Radiant. One radian is the measure of a central angle that intercepts an arc s equal in length to the radius r of the circle.

Size: px
Start display at page:

Download "Radiant. One radian is the measure of a central angle that intercepts an arc s equal in length to the radius r of the circle."

Transcription

1 Spectral Analysis 1

2 2 Radiant One radian is the measure of a central angle that intercepts an arc s equal in length to the radius r of the circle. Mathematically ( ) θ 2πr = r θ = 1 2π For example, the angle of 90 degree is equivalent to 1 θ = r 2πr/4 θ = π 2 More generally, the radian measure of a central angle is obtained by diving the arc length s by r θ = s r Because the units of measure for arc and radius are the same, the ratio has no units it is simply a real number.

3 3 Trigonometric Functions y t = Acos(ωt ϕ) (1) A is amplitude and y t A ω is frequency, and periodicity is 2π ω = 1 ω/(2π) where ω/(2π) is called natural frequency y t = A when t = ϕ ω, and ϕ ω is phase shift So period is the amount of time it takes the wave to go through a whole cycle. The frequency ω is the angular speed measured in radians per time. The phase is the angular amount ϕ by which the cos wave is shifted. The time shift is ϕ ω.

4 4 Plotting Cos Function A=2, Fre = 0.1, Pri = 62, Pha = 0 A=2, Fre = 0.2, Pri = 31, Pha = 0 g.cos(2, 0.1, 0) g.cos(2, 0.2, 0) time time A=2, Fre = 0.2, Pha = 1, timeshift = 5 A=2, Fre = 0.2, Pha = 2, timeshift = 10 g.cos(2, 0.2, 1) g.cos(2, 0.2, 2) time time

5 5 Complex Numbers e iω = cosω + isinω (2) cosω = eiω + e iω 2 sinω = eiω e iω 2i a + bi = Re iω, R = a 2 + b 2, ω = tan 1 ( b a where the first equation is called Euler s equation; R = a + bi is modulus (amplitude, norm); ω is angle or phase. ) (3) (4) (5)

6 6 Fourier Transformation For any series of number y t, its Fourier transformation (FT) is given by For example, suppose we have a series y 0,y 1,y 2. Its FT is In general, s(ω) is complex-number-valued. s(ω) = e itω y t (6) t y 0 + y 1 e iω + y 2 e 2iω

7 7 Spectral Density The spectral density (SD) of a time series is the FT of its autocovariance For a stationary time series, γ j = γ j. It follows that s(ω) = e i jω γ j (7) j s(ω) = e γ j j (8) = γ 0 + γ 1 (e iω + e iω ) + γ 2 (e 2iω + e 2iω ) +... (9) = γ γ j cos( jω) (10) j=1 which is real-valued. Also note that the spectral density is symmetric: s(ω) = s( ω)

8 8 Examples For white noise, only γ 0 0. So For MA(1), γ 0 = (1 + θ 2 1 )σ 2 e,γ 1 = θ 1 σ 2 e, so s(ω) = γ 0 s(ω) γ 0 = 1 s(ω) = σ 2 e (1 + θ θ 1 cosω) s(ω) γ 0 = 1 + 2θ θ 2 1 cosω

9 9 Autocovariance-Generating Function (AGF) The spectral density is AGF in the sense that γ k = 1 2π Proof: note for j k, π π e ikω γ j e i jω dω = γ j π π π = γ j π = 0 π π e ikω s(ω)dω (11) e i(k j)ω dω cos((k j)ω) + isin((k j)ω)dω

10 10 Variance In particular, let k = 0 in (11) we have γ 0 = 1 2π π π s(ω)dω (12) So s(ω) decomposes the variance into uncorrelated components at each frequency ω

11 11 Filtering A filtered y t series is a moving average of y t = b(l)x t = j b j L j x t = j b j x t j. For example, MA(1) is a filtered series y t = e t + θ 1 e t 1. Another example is AR(1) series y t = 1 1 ϕ 1 L e t = (1 + ϕ 1 L + ϕ 2 1 L2 +...)e t Let b(l) = j b j L j denote the lag polynomial, then s y (ω) = b(e iω )b(e iω )s x (ω) (13) So operations that are difficult in the time domain are just multiplications in the frequency domain.

