Closed circuit complete path for electrons follow. Open circuit no charge flow and no current.

Size: px
Start display at page:

Download "Closed circuit complete path for electrons follow. Open circuit no charge flow and no current."

Transcription

1 Section 1 Schematic Diagrams and Circuits Electric Circuits, continued Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. short circuit closed circuit, no load. Short circuits can be hazardous.

2 Types of Circuits Series one path for electricity Parallel more than one path or loop.

3 Schematic Diagrams Section 1 Schematic Diagrams and Circuits schematic diagram representation of a circuit. symbols used table in book Any device in a circuit = load

4 Section 1 Schematic Diagrams and Circuits Electric Circuits, continued Voltage source is emf (electromotive force). Battery generator. The potential difference across loads in a circuit equals the terminal voltage

5 Light Bulb Section 1 Schematic Diagrams and Circuits

6 Factors affecting resistance Cross sectional area of conductor Length of conductor Type of conductor Temperature of conductor

7 Honors

8 Section 2 Resistors in Series or in Parallel Resistors in Series or in Parallel

9 Section 2 Resistors in Series or in Parallel Resistors in Series

10 Section 2 Resistors in Series or in Parallel Resistors in Series, Ohms law multiple resistors in a series circuit = effect on the current as one equivalent resistor. I V R eq I= current in amperes (amps) V= voltage =(volts) R= resistance (ohms)

11 Kirchhoff's Rules The sum of the current entering a junction must equal the current leaving The sum of the potential difference across all the elements in a circuit must be 0. batteries supply voltage and loads use it.

12 Section 2 Resistors in Series or in Parallel Sample Problem Resistors in Series A 9.0 V battery is connected to four light bulbs, as shown at right. Find the R eq and total current.

13 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Series 3. Calculate Substitute the values into the equation and solve: R = 2.0 Ω Ω Ω Ω eq R = 18.0 Ω eq Substitute the equivalent resistance value into the equation for current. V 9.0 V I 0.50 A R 18.0 Ω eq

14 Section 2 Resistors in Series or in Parallel Resistors in Series, continued Series circuits require all elements to conduct electricity urrent.

15 Section 2 Resistors in Series or in Parallel Resistors in Parallel A parallel =two or more loads of a circuit that provide separate paths for current.

16 Section 2 Resistors in Series or in Parallel Resistors in Parallel

17 Section 2 Resistors in Series or in Parallel Resistors in Parallel, continued Resistors in parallel have the same V. The sum of currents in parallel resistors equals the total current. The equivalent resistance of resistors in parallel 1 R eq 1 R 1 1 R 2 1 R 3...

18 Section 2 Resistors in Series or in Parallel Sample Problem Resistors in Parallel A 9.0 V battery is connected to four resistors, as shown at right. Find the equivalent resistance for the circuit and the total current in the circuit.

19 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 3. Calculate Substitute the values into the equation and solve: = R 2.0 Ω 4.0 Ω 5.0 Ω 7.0 Ω eq = R Ω Ω Ω Ω Ω eq 1 Ω R eq = = Ω 1.09

20 ` Section 2 Resistors in Series or in Parallel Resistors in Parallel 3. Calculate, continued Substitute the equivalent resistance value into the equation for current. I V R eq 9.0 V Ω I 9.8 A

21 Objectives Section 3 Complex Resistor Combinations Calculate the equivalent resistance for a complex circuit involving both series and parallel portions. Calculate the current in and potential difference across individual elements within a complex circuit.

22 Section 3 Complex Resistor Combinations Resistors Combined Both in Parallel Many complex and circuits in can Series be understood by isolating segments that are in series or in parallel and simplifying them to their equivalent resistances. Work backward to find the current in and potential difference across a part of a circuit.

23 Section 3 Complex Resistor Combinations Analysis of Complex Circuits

24 Sample Problem Section 3 Complex Resistor Combinations Equivalent Resistance Determine the equivalent resistance of the complex circuit shown below.

25 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance Reasoning The best approach is to divide the circuit into groups of series and parallel resistors. This way, the methods presented in Sample Problems A and B can be used to calculate the equivalent resistance for each group.

26 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 1. Redraw the circuit as a group of resistors along one side of the circuit. Because bends in a wire do not affect the circuit, they do not need to be represented in a schematic diagram. Redraw the circuit without the corners, keeping the TIP: For now, disregard the emf source, and work only with the resistances. arrangement of the circuit elements the same.

