Fundamentals of the GBT and Single-Dish Radio Telescopes Dr. Ron Maddalena

Size: px
Start display at page:

Download "Fundamentals of the GBT and Single-Dish Radio Telescopes Dr. Ron Maddalena"

Transcription

1 Fundamentals of the GB and Single-Dish Radio elescopes Dr. Ron Maddalena March 2016 Associated Universities, Inc., 2016 National Radio Astronomy Observatory Green Bank, WV

2 National Radio Astronomy Observatory National Laboratory Founded in 1954 Funded by the National Science Foundation

3 elescope Structure and Optics

4 elescope Structure and Optics

5 elescope Structure and Optics Large 100-m Diameter: High Sensitivity High Angular Resolution wavelength / Diameter

6

7

8

9 elescope Structure and Optics

10 GB elescope Optics 110 m x 100 m of a 208 m parent paraboloid Effective diameter: 100 m Off axis - Clear/Unblocked Aperture

11 High Dynamic Range High Fidelity Images elescope Optics

12 elescope Optics Stray Radiation Blockage Spillover

13 elescope Optics

14

15 elescope Optics Prime Focus: Retractable boom Gregorian Focus: 8-m subreflector - 6-degrees of freedom

16 elescope Optics Rotating urret with 8 receiver bays

17 elescope Structure Fully Steerable Elevation Limit: 5 Can observe 85% of the entire Celestial Sphere Slew Rates: Azimuth - 40 /min; Elevation - 20 /min

18 National Radio Quiet Zone

19

20

21 National Radio Quiet Zone

22

23 Index of Refraction Atmosphere Weather (i.e., time) and frequency dependent Real Part: Bends the light path Imaginary part: Opacity Winds Wind-induced pointing errors Safety

24 he Influence of the Atmosphere and Weather at cm- and mm-wavelengths Opacity Calibration System performance sys Observing techniques Hardware design Refraction Pointing Air Mass Calibration Interferometer & VLB phase errors Aperture phase errors Cloud Cover Continuum performance Calibration Winds Pointing Safety elescope Scheduling Proportion of proposals that should be accepted elescope productivity

25 Weather Forecasts for Radio Astronomy

26 Weather Forecasts for Radio Astronomy

27

28 elescope Structure

29 GB active surface system Surface has 2004 panels average panel rms: 68 µm 2209 precision actuators 29

30 Surface Panel Actuators One of 2209 actuators. Actuators are located under each set of surface panel corners 30 Actuator Control Room 26,508 control and supply wires terminated in this room

31 31 Finite Element Model Predictions

32 Mechanical adjustment of the panels 32

33 33 Image quality and efficiency

34 Image quality, efficiency, resolution HPBW 1.2 D 40' at 300MHz(1m) 9' at 1420 M Hz(21cm) 6.5"at 115 GHz(3 mm) 34

35 Image quality and efficiency Aperture Efficiency A Detected Incident Power Power

36 36 Holography

37 37 Holography

38 Surface accuracy (rms) = 240 µm

39 Aperture Efficiency A 0.7e (4 / ) 2 = rms surface error

40 elescope Structure Blind Pointing: (1 point/focus) 2 ( 5 arcsec focus ) 2.5 mm Offset Pointing: (90 min) 2 ( 2.7 arcsec focus ) 1.5 mm Continuous racking: (30 min) 2 1 arcsec

41 Receivers Receiver Operating Range Status Prime Focus GHz Commissioned Prime Focus GHz Commissioned L Band GHz Commissioned S Band GHz Commissioned C Band GHz Recently upgraded X Band GHz Commissioned Ku Band GHz Commissioned K Band Array GHz Commissioned Ka Band GHz Commissioned Q Band GHz Commissioned W Band GHz Commissioned Mustang Bolometer GHz Being upgraded ARGUS GHz Being commissioned

42 Receiver Room

43 ypical Receiver

44 Receiver Feeds

45 ypical Receiver

46 ypical Components Amplifiers Splitters Mixers Couplers Attenuators Power Detectors Filters Synthesizers Switches Multipliers

47 ypes of Filters Edges are smoother than illustrated

48 ypes of Mixers f f IF n and m are positive or negative integers, usually 1 or -1 f LO f IF = n*f LO + m*f Up Conversion : f IF > f Down Conversion : f IF < f Lower Side Band : f LO > f - Sense of frequency flips Upper Side Band : f LO < f

49 40-Ft System Determine values for the first LO for the 40-ft when Observing HI at 1420 MHz

50

51

52

53 GB Astrid program does all the hard work for you.. configline = """ receiver = "Rcvr1_2" beam = B1" obstype = "Spectroscopy" backend = "Spectrometer" nwin = 1 restfreq = deltafreq = 0 bandwidth = 12.5 swmode = "tp" swtype = "none" swper = 1.0 swfreq = 0.0, 0.0 tint = 30 vlow = 0 vhigh = 0 vframe = "lsrk" vdef = "Radio" noisecal = "lo" pol = "Linear" nchan = "low" spect.levels = 3 """