12 12 Examples For MA(1) s ma1 (ω) = (1 + θ 1 e iω )(1 + θ 1 e iω )σ 2 e = (1 + 2θ 1 cosω + θ 2 1 )σ 2 e When ω = 0, s ma1 (ω) = (1 + θ 1 ) 2 σ 2 e When ω = π, s ma1 (ω) = (1 θ 1 ) 2 σ 2 e For AR(1) When ω = 0, s ar1 (ω) = σ 2 e (1 ϕ 1 ) 2 When ω = π, s ar1 (ω) = σ 2 e (1+ϕ 1 ) 2 s ar1 (ω) = σ 2 e 1 2ϕ 1 cosω + ϕ 2 1 (14)

13 13 Periodogram MA1 MA1, theta=1 Series: g.ma1(1, 1000) Smoothed Periodogram s spectrum 5e 04 5e 02 5e omega frequency bandwidth = MA1, theta= 1 Series: g.ma1( 1, 1000) Smoothed Periodogram s spectrum 1e 03 1e 01 1e omega frequency bandwidth =

14 14 Periodogram AR1 AR1, x=0.9 Series: g.ar1(0.9, 1000, 0) Smoothed Periodogram spectrum 5e 02 5e omega frequency bandwidth = AR1, x= 0.5 Series: g.ar1( 0.5, 1000, 0) Smoothed Periodogram spectrum omega frequency bandwidth =

15 15 AR2 For AR(2) s ar2 (ω) = σ 2 e 1 2ϕ 1 cosω + ϕ 2 1 2ϕ 2 cos(2ω) + 2ϕ 1 ϕ 2 cosω + ϕ 2 2 We can show this spectral density is not monotonic with ω (15)

16 16 Periodogram AR2 AR2, x=0.5,0.7 AR2, x= 0.5,0.7 s s omega omega AR2, x=0.5, 0.7 AR2, x= 0.5, 0.7 s s omega omega

17 17 Periodogram Simulated AR2 Series: g.ar2(c(1.2, 0.35), 1000, c(0, 0)) Smoothed Periodogram Series: g.ar2(c(0.2, 0.35), 1000, c(0, 0)) Smoothed Periodogram spectrum 5e 02 5e 01 5e+00 5e spectrum frequency bandwidth = frequency bandwidth = Series: g.ar2(c( 0.2, 0.35), 1000, c(0, 0)) Smoothed Periodogram Series: g.ar2(c( 1.2, 0.35), 1000, c(0, 0)) Smoothed Periodogram spectrum spectrum 5e 02 1e+00 5e frequency bandwidth = frequency bandwidth =

18 18 Seasonal AR For a seasonal AR model y t = ϕ 1 y t 4 + e t we can show In general s seasonal AR4 = σ 2 e 1 + ϕ 2 1 2ϕ 1 cos(4ω) s seasonal ARm = σ 2 e 1 + ϕ 2 1 2ϕ 1 cos(mω) The seasonality can easily be seen in the periodogram, but not in the time series plot.

19 19 Periodogram Seasonal AR4 and AR8 Seasonal AR4 Seasonal AR8 s s omega omega Series: g.sar14(0.8, 1000) Smoothed Periodogram Series: g.sar18(0.8, 1000) Smoothed Periodogram spectrum spectrum frequency bandwidth = frequency bandwidth =

20 20 Random Walk When ϕ 1 = 1, we can show that at the frequency ω = 0, s random walk (0) = So the smallest frequency dominates the spectral density for the random walk. When ϕ 1 = 0.5, s ar(0.5) (0) = 4σ 2 e

21 21 Bandpass Filter Consider the bandpass filter given by b(e iω ) = 1, if ω (ω 1,ω 2 ) 0, otherwise. (16) Applying the filter leads to b(e iω )b(e iω )s(ω) = s(ω), if ω (ω 1,ω 2 ) 0, otherwise. (17) In words, only part of original density is passed after the filter being applied.

22 22 Constructing Bandpass Filter b j = 1 π 2π = 1 2π π ω2 e i jω b(e iω )dω ω 1 e i jω dω + 1 2π = sin( jω 2) sin( jω 1 ) jπ ω1 ω 2 e i jω dω For example, at j = 0, L Hopital s rule indicates that b 0 = ω 2 ω 1 π

23 Plotting Bandpass Filter Bandpass Filter, Omega2 = 1, Omega1= j

24 24 First Difference Filter For the first difference 1 L we can show that (1 e iω )(1 e iω ) = 2(1 cosω) So the frequency response is zero at the zero frequency, but it is four at the frequency ω = π.