27 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 2. Identify components in series, and calculate their (b) are in series. equivalent resistance. Resistors in group (a) and For group (a): R eq = 3.0 Ω Ω = 9.0 Ω For group (b): R eq = 6.0 Ω Ω = 8.0 Ω

28 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 3. Identify components in parallel, and calculate their equivalent resis-tance. Resistors in group (c) are in parallel R 8.0Ω 4.0Ω 1Ω 1Ω 1Ω R eq eq 2.7 Ω

29 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 4. Repeat steps 2 and 3 until the resistors in the circuit are reduced to a single equivalent resistance.the For remainder group (d): of the Rresistors, 9.0Ω group 2.7Ω 1.0Ω (d), are eq in series. R eq 12.7Ω

30 Sample Problem Section 3 Complex Resistor Combinations Current in and Potential Difference Across a Resistor Determine the current in and potential difference across the 2.0 Ω resistor highlighted in the figure below.

31 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor Reasoning First determine the total circuit current by reducing the resistors to a single equivalent resistance. Then rebuild the circuit in steps, calculating the current and potential difference for the equivalent resistance of each group until the current in and potential difference across the 2.0 Ω resistor are known.

32 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor 1. Determine the equivalent resistance of the circuit. The equivalent resistance of the circuit is 12.7 Ω, as calculated in the previous Sample Problem.

33 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor 2. Calculate the total current in the circuit. Substitute the potential difference and equivalent resistance in V = IR, and rearrange V 9.0 V the equation I to find the current 0.71 A delivered by the battery. Req 12.7 Ω

34 Section 3 Complex Resistor Combinations Sample Problem, continued 3. Determine a path from the equivalent resistance found in step 1 to the 2.0 Ω resistor. Review the path taken to find the equivalent resistance in the figure at right, and work backward through this path. The equivalent resistance for the entire circuit is the same as the equivalent resistance for group (d). The center resistor in group (d) in turn is the equivalent resistance for group (c). The top resistor in group (c) is the equivalent resistance for group (b), and the right resistor in group (b) is the 2.0 Ω resistor.

35 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor 4. Follow the path determined in step 3, and calculate the current in and potential difference across each equivalent resistance. Repeat this process until the desired values are found.

36 Section 3 Complex Resistor Combinations Sample Problem, continued 4. A. Regroup, evaluate, and calculate. Replace the circuit s equivalent resistance with group (d). The resistors in group (d) are in series; therefore, the current in each resistor is the same as the current in the equivalent resistance, which equals 0.71 A. The potential Given: difference I = 0.71 across A R the = Ω Ω resistor in group Unknown: (d) can be V calculated =? using V = IR. V = IR = (0.71 A)(2.7 Ω) = 1.9 V

37 Section 3 Complex Resistor Combinations Sample Problem, continued 4. B. Regroup, evaluate, and calculate. Replace the center resistor with group (c). The resistors in group (c) are in parallel; therefore, the potential difference across each resistor is the same as the potential difference across the 2.7 Ω equivalent resistance, which equals 1.9 V. The current in the 8.0 Ω resistor in group (c) can be calculated using V = IR. Given: V = 1.9 V R = 8.0 Ω Unknown: I =? I V 1.9 V 0.24 A R 8.0 Ω

38 Section 3 Complex Resistor Combinations Sample Problem, continued 4. C. Regroup, evaluate, and calculate. Replace the 8.0 Ω resistor with group (b). The resistors in group (b) are in series; therefore, the current in each resistor is the same as the current in the 8.0 Ω equivalent I 0.24 A resistance, which equals 0.24 A. The potential difference across the 2.0 Ω resistor can be calculated using V = IR. Given: I = 0.24 A R = 2.0 Ω Unknown: V =? V IR (0.24 A)(2.0 Ω) V 0.48 V

39 Standardized Test Prep Multiple Choice 1. Which of the following is the correct term for a circuit that does not have a closed-loop path for electron flow? A. closed circuit B. dead circuit C. open circuit D. short circuit

40 Standardized Test Prep Multiple Choice, continued 1. Which of the following is the correct term for a circuit that does not have a closed-loop path for electron flow? A. closed circuit B. dead circuit C. open circuit D. short circuit

41 Standardized Test Prep Multiple Choice, continued 2. Which of the following is the correct term for a circuit in which the load has been unintentionally bypassed? F. closed circuit G. dead circuit H. open circuit J. short circuit

42 Standardized Test Prep Multiple Choice, continued 2. Which of the following is the correct term for a circuit in which the load has been unintentionally bypassed? F. closed circuit G. dead circuit H. open circuit J. short circuit

43 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the circuit elements contribute to the load of the circuit? A. Only A B. A and B, but not C C. Only C D. A, B, and C

