Combined Series and Parallel Circuits

Size: px
Start display at page:

Download "Combined Series and Parallel Circuits"

Transcription

1 Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel l circuits. it 2. Calculate the equivalent resistance of circuits combining series and parallel connections. 3. To understand the origins of both of Kirchhoff's rules and how to use them to solve a circuit problem. 4. Solve circuit problems.

2 Resistance and Current Series Circuit Equivalent resistance is equal to the sum of all the resistance in the circuit. i Circuit current is equal to the voltage source divided by theequivalent equivalent resistance. R = R + R + R + R eq n... I = V / R source eq

3 Resistance and Current Series Circuit V = 12 volts R 1 = 10 Ω R 2 = 25 Ω Find the equivalent resistance Find the current through the circuit Find the voltage through each resistor

4 Resistance and Current Parallel Circuit Parallel Circuit The reciprocal of the equivalent resistance is equal to the sum of the reciprocals of the individual resistances. The total current is the sum of all the currents. The potential difference across each resistor is the same 1/ R = 1/ R + 1/ R + 1/ R eq I = I + I + I n I = V / R source n...

5 Resistance and Current Parallel Circuits V = 12 volts V = 12 volts R 1 = 10 Ω R 2 = 25 Ω What is the voltage through each resistor? Find the equivalent resistance Find the current through R 1 and R 2

6 Household circuits Why do the lights dim when the hair dryer goes on? Small resistance from wiring This is called a combination series and parallel circuit

7 Series and Parallel Circuits 1. Draw a diagram of the circuit 2. Find any resistors in parallel. They must have the same potential difference across them. Calculate the single equivalent resistance of a resistor that can replace them. 3. Are any resistors (including the parallel equivalent resistor) in series? Resistors in series have one and only one current path through them. Calculate the new single equivalent resistance that can replace them. Draw a new schematic diagram using that resistor. 4. Repeat steps 2 and 3 until you can reduce the current to a single resistor. Find the total circuit current. Then go backwards to find the currents through and the voltages across individual resistors.

8 Kirchhoff s Rules Kirchhoff's first law when officially stated sounds more complicated than it actually is. Generally speaking, it says, the total current entering a junction must equal the total current leaving the junction. After all, no charges can simply disappear or get created, so current can't disappear or be created either. A junction is any place in a circuit where more than twopaths come together. Kirchhoff's second law whenofficially stated sounds more complicated than it actually is. Generally speaking, it says, around any loop in a circuit, the voltage rises must equal the voltage drops. Another way of thinking about this is to consider that whatever energy a charge starts with in a circuit loop, it must end up losing all that energy by the time it gets to the end. Or we could say that by the time a charge makes it to the end of a circuit, it must have given all its energy to do work.

9 Kirchhoff s Rules Gustav Kirchhoff The sum of the currents entering any junction must equal the sum of the currents leaving that junction. (junction rule)

10 In this example you will notice that 8 Amps of current enter the junction and 3 and 5 Amps leave the junction. This makes a total of 8 Amps entering and 8 Amps leaving. In this example you will notice 8 Amps and 1 Amp entering the junction and 9 Amps leaving. This makes a total of 9 Amps entering and 9 Amps leaving. In this example you will notice 8 Amps and 1 Amp entering the junction while 7 Amps and 2 Amps leave. This makes a total of 9 Amps entering and 9 Amps leaving.

11 Kirchhoff s Rules 1. The sum of the potential differences across all the elements around any closed circuit loop mustequal zero. (loop rule)

12 This is a simple circuit showing the potential differences across the source and the resistor. According to Kirchhoff's 2nd law the sum of the potential differences will be zero. This diagram shows the potentials in the little circles and then shows the potential differences off to the side. Notice that the potential difference is actually the difference between one potential and another. Moving from a low potential to a high potential is considered a potential rise or positive potential difference. Moving from a high potential to a lower potential is considered a potential drop or negative potential difference. This animation shows the same circuit as above but only looks at the potential differences as you go around the loop. Again, Kirchhoff's 2nd law says the sum of the potential differences has to be zero.