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #29 Wednesday, November 19, 2003 Correlation-based methods of spectral estimation: In the periodogram methods of spectral estimation, a direct

More information

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Pre- Calculus Mathematics 12 5.1 Trigonometric Functions Goal: 1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Measuring Angles: Angles in Standard

More information

EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING

EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING Clemson University TigerPrints All Theses Theses 8-2009 EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING Jason Ellis Clemson University, jellis@clemson.edu

More information

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1 Radian Measures Exercise 1 Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1. Suppose I know the radian measure of the

More information

Harmonic Analysis. Purpose of Time Series Analysis. What Does Each Harmonic Mean? Part 3: Time Series I

Harmonic Analysis. Purpose of Time Series Analysis. What Does Each Harmonic Mean? Part 3: Time Series I Part 3: Time Series I Harmonic Analysis Spectrum Analysis Autocorrelation Function Degree of Freedom Data Window (Figure from Panofsky and Brier 1968) Significance Tests Harmonic Analysis Harmonic analysis

More information

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function.

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function. 0.5 Graphs of the Trigonometric Functions 809 0.5. Eercises In Eercises -, graph one ccle of the given function. State the period, amplitude, phase shift and vertical shift of the function.. = sin. = sin.

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle. We noticed how the x and y

More information

Review of Filter Types

Review of Filter Types ECE 440 FILTERS Review of Filters Filters are systems with amplitude and phase response that depends on frequency. Filters named by amplitude attenuation with relation to a transition or cutoff frequency.

More information

The period is the time required for one complete oscillation of the function.

The period is the time required for one complete oscillation of the function. Trigonometric Curves with Sines & Cosines + Envelopes Terminology: AMPLITUDE the maximum height of the curve For any periodic function, the amplitude is defined as M m /2 where M is the maximum value and

More information

Spectral Feature of Sampling Errors for Directional Samples on Gridded Wave Field

Spectral Feature of Sampling Errors for Directional Samples on Gridded Wave Field Spectral Feature of Sampling Errors for Directional Samples on Gridded Wave Field Ming Luo, Igor G. Zurbenko Department of Epidemiology and Biostatistics State University of New York at Albany Rensselaer,

More information

6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions 6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Trigonometry Final Exam Study Guide Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph of a polar equation is given. Select the polar

More information

PreCalc: Chapter 6 Test Review

PreCalc: Chapter 6 Test Review Name: Class: Date: ID: A PreCalc: Chapter 6 Test Review Short Answer 1. Draw the angle. 135 2. Draw the angle. 3. Convert the angle to a decimal in degrees. Round the answer to two decimal places. 8. If

More information

of the whole circumference.

of the whole circumference. TRIGONOMETRY WEEK 13 ARC LENGTH AND AREAS OF SECTORS If the complete circumference of a circle can be calculated using C = 2πr then the length of an arc, (a portion of the circumference) can be found by

More information

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs Chapter 5: Trigonometric Functions and Graphs 1 Chapter 5 5.1 Graphing Sine and Cosine Functions Pages 222 237 Complete the following table using your calculator. Round answers to the nearest tenth. 2

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

Signals. Periodic vs. Aperiodic. Signals

Signals. Periodic vs. Aperiodic. Signals Signals 1 Periodic vs. Aperiodic Signals periodic signal completes a pattern within some measurable time frame, called a period (), and then repeats that pattern over subsequent identical periods R s.

More information

Section 7.1 Graphs of Sine and Cosine

Section 7.1 Graphs of Sine and Cosine Section 7.1 Graphs of Sine and Cosine OBJECTIVE 1: Understanding the Graph of the Sine Function and its Properties In Chapter 7, we will use a rectangular coordinate system for a different purpose. We

More information

MAC 1114 REVIEW FOR EXAM #2 Chapters 3 & 4

MAC 1114 REVIEW FOR EXAM #2 Chapters 3 & 4 MAC 111 REVIEW FOR EXAM # Chapters & This review is intended to aid you in studying for the exam. This should not be the only thing that you do to prepare. Be sure to also look over your notes, textbook,

More information

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc. 5 Trigonometric Identities Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 5.3 Sum and Difference Identities Difference Identity for Cosine Sum Identity for Cosine Cofunction Identities Applications