54 Power Balancing/Leveling and Non- Linearity

55 Spectral-line observations Raw Data Reduced Data High Quality Reduced Data Problematic

56 Reference observations Difference a signal observation with a reference observation ypes of reference observations Frequency Switching In or Out-of-band Position Switching Beam Switching Move Subreflector Receiver beam-switch Dual-Beam Nodding Move telescope Move Subreflector

57 Model Receiver

58 Out-Of-Band Frequency Switching

59 On-Off Observing Noise Diode Signal Signal Detector

60 Nodding with dual-beam receivers - elescope motion Optical aberrations Difference in spillover/ground pickup Removes any fast gain/bandpass changes Overhead from moving the telescope. All the time is spent on source

61 Nodding with dual-beam receivers - Subreflector motion Optical aberrations Difference in spillover/ground pickup Removes any fast gain/bandpass changes Low overhead. All the time is spent on source

62 Intrinsic Power P (Watts) Distance R (meters) Aperture A (sq.m.) Flux = Power Received/Area Flux Density (S) = Power Received/Area/bandwidth Bandwidth (BW) A Jansky is a unit of flux density Watts / m / Hz P S 2 4R BW 2k S A A A g e AirMass Gain Gain Gain A S 2.84 A A A g 2761 for GB 2.0 for GB at low frequencies

63 ) (1 ) (1 Airmass AM Airmass Background A CMB l Spill l Rcvr SYS e e 2 1 G G t BW SYS System emperature Radiometer Equation

64 40-Ft System

65 ) (1 ) (1 Airmass AM Airmass Background A CMB l Spill l Rcvr SYS e e System emperature ) (1 ) (1 Airmass AM Airmass Background A CMB l Spill l NoiseDiode Rcvr SYS e e

66

67 SYS s G Electronic V System emperature NoiseDiode CalOnOff Electronics NoiseDiode Electronics SYS Electronics CalOnOff V G G G V ) (1 ) (1 Airmass AM Airmass Background A CMB l Spill l Rcvr DiodeOff SYS e e ) (1 ) (1 Airmass AM Airmass Background A CMB l Spill l NoiseDiode Rcvr DiodeOn SYS e e

68 On-Off Observing Noise Diode Signal Signal Observe blank sky for 10 sec Move telescope to object & observe for 10 sec Move to blank sky & observe for 10 sec Fire noise diode & observe for 10 sec Observe blank sky for 10 sec Detector

69 Continuum - Point Sources On-Off Observing NoiseDiode =3K On Source Off Source Diode On Off Source

70 A Electronics SYS Electronics SigRef G G V Source Antenna emperature NoiseDiode CalOnOff Electronics NoiseDiode Electronics SYS Electronics CalOnOff V G G G V CalOnOff NoiseDiode RefCalOff SYS CalOnOff NoiseDiode SigRef A V V V V

71 A =6K NoiseDiode =3K Continuum - Point Sources On-Off Observing On Source Off Source Diode On Off Source SYS =20K

72 Converting A to Scientifically Useful Values A ( K) A Area e 2k Airmass S( W m 2 Hz 1 ) Point Source e Src MB e Airmass Src HPBW e Airmass 2 e B Airmass B Airmass ( K) Extended MB B source size ( K) Source ( K) Source source; HPBW HPBW depends upon but not point source ( K) Equivalent to a uniform source that fills just themain beam Src

Calibration. Ron Maddalena NRAO Green Bank November 2012

Calibration. Ron Maddalena NRAO Green Bank November 2012 Calibration Ron Maddalena NRAO Green Bank November 2012 Receiver calibration sources allow us to convert the backend s detected voltages to the intensity the signal had at the point in the system where

More information

Guide to observation planning with GREAT

Guide to observation planning with GREAT Guide to observation planning with GREAT G. Sandell GREAT is a heterodyne receiver designed to observe spectral lines in the THz region with high spectral resolution and sensitivity. Heterodyne receivers

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2011 Astronomy 423 at UNM Radio Astronomy Radio Window 2 spans a wide range of λ and ν from λ ~ 0.33 mm to ~ 20 m! (ν = 1300 GHz to 15 MHz ) Outline

More information

THEORY OF MEASUREMENTS

THEORY OF MEASUREMENTS THEORY OF MEASUREMENTS Brian Mason Fifth NAIC-NRAO School on Single-Dish Radio Astronomy Arecibo, PR July 2009 OUTLINE Antenna-Sky Coupling Noise the Radiometer Equation Minimum Tsys Performance measures

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2017 Astronomy 423 at UNM Radio Astronomy Outline 2 Fourier Transforms Interferometer block diagram Antenna fundamentals Types of antennas Antenna performance