Combined Series and Parallel Circuits

Combined Series and Parallel Circuits Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate the equivalent resistance of circuits combining

More information

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws. Kirchhoff s laws Objectives Apply Kirchhoff s first and second laws. Calculate the current and voltage for resistor circuits connected in parallel. Calculate the current and voltage for resistor circuits

More information

Series and Parallel Circuits. Series Connection

Series and Parallel Circuits. Series Connection Series and Parallel Circuits When devices are connected in an electric circuits, they can be connected in series or in parallel with other devices. A Series Connection When devices are series, any current

More information

Chapter 26: Direct current circuit

Chapter 26: Direct current circuit Chapter 26: Direct current circuit Resistors in circuits Equivalent resistance The nature of the electric potential and current in circuit Kirchhoff s rules (for complicated circuit analysis) Resistors

More information

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current.

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. Section 1 Schematic Diagrams and Circuits Electric Circuits, continued Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. short circuit closed circuit, no load.

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

Unit 7 Parallel Circuits

Unit 7 Parallel Circuits Unit 7 Parallel Circuits Objectives: Unit 7 Parallel Circuits Discuss the characteristics of parallel circuits. State the three rules for solving electrical values of resistance for parallel circuits.

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t Chapters 34 & 35: Electric Circuits NAME: Text: Chapter 34 Chapter 35 Think and Explain: 1-3, 6-8, 10 Think and Explain: 1-10 Think and Solve: 1-6 Think and Solve: 1-4 Vocabulary: Ohm s Law, resistance,

More information

Circuits and Circuit Elements

Circuits and Circuit Elements Circuits and Circuit Elements Schematic Diagrams A diagram that depicts the construction of an electrical apparatus is called a schematic diagram These diagrams use symbols to represent the bulb, battery,

More information

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Circuitry II Mr. Alex Rawson Physics 1. Three resistors of 100, 140, and 80 are placed in a series circuit. a. Find the equivalent resistance. (Your answer should be between 0

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Outline 28.1 Electromotive Force 28.2 Resistors in Series and Parallel 28.3 Kirchhoff s Rules 28.1 Electromotive Force (emf) Because the potential difference at the battery

More information

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Explain the behavior of the current and the voltage in a Series Circuit. Explain the behavior of the current

More information

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law Exercise 7 Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple

More information

Pre-Lab for Batteries and Bulbs

Pre-Lab for Batteries and Bulbs Pre-Lab for Batteries and Bulbs Complex circuits composed of resistors can be simplified by using the concept of equivalent resistors. For example if resistors R 1, R 2, and R 3 are connected in series,

More information

AP Physics - Problem Drill 14: Electric Circuits

AP Physics - Problem Drill 14: Electric Circuits AP Physics - Problem Drill 14: Electric Circuits No. 1 of 10 1. Identify the four electric circuit symbols. (A) 1. AC power 2. Battery 3. Light Bulb 4. Resistor (B) 1. Ammeter 2. Resistor 3. AC Power 4.

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2 EE 101 Spring 2006 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20051222JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

More information

ECE215 Lecture 7 Date:

ECE215 Lecture 7 Date: Lecture 7 Date: 29.08.2016 AC Circuits: Impedance and Admittance, Kirchoff s Laws, Phase Shifter, AC bridge Impedance and Admittance we know: we express Ohm s law in phasor form: where Z is a frequency-dependent

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

Chapters 35: Electric Circuits

Chapters 35: Electric Circuits Text: Chapter 35 Think and Explain: 1-10 Think and Solve: 1-4 Chapters 35: Electric Circuits NME: Vocabulary: ammeter, voltmeter, series, parallel, equivalent resistance, circuit, short circuit, open circuit

More information

Direct Current Circuits

Direct Current Circuits PC1143 Physics III Direct Current Circuits 1 Objectives Apply Kirchhoff s rules to several circuits, solve for the currents in the circuits and compare the theoretical values predicted by Kirchhoff s rule

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

10 DIRECT-CURRENT CIRCUITS

10 DIRECT-CURRENT CIRCUITS Chapter 10 Direct-Current Circuits 435 10 DIRECT-CURRENT CIRCUITS Figure 10.1 This circuit shown is used to amplify small signals and power the earbud speakers attached to a cellular phone. This circuit

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Example: In the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what direction?