More information

Figure Derive the transient response of RLC series circuit with sinusoidal input. [15]

Figure Derive the transient response of RLC series circuit with sinusoidal input. [15] COURTESY IARE Code No: R09220205 R09 SET-1 B.Tech II Year - II Semester Examinations, December-2011 / January-2012 NETWORK THEORY (ELECTRICAL AND ELECTRONICS ENGINEERING) Time: 3 hours Max. Marks: 80 Answer

More information

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

7.1 INTRODUCTION TO PERIODIC FUNCTIONS 7.1 INTRODUCTION TO PERIODIC FUNCTIONS *SECTION: 6.1 DCP List: periodic functions period midline amplitude Pg 247- LECTURE EXAMPLES: Ferris wheel, 14,16,20, eplain 23, 28, 32 *SECTION: 6.2 DCP List: unit

More information

http://www.math.utah.edu/~palais/sine.html http://www.ies.co.jp/math/java/trig/index.html http://www.analyzemath.com/function/periodic.html http://math.usask.ca/maclean/sincosslider/sincosslider.html http://www.analyzemath.com/unitcircle/unitcircle.html

More information

2009 A-level Maths Tutor All Rights Reserved

2009 A-level Maths Tutor All Rights Reserved 2 This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents radians 3 sine, cosine & tangent 7 cosecant, secant & cotangent

More information

Angles and Angle Measure

Angles and Angle Measure Angles and Angle Measure An angle θ is in standard position if the vertex of the angle is at the origin and the initial arm lies along the positive x-axis. The terminal arm can lie anywhere along the arc

More information

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given Trigonometry Joysheet 1 MAT 145, Spring 2017 D. Ivanšić Name: Covers: 6.1, 6.2 Show all your work! 1. 8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given that sin

More information

On a Sturm Liouville Framework for Continuous and Discrete Frequency Modulation

On a Sturm Liouville Framework for Continuous and Discrete Frequency Modulation On a Sturm Liouville Framework for Continuous and Discrete Frequency Modulation (Invited Paper Balu Santhanam, Dept. of E.C.E., University of New Mexico, Albuquerque, NM: 873 Email: bsanthan@ece.unm.edu

More information

13-3The The Unit Unit Circle

13-3The The Unit Unit Circle 13-3The The Unit Unit Circle Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Find the measure of the reference angle for each given angle. 1. 120 60 2. 225 45 3. 150 30 4. 315 45 Find the exact value

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

ALTERNATIVE METHODS OF SEASONAL ADJUSTMENT

ALTERNATIVE METHODS OF SEASONAL ADJUSTMENT ALTERNATIVE METHODS OF SEASONAL ADJUSTMENT by D.S.G. Pollock and Emi Mise (University of Leicester) We examine two alternative methods of seasonal adjustment, which operate, respectively, in the time domain

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.2 Trigonometric Functions: The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives Identify a unit circle and describe

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions A Periodic Function and Its Period Section 5.2 Graphs of the Sine and Cosine Functions A nonconstant function f is said to be periodic if there is a number p > 0 such that f(x + p) = f(x) for all x in

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

The Periodogram. Use identity sin(θ) = (e iθ e iθ )/(2i) and formulas for geometric sums to compute mean.

The Periodogram. Use identity sin(θ) = (e iθ e iθ )/(2i) and formulas for geometric sums to compute mean. The Periodogram Sample covariance between X and sin(2πωt + φ) is 1 T T 1 X t sin(2πωt + φ) X 1 T T 1 sin(2πωt + φ) Use identity sin(θ) = (e iθ e iθ )/(2i) and formulas for geometric sums to compute mean.

More information

Math Problem Set 5. Name: Neal Nelson. Show Scored View #1 Points possible: 1. Total attempts: 2

Math Problem Set 5. Name: Neal Nelson. Show Scored View #1 Points possible: 1. Total attempts: 2 Math Problem Set 5 Show Scored View #1 Points possible: 1. Total attempts: (a) The angle between 0 and 60 that is coterminal with the 69 angle is degrees. (b) The angle between 0 and 60 that is coterminal

More information

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

7.1 INTRODUCTION TO PERIODIC FUNCTIONS 7.1 INTRODUCTION TO PERIODIC FUNCTIONS Ferris Wheel Height As a Function of Time The London Eye Ferris Wheel measures 450 feet in diameter and turns continuously, completing a single rotation once every