More information

Multiplying Interferometers

Multiplying Interferometers Multiplying Interferometers L1 * L2 T + iv R1 * R2 T - iv L1 * R2 Q + iu R1 * L2 Q - iu Since each antenna can output both L and R polarization, all 4 Stokes parameters are simultaneously measured without

More information

Observing Techniques and Calibration. David Frayer (Green Bank Observatory)

Observing Techniques and Calibration. David Frayer (Green Bank Observatory) Observing Techniques and Calibration David Frayer (Green Bank Observatory) The GBT provides a lot of observing choices Pick receiver based on frequency Pick backend based on observing type (line, continuum,

More information

Submillimeter (continued)

Submillimeter (continued) Submillimeter (continued) Dual Polarization, Sideband Separating Receiver Dual Mixer Unit The 12-m Receiver Here is where the receiver lives, at the telescope focus Receiver Performance T N (noise temperature)

More information

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection At ev gap /h the photons have sufficient energy to break the Cooper pairs and the SIS performance degrades. Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

More information

The 4mm (68-92 GHz) Receiver

The 4mm (68-92 GHz) Receiver Chapter 18 The 4mm (68-92 GHz) Receiver 18.1 Overview The 4 mm receiver ( W-band ) is a dual-beam, dual-polarization receiver which covers the frequency range of approximately 67-93 GHz. The performance

More information

G. Serra.

G. Serra. G. Serra gserra@oa-cagliari.inaf.it on behalf of Metrology team* *T. Pisanu, S. Poppi, F.Buffa, P. Marongiu, R. Concu, G. Vargiu, P. Bolli, A. Saba, M.Pili, E.Urru Astronomical Observatory of Cagliari

More information

To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel.

To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. Radiometers Natural radio emission from the cosmic microwave background, discrete astronomical

More information

Antennas & Receivers in Radio Astronomy

Antennas & Receivers in Radio Astronomy Antennas & Receivers in Radio Astronomy Mark McKinnon Fifteenth Synthesis Imaging Workshop 1-8 June 2016 Purpose & Outline Purpose: describe how antenna elements can affect the quality of images produced

More information

EVLA Scientific Commissioning and Antenna Performance Test Check List

EVLA Scientific Commissioning and Antenna Performance Test Check List EVLA Scientific Commissioning and Antenna Performance Test Check List C. J. Chandler, C. L. Carilli, R. Perley, October 17, 2005 The following requirements come from Chapter 2 of the EVLA Project Book.

More information

Antennas and Receivers in Radio Astronomy

Antennas and Receivers in Radio Astronomy Antennas and Receivers in Radio Astronomy Mark McKinnon Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 Outline 2 Context Types of antennas Antenna fundamentals Reflector antennas Mounts

More information

Introduction to Radio Astronomy!

Introduction to Radio Astronomy! Introduction to Radio Astronomy! Sources of radio emission! Radio telescopes - collecting the radiation! Processing the radio signal! Radio telescope characteristics! Observing radio sources Sources of

More information

More Radio Astronomy

More Radio Astronomy More Radio Astronomy Radio Telescopes - Basic Design A radio telescope is composed of: - a radio reflector (the dish) - an antenna referred to as the feed on to which the radiation is focused - a radio

More information

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers and DSB Total Power Receivers SCI-00.00.00.00-001-A-PLA Version: A 2007-06-11 Prepared By: Organization Date Anthony J. Remijan NRAO A. Wootten T. Hunter J.M. Payne D.T. Emerson P.R. Jewell R.N. Martin

More information

Introduction to Radio Astronomy

Introduction to Radio Astronomy Introduction to Radio Astronomy The Visible Sky, Sagittarius Region 2 The Radio Sky 3 4 Optical and Radio can be done from the ground! 5 Outline The Discovery of Radio Waves Maxwell, Hertz and Marconi

More information

A new K-band (18-26 GHz) 7-horn multi-feed receiver: Calibration campaign at Medicina 32 m dish

A new K-band (18-26 GHz) 7-horn multi-feed receiver: Calibration campaign at Medicina 32 m dish A new K-band (18-26 GHz) 7-horn multi-feed receiver: Calibration campaign at Medicina 32 m dish R.Verma, G.Maccaferri, A.Orfei I.Prandoni, L.Gregorini IRA 430/09 Contents 1 6 1.1 Goals............................................