Example: In the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what direction? 0.8 Circuits Wired Partially in Series and Partially in Parallel Example: n the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what

More information

EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 2 พ นฐานวงจรไฟฟ า

EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 2 พ นฐานวงจรไฟฟ า EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 2 พ นฐานวงจรไฟฟ า สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร INTRODUCTION Two types of current are readily

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

21.1 Resistors in Series and Parallel

21.1 Resistors in Series and Parallel 808 Chapter 21 Circuits and DC Instruments Explain why batteries in a flashlight gradually lose power and the light dims over time. Describe what happens to a graph of the voltage across a capacitor over

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

Final Reg Current and Circuits Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Current and Circuits Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Current and Circuits Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) How much energy does a 100-W light bulb use in 8.0 hours? 1)

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i Kirchoff s Laws and Their Use for Circuit Analysis Equations s i V=I i P=IV p i i Kirchoff s Laws Loop Law The total potential change around a closed circuit equals zero. Current Law for a Point For an

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

INTRODUCTION TO CIRCUITS NOTES

INTRODUCTION TO CIRCUITS NOTES INTRODUCTION TO CIRCUITS NOTES WHAT IS A CIRCUIT? For electricity to flow from a battery to light up a light bulb, there must be a complete path from the positive terminal on top of the battery to the

More information

Circuits. Ch. 35 in your text book

Circuits. Ch. 35 in your text book Circuits Ch. 35 in your text book Objectives Students will be able to: 1) Draw schematic symbols for electrical circuit components 2) Calculate the equivalent resistance for a series circuit 3) Calculate

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

Objective of the Lecture

Objective of the Lecture Objective of the Lecture Present Kirchhoff s Current and Voltage Laws. Chapter 5.6 and Chapter 6.3 Principles of Electric Circuits Chapter4.6 and Chapter 5.5 Electronics Fundamentals or Electric Circuit

More information

Source Transformations

Source Transformations Source Transformations Introduction The circuits in this set of problems consist of independent sources, resistors and a meter. In particular, these circuits do not contain dependent sources. Each of these

More information

Prelab 4 Millman s and Reciprocity Theorems

Prelab 4 Millman s and Reciprocity Theorems Prelab 4 Millman s and Reciprocity Theorems I. For the circuit in figure (4-7a) and figure (4-7b) : a) Calculate : - The voltage across the terminals A- B with the 1kΩ resistor connected. - The current

More information

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes 1 Basic Electronics What is considered to be a basic level of understanding for

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

3. Voltage and Current laws

3. Voltage and Current laws 1 3. Voltage and Current laws 3.1 Node, Branches, and loops A branch represents a single element such as a voltage source or a resistor A node is the point of the connection between two or more elements

More information

ECE2210 Final given: Fall 12

ECE2210 Final given: Fall 12 ECE Final given: Fall (5 pts) a) Find and draw the Thévenin equivalent of the circuit shown The load resistor is R L b) Find and draw the Norton equivalent of the same circuit c) Find the load current

More information

Electric Circuit I Lab Manual Session # 2

Electric Circuit I Lab Manual Session # 2 Electric Circuit I Lab Manual Session # 2 Name: ----------- Group: -------------- 1 Breadboard and Wiring Objective: The objective of this experiment is to be familiar with breadboard and connection made

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW Learning Objectives a. Identify elements that are connected in series b. State and apply KVL in analysis of a series circuit c. Determine the net effect of series-aiding and series-opposing voltage sources