More information

Solutions to Information Theory Exercise Problems 5 8

Solutions to Information Theory Exercise Problems 5 8 Solutions to Information Theory Exercise roblems 5 8 Exercise 5 a) n error-correcting 7/4) Hamming code combines four data bits b 3, b 5, b 6, b 7 with three error-correcting bits: b 1 = b 3 b 5 b 7, b

More information

Practical Application of Wavelet to Power Quality Analysis. Norman Tse

Practical Application of Wavelet to Power Quality Analysis. Norman Tse Paper Title: Practical Application of Wavelet to Power Quality Analysis Author and Presenter: Norman Tse 1 Harmonics Frequency Estimation by Wavelet Transform (WT) Any harmonic signal can be described

More information

High resolution LFMCW radar system using modelbased beat frequency estimation in cable fault localization

High resolution LFMCW radar system using modelbased beat frequency estimation in cable fault localization LETTER IEICE Electronics Express, Vol.11, No.1, 1 6 High resolution LFMCW radar system using modelbased beat frequency estimation in cable fault localization Chun Ku Lee 1, Jin Bae Park 1a), Yong-June

More information

II. Random Processes Review

II. Random Processes Review II. Random Processes Review - [p. 2] RP Definition - [p. 3] RP stationarity characteristics - [p. 7] Correlation & cross-correlation - [p. 9] Covariance and cross-covariance - [p. 10] WSS property - [p.

More information

Digital Signal Processing Fourier Analysis of Continuous-Time Signals with the Discrete Fourier Transform

Digital Signal Processing Fourier Analysis of Continuous-Time Signals with the Discrete Fourier Transform Digital Signal Processing Fourier Analysis of Continuous-Time Signals with the Discrete Fourier Transform D. Richard Brown III D. Richard Brown III 1 / 11 Fourier Analysis of CT Signals with the DFT Scenario:

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

EECS 216 Winter 2008 Lab 2: FM Detector Part I: Intro & Pre-lab Assignment

EECS 216 Winter 2008 Lab 2: FM Detector Part I: Intro & Pre-lab Assignment EECS 216 Winter 2008 Lab 2: Part I: Intro & Pre-lab Assignment c Kim Winick 2008 1 Introduction In the first few weeks of EECS 216, you learned how to determine the response of an LTI system by convolving

More information

Mod E - Trigonometry. Wednesday, July 27, M132-Blank NotesMOM Page 1

Mod E - Trigonometry. Wednesday, July 27, M132-Blank NotesMOM Page 1 M132-Blank NotesMOM Page 1 Mod E - Trigonometry Wednesday, July 27, 2016 12:13 PM E.0. Circles E.1. Angles E.2. Right Triangle Trigonometry E.3. Points on Circles Using Sine and Cosine E.4. The Other Trigonometric

More information

10 Antenna gain, beam pattern, directivity

10 Antenna gain, beam pattern, directivity 10 Antenna gain, beam pattern, directivity Adipoleantenna(oracloselyrelatedmonopoletobestudiedinLecture 18) is a near perfect radiator for purposes of broadcasting that is, sending waves of equal amplitudes

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

ONE of the most common and robust beamforming algorithms

ONE of the most common and robust beamforming algorithms TECHNICAL NOTE 1 Beamforming algorithms - beamformers Jørgen Grythe, Norsonic AS, Oslo, Norway Abstract Beamforming is the name given to a wide variety of array processing algorithms that focus or steer

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE

Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE Email:shahrel@eng.usm.my 1 Outline of Chapter 9 Introduction Sinusoids Phasors Phasor Relationships for Circuit Elements

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 Date: November 18, 2010 Course: EE 313 Evans Name: Last, First The exam is scheduled to last 75 minutes. Open books

More information

Notes on Fourier transforms

Notes on Fourier transforms Fourier Transforms 1 Notes on Fourier transforms The Fourier transform is something we all toss around like we understand it, but it is often discussed in an offhand way that leads to confusion for those

More information

Algebra2/Trig Chapter 10 Packet

Algebra2/Trig Chapter 10 Packet Algebra2/Trig Chapter 10 Packet In this unit, students will be able to: Convert angle measures from degrees to radians and radians to degrees. Find the measure of an angle given the lengths of the intercepted