More information

Antennas & Receivers in Radio Astronomy Mark McKinnon. Twelfth Synthesis Imaging Workshop 2010 June 8-15

Antennas & Receivers in Radio Astronomy Mark McKinnon. Twelfth Synthesis Imaging Workshop 2010 June 8-15 Antennas & Receivers in Radio Astronomy Mark McKinnon 2010 June 8-15 Outline Context Types of antennas Antenna fundamentals Reflector antennas Mounts Optics Antenna performance Aperture efficiency Pointing

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report No 76

NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report No 76 NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report No 76 A NOVEL WAY OF BEAM-SWITCHING, PARTICULARLY SUITABLE AT MM WAVELENGTHS N. Albaugh and K. H. Wesseling

More information

Very Long Baseline Interferometry

Very Long Baseline Interferometry Very Long Baseline Interferometry Cormac Reynolds, JIVE European Radio Interferometry School, Bonn 12 Sept. 2007 VLBI Arrays EVN (Europe, China, South Africa, Arecibo) VLBA (USA) EVN + VLBA coordinate

More information

Single Dish Observing Techniques and Calibration

Single Dish Observing Techniques and Calibration Single Dish Observing Techniques and Calibration David Frayer (NRAO) {some slides taken from past presentations of Ron Maddalena and Karen O Neil} What does the telescope measure: Ta = antenna temperature

More information

A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy

A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy James Di Francesco National Research Council of Canada North American ALMA Regional Center Victoria (thanks to S. Dougherty,

More information

OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H

OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H OUTLINE Antenna optics Aberrations Diffraction Single feeds Types of feed Bandwidth Imaging feeds

More information

IF/LO Systems for Single Dish Radio Astronomy Centimeter Wave Receivers

IF/LO Systems for Single Dish Radio Astronomy Centimeter Wave Receivers IF/LO Systems for Single Dish Radio Astronomy Centimeter Wave Receivers Lisa Wray NAIC, Arecibo Observatory Abstract. Radio astronomy receivers designed to detect electromagnetic waves from faint celestial

More information

Signal Flow & Radiometer Equation. Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO

Signal Flow & Radiometer Equation. Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO Signal Flow & Radiometer Equation Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO Understanding Radio Waves The meaning of radio waves How radio waves are created -

More information

Introduction to DSTV Dish Observations. Alet de Witt AVN Technical Training 2016

Introduction to DSTV Dish Observations. Alet de Witt AVN Technical Training 2016 Introduction to DSTV Dish Observations Alet de Witt AVN Technical Training 2016 Outline Theory: - Radio Waves - Radio Telescope Antennas - Angular Sizes - Brightness Temperature and Antenna Temperature

More information

Chapter 3. Instrumentation. 3.1 Telescope Site Layout. 3.2 Telescope Optics

Chapter 3. Instrumentation. 3.1 Telescope Site Layout. 3.2 Telescope Optics Chapter 3 Instrumentation 3.1 Telescope Site Layout The 12m is located on the southwest ridge of Kitt Peak, about two miles below the top of the mountain. Other telescopes on the southwest ridge are the

More information

Observing Modes and Real Time Processing

Observing Modes and Real Time Processing 2010-11-30 Observing with ALMA 1, Observing Modes and Real Time Processing R. Lucas November 30, 2010 Outline 2010-11-30 Observing with ALMA 2, Observing Modes Interferometry Modes Interferometry Calibrations

More information

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago The Cosmic Microwave Background Radiation B. Winstein, U of Chicago Lecture #1 Lecture #2 What is it? How its anisotropies are generated? What Physics does it reveal? How it is measured. Lecture #3 Main

More information

Spectral Line Calibration Techniques with Single Dish Telescopes. K. O Neil NRAO - GB

Spectral Line Calibration Techniques with Single Dish Telescopes. K. O Neil NRAO - GB Spectral Line Calibration Techniques with Single Dish Telescopes K. O Neil NRAO - GB Determining the Source Temperature Determining T source T A,meas (,az,za) = T src (,az,za) + T system Determining T

More information

Recent progress and future development of Nobeyama 45-m Telescope

Recent progress and future development of Nobeyama 45-m Telescope Recent progress and future development of Nobeyama 45-m Telescope Masao Saito: Director of Nobeyama Radio Observatory Tetsuhiro Minamidani: Nobeyama Radio Observatory Outline Nobeyama 45-m Telescope Recent

More information

Holography Transmitter Design Bill Shillue 2000-Oct-03

Holography Transmitter Design Bill Shillue 2000-Oct-03 Holography Transmitter Design Bill Shillue 2000-Oct-03 Planned Photonic Reference Distribution for Test Interferometer The transmitter for the holography receiver is made up mostly of parts that are already

More information

Symmetry in the Ka-band Correlation Receiver s Input Circuit and Spectral Baseline Structure NRAO GBT Memo 248 June 7, 2007

Symmetry in the Ka-band Correlation Receiver s Input Circuit and Spectral Baseline Structure NRAO GBT Memo 248 June 7, 2007 Symmetry in the Ka-band Correlation Receiver s Input Circuit and Spectral Baseline Structure NRAO GBT Memo 248 June 7, 2007 A. Harris a,b, S. Zonak a, G. Watts c a University of Maryland; b Visiting Scientist,