More information

Unit-1(A) Circuit Analysis Techniques

Unit-1(A) Circuit Analysis Techniques Unit-1(A Circuit Analysis Techniques Basic Terms used in a Circuit 1. Node :- It is a point in a circuit where two or more circuit elements are connected together. 2. Branch :- It is that part of a network

More information

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Lecture 10 review: EMF ξ is not a voltage V, but OK for now. Physical emf source has V ab = ξ - Ir internal. Power in a circuit element is P = IV. For

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

I = q/ t units are C/s = A (ampere)

I = q/ t units are C/s = A (ampere) Physics I - Notes Ch. 19-20 Current, Resistance, and Electric Circuits Electromotive force (emf = ε = V; units are volts) charge pump ; source that maintains the potential difference (voltage) in a closed

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Ch. 18 and 19 Review Problems 2

Ch. 18 and 19 Review Problems 2 Ch. 18 and 19 Review Problems 2 NAME 1) A device that produces electricity by transforming chemical energy into electrical energy is called a A) generator. B) transformer. C) battery. D) none of the given

More information

SCRIPT. Voltage Dividers

SCRIPT. Voltage Dividers SCRIPT Hello friends in our earlier discussion we talked about series resistive circuits, when connected in series, resistors form a "string" in which there is only one path for current. Ohm's law can

More information

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Lecture Week 5 Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Voltage Divider Method The voltage divider is a method/tool that can be used to: Design voltage

More information

Analysis and Measurement of a Resistor Bridge Circuit with Three Voltage Sources

Analysis and Measurement of a Resistor Bridge Circuit with Three Voltage Sources Analysis and Measurement of a Resistor Bridge Circuit with Three Voltage Sources EL 111 - DC Fundamentals Required Laboratory Project By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford

More information

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011 AM 5-201 BASIC ELECTRONICS DC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Transformer circuit calculations

Transformer circuit calculations Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet dc Circuits 1. Objectives. The objectives of this laboratory are a. to be able to construct dc circuits given a circuit diagram

More information

Mixed Series & Parallel Circuits

Mixed Series & Parallel Circuits Add Important Mixed Series & arallel Circuits age: 477 Mixed Series & arallel Circuits NGSS Standards: N/A MA Curriculum Frameworks (006): 5. A hysics 1 Learning Objectives: 5.B.9.1, 5.B.9., 5.B.9., 5.C..1,

More information

18-3 Circuit Analogies, and Kirchoff s Rules

18-3 Circuit Analogies, and Kirchoff s Rules 18-3 Circuit Analogies, and Kirchoff s Rules Analogies can help us to understand circuits, because an analogous system helps us build a model of the system we are interested in. For instance, there are

More information

Chapter 12 Electric Circuits

Chapter 12 Electric Circuits Conceptual Physics/ PEP Name: Date: Chapter 12 Electric Circuits Section Review 12.1 1. List one way electric current is similar to water current and one way it is different. 2. Draw a circuit diagram

More information

Electric Circuits Vocabulary

Electric Circuits Vocabulary Electric Circuits Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 5 DC Circuits Name: Lab Partner: Section: 5.1 Purpose The purpose of this lab is to explore the basics of DC circuits, to familiarize you with the di erent physical quantities associated with electricity

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates Introduction to Engineering ENG 1100 - Electrical Engineering Dr. Coates Branches of Electrical Engineering Circuits/Microelectronics Communications Computer Hardware and Software, Digital Logic, Microprocessor

More information

Any path along which electrons can flow is a circuit A Battery and a Bulb

Any path along which electrons can flow is a circuit A Battery and a Bulb Any path along which electrons can flow is a circuit. Mechanical things seem to be easier to figure out for most people than electrical things. Maybe this is because most people have had experience playing

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

Resistors in Series or in Parallel

Resistors in Series or in Parallel Resistors in Series or in Parallel Key Terms series parallel Resistors in Series In a circuit that consists of a single bulb and a battery, the potential difference across the bulb equals the terminal

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING Tai-Chang Chen University of Washington, Bothell Spring 2010 EE215 1 1 WEEK 2 SIMPLE RESISTIVE CIRCUITS April 9 th, 2010 TC Chen UWB 2010 EE215 2 2 QUESTIONS