More information

INTEGRATING AND DECIPHERING SIGNAL BY FOURIER TRANSFORM

INTEGRATING AND DECIPHERING SIGNAL BY FOURIER TRANSFORM INTEGRATING AND DECIPHERING SIGNAL BY FOURIER TRANSFORM Yoyok Heru Prasetyo Isnomo 1, M. Nanak Zakaria 2, Lis Diana Mustafa 3 Electrical Engineering Department, Malang State Polytechnic, INDONESIA. 1 urehkoyoy@yahoo.co.id,

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions Q1 : Find the radian measures corresponding to the following degree measures: (i) 25 (ii) - 47 30' (iii) 240 (iv) 520 (i) 25 We know that 180 = π radian (ii) â 47 30' â 47 30' =

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

Algebra and Trig. I. The graph of

Algebra and Trig. I. The graph of Algebra and Trig. I 4.5 Graphs of Sine and Cosine Functions The graph of The graph of. The trigonometric functions can be graphed in a rectangular coordinate system by plotting points whose coordinates

More information

Lab10: FM Spectra and VCO

Lab10: FM Spectra and VCO Lab10: FM Spectra and VCO Prepared by: Keyur Desai Dept. of Electrical Engineering Michigan State University ECE458 Lab 10 What is FM? A type of analog modulation Remember a common strategy in analog modulation?

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N]

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N] Frequency Division Multiplexing 6.02 Spring 20 Lecture #4 complex exponentials discrete-time Fourier series spectral coefficients band-limited signals To engineer the sharing of a channel through frequency

More information

Radiometry I: Illumination. cs348b Matt Pharr

Radiometry I: Illumination. cs348b Matt Pharr Radiometry I: Illumination cs348b Matt Pharr Administrivia Extra copies of lrt book Bug fix for assignment 1 polynomial.h file Onward To The Physical Description of Light Four key quantities Power Radiant

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

Digital communication

Digital communication Chapter 4 Digital communication A digital is a discrete-time binary m : Integers Bin = {0, 1}. To transmit such a it must first be transformed into a analog. The is then transmitted as such or modulated

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

CDMA Mobile Radio Networks

CDMA Mobile Radio Networks - 1 - CDMA Mobile Radio Networks Elvino S. Sousa Department of Electrical and Computer Engineering University of Toronto Canada ECE1543S - Spring 1999 - 2 - CONTENTS Basic principle of direct sequence

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. OpenCourseWare 2006

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. OpenCourseWare 2006 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 6 Quantization and Oversampled Noise Shaping

More information

Alternating voltages and currents

Alternating voltages and currents Alternating voltages and currents Introduction - Electricity is produced by generators at power stations and then distributed by a vast network of transmission lines (called the National Grid system) to

More information

SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES

SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES CARSTEN JENTSCH AND MARKUS PAULY Abstract. In this supplementary material we provide additional supporting

More information

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

ME 365 FINAL EXAM. Monday, April 29, :30 pm-5:30 pm LILY Problem Score

ME 365 FINAL EXAM. Monday, April 29, :30 pm-5:30 pm LILY Problem Score Name: SOLUTION Section: 8:30_Chang 11:30_Meckl ME 365 FINAL EXAM Monday, April 29, 2013 3:30 pm-5:30 pm LILY 1105 Problem Score Problem Score Problem Score Problem Score Problem Score 1 5 9 13 17 2 6 10

More information

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function.

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function. Math 160 www.timetodare.com Periods of trigonometric functions Definition A function y f ( t) f ( t p) f ( t) 6.4 & 6.5 Graphing Trigonometric Functions = is periodic if there is a positive number p such

More information

ELE636 Communication Systems

ELE636 Communication Systems ELE636 Communication Systems Chapter 5 : Angle (Exponential) Modulation 1 Phase-locked Loop (PLL) The PLL can be used to track the phase and the frequency of the carrier component of an incoming signal.

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 Introduction... 6. Mathematical models for communication channels...

More information

Pre-Calculus Notes: Chapter 6 Graphs of Trigonometric Functions

Pre-Calculus Notes: Chapter 6 Graphs of Trigonometric Functions Name: Pre-Calculus Notes: Chapter Graphs of Trigonometric Functions Section 1 Angles and Radian Measure Angles can be measured in both degrees and radians. Radian measure is based on the circumference

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions 4 Section 7. Graphs of the Sine and Cosine Functions In this section, we will look at the graphs of the sine and cosine function. The input values will be the angle in radians so we will be using x is

More information

TUTORIAL 9 OPEN AND CLOSED LOOP LINKS. On completion of this tutorial, you should be able to do the following.