More information

Recent Astronomical Commissioning Results for the Ka-band ( GHz) Receiver

Recent Astronomical Commissioning Results for the Ka-band ( GHz) Receiver May 1, 2007 Recent Astronomical Commissioning Results for the Ka-band (26.0-40 GHz Receiver D.J. Pisano, Ron Maddalena, Charles Figura, Jeff Wagg ABSTRACT We present an observing procedure and calibration

More information

L- and S-Band Antenna Calibration Using Cass. A or Cyg. A

L- and S-Band Antenna Calibration Using Cass. A or Cyg. A L- and S-Band Antenna Calibration Using Cass. A or Cyg. A Item Type text; Proceedings Authors Taylor, Ralph E. Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

Planning (VLA) observations

Planning (VLA) observations Planning () observations 14 th Synthesis Imaging Workshop (May 2014) Loránt Sjouwerman National Radio Astronomy Observatory (Socorro, NM) Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very

More information

A Quick Review. Spectral Line Calibration Techniques with Single Dish Telescopes. The Rayleigh-Jeans Approximation. Antenna Temperature

A Quick Review. Spectral Line Calibration Techniques with Single Dish Telescopes. The Rayleigh-Jeans Approximation. Antenna Temperature Spectral Line Calibration Techniques with Single Dish Telescopes A Quick Review K. O Neil NRAO - GB A Quick Review A Quick Review The Rayleigh-Jeans Approximation Antenna Temperature Planck Law for Blackbody

More information

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 8: Reflector antennas

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 8: Reflector antennas School of Electrical Engineering EI2400 Applied Antenna Theory Lecture 8: Reflector antennas Reflector antennas Reflectors are widely used in communications, radar and radio astronomy. The largest reflector

More information

Fundamentals of Radio Astronomy. Lyle Hoffman, Lafayette College ALFALFA Undergraduate Workshop Arecibo Observatory, 2008 Jan. 13

Fundamentals of Radio Astronomy. Lyle Hoffman, Lafayette College ALFALFA Undergraduate Workshop Arecibo Observatory, 2008 Jan. 13 Fundamentals of Radio Astronomy Lyle Hoffman, Lafayette College ALFALFA Undergraduate Workshop Arecibo Observatory, 2008 Jan. 13 Outline Sources in brief Radiotelescope components Radiotelescope characteristics

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

EVLA Memo 105. Phase coherence of the EVLA radio telescope

EVLA Memo 105. Phase coherence of the EVLA radio telescope EVLA Memo 105 Phase coherence of the EVLA radio telescope Steven Durand, James Jackson, and Keith Morris National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM, USA 87801 ABSTRACT The

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS ANTENNA INTRODUCTION / BASICS RULES OF THUMB: 1. The Gain of an antenna with losses is given by: 2. Gain of rectangular X-Band Aperture G = 1.4 LW L = length of aperture in cm Where: W = width of aperture

More information

ALMA water vapour radiometer project

ALMA water vapour radiometer project ALMA water vapour radiometer project Why water vapour radiometers? Science requirements/instrument specifications Previous work ALMA Phase 1 work Kate Isaak and Richard Hills Cavendish Astrophysics, Cambridge

More information

ATCA Antenna Beam Patterns and Aperture Illumination

ATCA Antenna Beam Patterns and Aperture Illumination 1 AT 39.3/116 ATCA Antenna Beam Patterns and Aperture Illumination Jared Cole and Ravi Subrahmanyan July 2002 Detailed here is a method and results from measurements of the beam characteristics of the

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

Millimetre and Radio Astronomy Techniques for Star Forma:on Studies II

Millimetre and Radio Astronomy Techniques for Star Forma:on Studies II Millimetre and Radio Astronomy Techniques for Star Forma:on Studies II John Conway Onsala Space Observatory, Sweden &Nordic ALMA ARC node (john.conway@chalmers.se) Today prac:cal details... For details

More information

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Introduction to Radio Astronomy Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Radio Waves Radio Emission Processes Radio Noise Radio source names and catalogues Radio telescopes

More information

d (Eqn 2), Source temperature distribution, Normalized antenna pattern 4 A Antenna gain as a power ratio

d (Eqn 2), Source temperature distribution, Normalized antenna pattern 4 A Antenna gain as a power ratio Quiet un 0 MHz ntenna emperature nalysis Dave ypinski, March 013 olar radio bursts are easy to observe with practically any receiver. he question arises: can we see the quiet un with a Radio Jove radio

More information

Extra slides. 10/05/2011 SAC meeting IRAM Grenoble 1

Extra slides. 10/05/2011 SAC meeting IRAM Grenoble 1 Extra slides 10/05/2011 SAC meeting IRAM Grenoble 1 New NIKA spectral responses Bands spectral response obtained with a Martin-Puplett interferometer 10/05/2011 SAC meeting IRAM Grenoble 2 New NIKA backend