More information

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits ame & Surname: D: Date: EEE 20 Circuit Theory - Laboratory Kirchoff s Laws, Series-Parallel Circuits List of topics for this laboratory: Ohm s Law Kirchoff s Current Law(KCL) Kirchoff s Voltage Law(KVL)

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-14 Three Phase AC Circuits 2 THE -CONNECTED GENERATOR If we rearrange the coils of the generator as shown in Fig. below the system is referred to

More information

Wheatstone bridge (Item No.: P )

Wheatstone bridge (Item No.: P ) Wheatstone bridge (Item No.: P2410200) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Electricity and Magnetism Subtopic: Electric Current and Resistance Experiment:

More information

Series and Parallel Circuits Basics 1

Series and Parallel Circuits Basics 1 1 Name: Symbols for diagrams Directions: 1. Log on to your computer 2. Go to the following website: http://phet.colorado.edu/en/simulation/-construction-kit-dc Click the button that says Play with sims

More information

Lab #2 Voltage and Current Division

Lab #2 Voltage and Current Division In this experiment, we will be investigating the concepts of voltage and current division. Voltage and current division is an application of Kirchoff s Laws. Kirchoff s Voltage Law Kirchoff s Voltage Law

More information

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Circuits Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Preview Looking Ahead: Analyzing Circuits Practical circuits consist

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

Exercise 9: inductor-resistor-capacitor (LRC) circuits

Exercise 9: inductor-resistor-capacitor (LRC) circuits Exercise 9: inductor-resistor-capacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction

More information

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test South Pasadena A.P. Physics Name Chapter 18-19 Electric Current & DC Circuits Date / / Period 1 2 3 4 Electricity Practice Test Electric Current I = Q/t 1. A charge of 30 Coulombs passes through a 24-ohm

More information

Series Circuit: Electric Circuits

Series Circuit: Electric Circuits /0/ Electric Circuits Do Light Bulb Demo Electric Circuits here are two different types of electrical circuits. Series Parallel Series Circuit: Circuit in which a current flows through each component,

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

Experiment #3 Kirchhoff's Laws

Experiment #3 Kirchhoff's Laws SAN FRANCSC STATE UNVERSTY ELECTRCAL ENGNEERNG Kirchhoff's Laws bjective To verify experimentally Kirchhoff's voltage and current laws as well as the principles of voltage and current division. ntroduction

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

Configurations of Resistors

Configurations of Resistors Configurations of Resistors Safety and Equipment Multimeter with probes or banana leads. Two of 50Ω and one of 100Ω resistors 5 connecting wires with double alligator clips Introduction There are two basic

More information

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance.

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance. Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page 1 Symbols Used

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Experiment 13: LR Circuit

Experiment 13: LR Circuit 012-05892A AC/DC Electronics Laboratory Experiment 13: LR Circuit Purpose Theory EQUIPMENT NEEDED: Computer and Science Workshop Interface Power Amplifier (CI-6552A) (2) Voltage Sensor (CI-6503) AC/DC

More information

Lab 5 Kirchhoff s Laws and Superposition

Lab 5 Kirchhoff s Laws and Superposition Lab 5 Kirchhoff s Laws and Superposition In this lab, Kirchhoff s laws will be investigated using a more complex circuit than in the previous labs. Two voltage sources and seven resistors are included

More information

Chapter two. Basic Laws. 2.1 Introduction

Chapter two. Basic Laws. 2.1 Introduction 2.1 Introduction Chapter two Basic Laws Chapter 1 introduced basic concepts in an electric circuit. To actually determine the values of these variables in a given circuit requires that we understand some

More information

Electric Circuits. Have you checked out current events today?

Electric Circuits. Have you checked out current events today? Electric Circuits Have you checked out current events today? Circuit Symbolism We can simplify this circuit by using symbols All circuits have an energy source and a load, with wires completing the loop

More information