TUTORIAL 9 OPEN AND CLOSED LOOP LINKS. On completion of this tutorial, you should be able to do the following. TUTORIAL 9 OPEN AND CLOSED LOOP LINKS This tutorial is of interest to any student studying control systems and in particular the EC module D7 Control System Engineering. On completion of this tutorial,

More information

RC and RL Circuits. Figure 1: Capacitor charging circuit.

RC and RL Circuits. Figure 1: Capacitor charging circuit. RC and RL Circuits Page 1 RC and RL Circuits RC Circuits In this lab we study a simple circuit with a resistor and a capacitor from two points of view, one in time and the other in frequency. The viewpoint

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

Objectives. Presentation Outline. Digital Modulation Lecture 03

Objectives. Presentation Outline. Digital Modulation Lecture 03 Digital Modulation Lecture 03 Inter-Symbol Interference Power Spectral Density Richard Harris Objectives To be able to discuss Inter-Symbol Interference (ISI), its causes and possible remedies. To be able

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LORTORY Eperiment 5 RC Circuits Frequency Response Modified for Physics 18, rooklyn College I. Overview of Eperiment In this eperiment

More information

ANALOGUE TRANSMISSION OVER FADING CHANNELS

ANALOGUE TRANSMISSION OVER FADING CHANNELS J.P. Linnartz EECS 290i handouts Spring 1993 ANALOGUE TRANSMISSION OVER FADING CHANNELS Amplitude modulation Various methods exist to transmit a baseband message m(t) using an RF carrier signal c(t) =

More information

Introduction to Trigonometry. Algebra 2

Introduction to Trigonometry. Algebra 2 Introduction to Trigonometry Algebra 2 Angle Rotation Angle formed by the starting and ending positions of a ray that rotates about its endpoint Use θ to represent the angle measure Greek letter theta

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

Phase demodulation using the Hilbert transform in the frequency domain

Phase demodulation using the Hilbert transform in the frequency domain Phase demodulation using the Hilbert transform in the frequency domain Author: Gareth Forbes Created: 3/11/9 Revision: The general idea A phase modulated signal is a type of signal which contains information

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions Section 5.2 Graphs of the Sine and Cosine Functions We know from previously studying the periodicity of the trigonometric functions that the sine and cosine functions repeat themselves after 2 radians.

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Radian and Degree Measure Trigonometric Functions: The Unit Circle Right Triangle Trigonometry

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

Continuous-Time Analog Filters

Continuous-Time Analog Filters ENGR 4333/5333: Digital Signal Processing Continuous-Time Analog Filters Chapter 2 Dr. Mohamed Bingabr University of Central Oklahoma Outline Frequency Response of an LTIC System Signal Transmission through

More information

Analysis of low probability of intercept (LPI) radar signals using the Wigner Distribution

Analysis of low probability of intercept (LPI) radar signals using the Wigner Distribution Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2002-09 Analysis of low probability of intercept (LPI) radar signals using the Wigner Distribution Gau, Jen-Yu Monterey

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

1 Trigonometric Identities

1 Trigonometric Identities MTH 120 Spring 2008 Essex County College Division of Mathematics Handout Version 6 1 January 29, 2008 1 Trigonometric Identities 1.1 Review of The Circular Functions At this point in your mathematical

More information

the input values of a function. These are the angle values for trig functions

the input values of a function. These are the angle values for trig functions SESSION 8: TRIGONOMETRIC FUNCTIONS KEY CONCEPTS: Graphs of Trigonometric Functions y = sin θ y = cos θ y = tan θ Properties of Graphs Shape Intercepts Domain and Range Minimum and maximum values Period

More information

Real and Complex Modulation

Real and Complex Modulation Real and Complex Modulation TIPL 4708 Presented by Matt Guibord Prepared by Matt Guibord 1 What is modulation? Modulation is the act of changing a carrier signal s properties (amplitude, phase, frequency)

More information

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK. EECS 3213 Fall 2014 L12: Modulation Sebastian Magierowski York University 1 Outline Review Passband Modulation ASK, FSK, PSK Constellations 2 1 Underlying Idea Attempting to send a sequence of digits through

More information