More information

Very Long Baseline Interferometry

Very Long Baseline Interferometry Very Long Baseline Interferometry Shep Doeleman (Haystack) Ylva Pihlström (UNM) Craig Walker (NRAO) Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 What is VLBI? 2 VLBI is interferometry

More information

EVLA Memo #119 Wide-Band Sensitivity and Frequency Coverage of the EVLA and VLA L-Band Receivers

EVLA Memo #119 Wide-Band Sensitivity and Frequency Coverage of the EVLA and VLA L-Band Receivers EVLA Memo #119 Wide-Band Sensitivity and Frequency Coverage of the EVLA and VLA L-Band Receivers Rick Perley and Bob Hayward January 17, 8 Abstract We determine the sensitivities of the EVLA and VLA antennas

More information

Commonly Used GO Keywords

Commonly Used GO Keywords Robert C. Byrd Green Bank Telescope NRAO Green Bank Toney Minter and Dana Balser 17th September 2003 GBT SOFTWARE PROJECT NOTE 21.2 Commonly Used GO Keywords HTML version Available 1 Contents 1 Introduction

More information

J/K). Nikolova

J/K). Nikolova Lecture 7: ntenna Noise Temperature and System Signal-to-Noise Ratio (Noise temperature. ntenna noise temperature. System noise temperature. Minimum detectable temperature. System signal-to-noise ratio.)

More information

VLBI2010 Current status of the TWIN radio telescope project at Wettzell, Germany

VLBI2010 Current status of the TWIN radio telescope project at Wettzell, Germany VLBI2010 Current status of the TWIN radio telescope project at Wettzell, Germany Alexander Neidhardt, FESG/TU München (on behalf of the BKG) G. Kronschnabl, (BKG); Hase, H. (BKG); Schreiber, U. (BKG);

More information

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes)

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) Points to Note: Wider bandwidths than were used on 140 Foot Cleaner antenna so other effects show up Larger

More information

Microwave-Radiometer

Microwave-Radiometer Microwave-Radiometer Figure 1: History of cosmic background radiation measurements. Left: microwave instruments, right: background radiation as seen by the corresponding instrument. Picture: NASA/WMAP

More information

EVLA Memo 137 Performance Tests of the EVLA K, Ka, and Q-Band Receivers

EVLA Memo 137 Performance Tests of the EVLA K, Ka, and Q-Band Receivers EVLA Memo 137 Performance Tests of the EVLA K, Ka, and Q-Band Receivers Rick Perley, Bob Hayward and Bryan Butler NRAO August 4, 2009 Abstract Efficiency observations performed in January and February

More information

The DARPA 100Gb/s RF Backbone Program

The DARPA 100Gb/s RF Backbone Program The DARPA 100Gb/s RF Backbone Program Dr. Ted Woodward Program Manager, DARPA/STO Briefing Prepared for NSF mmw RCN workshop Madison, WI 19 July 2017 1 100 Gb/s RF Backbone (100G) Objective: Capacity AND

More information

LOFAR: Special Issues

LOFAR: Special Issues Netherlands Institute for Radio Astronomy LOFAR: Special Issues John McKean (ASTRON) ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Preamble http://www.astron.nl/~mckean/eris-2011-2.pdf

More information

The WVR at Effelsberg. Thomas Krichbaum

The WVR at Effelsberg. Thomas Krichbaum The WVR at Effelsberg Alan Roy Ute Teuber Helge Rottmann Thomas Krichbaum Reinhard Keller Dave Graham Walter Alef The Scanning 18-26 GHz WVR for Effelsberg ν = 18.5 GHz to 26.0 GHz Δν = 900 MHz Channels

More information

Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005

Radar Reprinted from Waves in Motion, McGourty and Rideout, RET 2005 Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005 What is Radar? RADAR (Radio Detection And Ranging) is a way to detect and study far off targets by transmitting a radio pulse in the

More information

Analysis and Compensation of Subreflector Displacement for the Parabolic Antenna of a Radio Telescope

Analysis and Compensation of Subreflector Displacement for the Parabolic Antenna of a Radio Telescope Progress In Electromagnetics Research M, Vol. 44, 59 68, 215 Analysis and Compensation of Subreflector Displacement for the Parabolic Antenna of a Radio Telescope Lan Chen 1, Zheng Xiong Sun 1, Jin Qing

More information

Technical Considerations: Nuts and Bolts Project Planning and Technical Justification

Technical Considerations: Nuts and Bolts Project Planning and Technical Justification Technical Considerations: Nuts and Bolts Project Planning and Technical Justification Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long

More information

Phased Array Feeds & Primary Beams

Phased Array Feeds & Primary Beams Phased Array Feeds & Primary Beams Aidan Hotan ASKAP Deputy Project Scientist 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of parabolic (dish) antennas. Focal plane response to a

