirror Chapter 5 Tracking system with MEMS mirror Up to now, this project has dealt with the theoretical optimization of the tracking servo with MEMS mirror through the use of simulation models. For these models

More information

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS Kapil Ghuge 1, Prof. Manish Prajapati 2 Prof. Ashok Kumar Jhala 3 1 M.Tech Scholar, 2 Assistant Professor, 3 Head of Department, R.K.D.F.

More information

Cortex-M3 based Prepaid System with Electricity Theft Control

Cortex-M3 based Prepaid System with Electricity Theft Control Research Inventy: International Journal of Engineering And Science Vol.6, Issue 4 (April 2016), PP -139-146 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Cortex-M3 based Prepaid System

More information

Triscend E5 Support. Configurable System-on-Chip (CSoC) Triscend Development Tools Update TM

Triscend E5 Support.   Configurable System-on-Chip (CSoC) Triscend Development Tools Update TM www.keil.com Triscend Development Tools Update TM Triscend E5 Support The Triscend E5 family of Configurable System-on-Chip (CSoC) devices is based on a performance accelerated 8-bit 8051 microcontroller.

More information

STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN EGYPT

STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN EGYPT 3 rd International Conference on Energy Systems and Technologies 16 19 Feb. 2015, Cairo, Egypt STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

Micro Controller Based Ac Power Controller

Micro Controller Based Ac Power Controller Wireless Sensor Network, 9, 2, 61-121 doi:1.4236/wsn.9.112 Published Online July 9 (http://www.scirp.org/journal/wsn/). Micro Controller Based Ac Power Controller S. A. HARI PRASAD 1, B. S. KARIYAPPA 1,

More information

AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY

AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY J. C. Álvarez, J. Lamas, A. J. López, A. Ramil Universidade da Coruña (SPAIN) carlos.alvarez@udc.es, jlamas@udc.es, ana.xesus.lopez@udc.es,

More information

International Journal of Innovations in Engineering and Science

International Journal of Innovations in Engineering and Science International Journal of Innovations in Engineering and Science INNOVATIVE RESEARCH FOR DEVELOPMENT Website: www.ijiesonline.org e-issn: 2616 1052 Volume 1, Issue 1 August, 2018 Optimal PID Controller

More information