More information

Sub-millimeter Wave Planar Near-field Antenna Testing

Sub-millimeter Wave Planar Near-field Antenna Testing Sub-millimeter Wave Planar Near-field Antenna Testing Daniёl Janse van Rensburg 1, Greg Hindman 2 # Nearfield Systems Inc, 1973 Magellan Drive, Torrance, CA, 952-114, USA 1 drensburg@nearfield.com 2 ghindman@nearfield.com

More information

Smart Antennas in Radio Astronomy

Smart Antennas in Radio Astronomy Smart Antennas in Radio Astronomy Wim van Cappellen cappellen@astron.nl Netherlands Institute for Radio Astronomy Our mission is to make radio-astronomical discoveries happen ASTRON is an institute for

More information

ALMA Memo #289 Atmospheric Noise in Single Dish Observations Melvyn Wright Radio Astronomy Laboratory, University of California, Berkeley 29 February

ALMA Memo #289 Atmospheric Noise in Single Dish Observations Melvyn Wright Radio Astronomy Laboratory, University of California, Berkeley 29 February ALMA Memo #289 Atmospheric Noise in Single Dish Observations Melvyn Wright Radio Astronomy Laboratory, University of California, Berkeley 29 February 2000 Abstract Atmospheric noise and pointing fluctuations

More information

Final Feed Selection Study For the Multi Beam Array System

Final Feed Selection Study For the Multi Beam Array System National Astronomy and Ionosphere Center Arecibo Observatory Focal Array Memo Series Final Feed Selection Study For the Multi Beam Array System By: Germán Cortés-Medellín CORNELL July/19/2002 U n i v e

More information

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract Comparing MMA and VLA Capabilities in the 36-50 GHz Band M.A. Holdaway National Radio Astronomy Observatory Socorro, NM 87801 September 29, 1995 Abstract I explore the capabilities of the MMA and the VLA,

More information

Phased Array Feeds A new technology for multi-beam radio astronomy

Phased Array Feeds A new technology for multi-beam radio astronomy Phased Array Feeds A new technology for multi-beam radio astronomy Aidan Hotan ASKAP Deputy Project Scientist 2 nd October 2015 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of radio astronomy concepts.

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

Phased Array Feeds A new technology for wide-field radio astronomy

Phased Array Feeds A new technology for wide-field radio astronomy Phased Array Feeds A new technology for wide-field radio astronomy Aidan Hotan ASKAP Project Scientist 29 th September 2017 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of radio astronomy concepts

More information

Introduction to Interferometry. Michelson Interferometer. Fourier Transforms. Optics: holes in a mask. Two ways of understanding interferometry

Introduction to Interferometry. Michelson Interferometer. Fourier Transforms. Optics: holes in a mask. Two ways of understanding interferometry Introduction to Interferometry P.J.Diamond MERLIN/VLBI National Facility Jodrell Bank Observatory University of Manchester ERIS: 5 Sept 005 Aim to lay the groundwork for following talks Discuss: General

More information

Spectral Line Calibration Techniques with Single Dish Telescopes. K. O Neil NRAO - GB

Spectral Line Calibration Techniques with Single Dish Telescopes. K. O Neil NRAO - GB Spectral Line Calibration Techniques with Single Dish Telescopes K. O Neil NRAO - GB A Quick Review Review: The Rayleigh-Jeans Approximation Planck Law for Blackbody radiation: B= 2hν 3 1 If ν~ghz, often

More information

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array & Interferometers Advantages and Disadvantages of Correlation Interferometer

More information

Memo 65 SKA Signal processing costs

Memo 65 SKA Signal processing costs Memo 65 SKA Signal processing costs John Bunton, CSIRO ICT Centre 12/08/05 www.skatelescope.org/pages/page_memos.htm Introduction The delay in the building of the SKA has a significant impact on the signal

More information

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle Antennas 97 Aperture Antennas Reflectors, horns. High Gain Nearly real input impedance Huygens Principle Each point of a wave front is a secondary source of spherical waves. 97 Antennas 98 Equivalence

More information

Chapter 5. SPECTRAL LINE OBSERVING 1

Chapter 5. SPECTRAL LINE OBSERVING 1 Chapter 5. SPECTRAL LINE OBSERVING 1 CHAPTER 5 Spectral Line Observing 5.1 Startup Checklist Once the scientific goals of the observing session are clearly in mind, you must decide upon the equipment and

More information

What does reciprocity mean

What does reciprocity mean Antennas Definition of antenna: A device for converting electromagnetic radiation in space into electrical currents in conductors or vice-versa. Radio telescopes are antennas Reciprocity says we can treat

More information

EVLA Antenna and Array Performance. Rick Perley

EVLA Antenna and Array Performance. Rick Perley EVLA Antenna and Array Performance System Requirements EVLA Project Book, Chapter 2, contains the EVLA system requirements. For most, astronomical tests are necessary to determine if the array meets requirements.

More information

AVN Training HartRAO 2016

AVN Training HartRAO 2016 AVN Training HartRAO 2016 Microwave 1 Overview Introduction to basic components used in microwave receivers. Performance characteristics of these components. Assembly of components into a complete microwave

More information

arxiv:astro-ph/ v1 21 Jun 2006

arxiv:astro-ph/ v1 21 Jun 2006 Ð Ú Ø ÓÒ Ò Ð Ô Ò Ò Ó Ø ËÅ ÒØ ÒÒ ÓÙ ÔÓ Ø ÓÒ Satoki Matsushita a,c, Masao Saito b,c, Kazushi Sakamoto b,c, Todd R. Hunter c, Nimesh A. Patel c, Tirupati K. Sridharan c, and Robert W. Wilson c a Academia

More information

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging?

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging? Wide-Band Imaging 24-28 Sept 2012 Narrabri, NSW, Australia Outline : - What is wideband imaging? - Two Algorithms Urvashi Rau - Many Examples National Radio Astronomy Observatory Socorro, NM, USA 1/32

More information

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA Dr. Dirk Baker (KAT FPA Sub-system Manager) Prof. Justin Jonas (SKA SA Project Scientist) Ms. Anita Loots (KAT Project Manager) Mr. David de

More information

IF/LO Systems for Single Dish Radio Astronomy cm-wave Receivers

IF/LO Systems for Single Dish Radio Astronomy cm-wave Receivers IF/LO Systems for Single Dish Radio Astronomy cm-wave Receivers Lisa Wray, Arecibo Observatory NRAO/NAIC Single Dish Summer School August 2003 Introduction to Receivers a specialized class of microwave

More information

Specifications for the GBT spectrometer

Specifications for the GBT spectrometer GBT memo No. 292 Specifications for the GBT spectrometer Authors: D. Anish Roshi 1, Green Bank Scientific Staff, J. Richard Fisher 2, John Ford 1 Affiliation: 1 NRAO, Green Bank, WV 24944. 2 NRAO, Charlottesville,

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

Sardinia Radio Telescope

Sardinia Radio Telescope Sardinia Radio Telescope Current status and future developments Carlo Migoni @ INAF - OAC Funded by: Italian Ministry of Education and Scientific Research (MIUR) Sardinia Regional Government (RAS) Italian

More information

Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt

Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope kdbuch@gmrt.ncra.tifr.res.in Low frequency dipole array

More information

Astronomische Waarneemtechnieken (Astronomical Observing Techniques)

Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 7 th Lecture: 15 October 01 1. Introduction. Radio Emission 3. Observing 4. Antenna Technology 5. Receiver Technolgy 6. Back Ends 7.

More information

The VK3UM Radiation and System Performance Calculator

The VK3UM Radiation and System Performance Calculator The VK3UM Radiation and System Performance Calculator 1. Disclaimer... 2 2. Background... 2 3. Calculations... 2 4. Features... 2 5. Default Parameters... 3 6. Parameter Description... 4 7. On Axis Exclusion

More information

DESIGN AND CONSTRUCTION OF THE COSMIC MICROWAVE RADIOMETER

DESIGN AND CONSTRUCTION OF THE COSMIC MICROWAVE RADIOMETER DESIGN AND CONSTRUCTION OF THE COSMIC MICROWAVE RADIOMETER Jack Gelfand PhD Portland, ME USA Jack.gelfand@oswego.edu HOW CAN I DETECT THE COSMIC MICROWAVE BACKGROUND? Difficult to find the important design

More information

Introduction to interferometry with bolometers: Bob Watson and Lucio Piccirillo

Introduction to interferometry with bolometers: Bob Watson and Lucio Piccirillo Introduction to interferometry with bolometers: Bob Watson and Lucio Piccirillo Paris, 19 June 2008 Interferometry (heterodyne) In general we have i=1,...,n single dishes (with a single or dual receiver)

More information

Progress Towards Coherent Multibeam Arrays

Progress Towards Coherent Multibeam Arrays Progress Towards Coherent Multibeam Arrays Doug Henke NRC Herzberg Astronomy and Astrophysics, Victoria, Canada August 2016 ALMA Band 3 Receiver (84 116 GHz) Dual linear, 2SB Feed horn OMT (two linear

More information

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD)

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Satellite Signals and Communications Principles Dr. Ugur GUVEN Aerospace Engineer (P.hD) Principle of Satellite Signals In essence, satellite signals are electromagnetic waves that travel from the satellite

More information

Deep- Space Optical Communication Link Requirements

Deep- Space Optical Communication Link Requirements Deep- Space Optical Communication Link Requirements Professor Chester S. Gardner Department of Electrical and Computer Engineering University of Illinois cgardner@illinois.edu Link Equation: For a free-

More information