44 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the circuit elements contribute to the load of the circuit? A. Only A B. A and B, but not C C. Only C D. A, B, and C

45 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the equivalent resis-tance of the circuit? F. R R R G. H. R J. eq A B R R R eq eq A B I V R R R R eq A B C

46 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the equivalent resis-tance of the circuit? F. R R R G. H. R J. eq A B R R R eq eq A B I V R R R R eq A B C

47 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the current in the resistor? A. B. C. D. I I I I I B V R I I I I A B C eq B total A B V R B

48 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the current in the resistor? A. B. C. D. I I I I I B V R I I I I B B A B C eq total V R B A

49 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the equivalent resis-tance of the circuit? F. R R R R G. H. R J. R eq A B C R R R R eq eq eq A B C I V 1 1 RA RB R C 1

50 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the equivalent resis-tance of the circuit? F. R R R R G. H. R J. R eq A B C R R R R eq eq eq A B C I V 1 1 RA RB R C 1

51 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the current in resistor B? A. B. C. D. I I I I I B V R I I I I A B C eq B total A B V R B B

52 Standardized Test Prep Multiple Choice, continued Use the diagram below to answer questions Which of the following is the correct equation for the current in resistor B? A. B. C. D. I I I I I B V R I I I I B B A B C eq total V R B B A

53 Standardized Test Prep Multiple Choice, continued 8. Three 2.0 Ω resistors are connected in series to a 12 V battery. What is the potential difference across each resistor? F. 2.0 V G. 4.0 V H. 12 V J. 36 V

54 Standardized Test Prep Multiple Choice, continued 8. Three 2.0 Ω resistors are connected in series to a 12 V battery. What is the potential difference across each resistor? F. 2.0 V G. 4.0 V H. 12 V J. 36 V

55 Standardized Test Prep Multiple Choice, continued Use the following passage to answer questions Six light bulbs are connected in parallel to a 9.0 V battery. Each bulb has a resistance of 3.0 Ω. 9. What is the potential difference across each bulb? A. 1.5 V B. 3.0 V C. 9.0 V D. 27 V

56 Standardized Test Prep Multiple Choice, continued Use the following passage to answer questions Six light bulbs are connected in parallel to a 9.0 V battery. Each bulb has a resistance of 3.0 Ω. 9. What is the potential difference across each bulb? A. 1.5 V B. 3.0 V C. 9.0 V D. 27 V

57 Standardized Test Prep Multiple Choice, continued Use the following passage to answer questions Six light bulbs are connected in parallel to a 9.0 V battery. Each bulb has a resistance of 3.0 Ω. 10. What is the current in each bulb? F. 0.5 A G. 3.0 A H. 4.5 A J. 18 A

58 Standardized Test Prep Multiple Choice, continued Use the following passage to answer questions Six light bulbs are connected in parallel to a 9.0 V battery. Each bulb has a resistance of 3.0 Ω. 10. What is the current in each bulb? F. 0.5 A G. 3.0 A H. 4.5 A J. 18 A

59 Standardized Test Prep Multiple Choice, continued Use the following passage to answer questions Six light bulbs are connected in parallel to a 9.0 V battery. Each bulb has a resistance of 3.0 Ω. 11. What is the total current in the circuit? A. 0.5 A B. 3.0 A C. 4.5 A D. 18 A

60 Standardized Test Prep Multiple Choice, continued Use the following passage to answer questions Six light bulbs are connected in parallel to a 9.0 V battery. Each bulb has a resistance of 3.0 Ω. 11. What is the total current in the circuit? A. 0.5 A B. 3.0 A C. 4.5 A D. 18 A

61 Short Response Standardized Test Prep 12. Which is greater, a battery s terminal voltage or the same battery s emf? Explain why these two quantities are not equal.

62 Standardized Test Prep Short Response, continued 12. Which is greater, a battery s terminal voltage or the same battery s emf? Explain why these two quantities are not equal. Answer: A battery s emf is slightly greater than its terminal voltage. The difference is due to the battery s internal resistance.

63 Standardized Test Prep Short Response, continued 13. Describe how a short circuit could lead to a fire.

64 Standardized Test Prep Short Response, continued 13. Describe how a short circuit could lead to a fire. Answer: In a short circuit, the equivalent resistance of the circuit drops very low, causing the current to be very high. The higher current can cause wires still in the circuit to overheat, which may in turn cause a fire in materials contacting the wires.

65 Standardized Test Prep Short Response, continued 14. Explain the advantage of wiring the bulbs in a string of decorative lights in parallel rather than in series.

66 Standardized Test Prep Short Response, continued 14. Explain the advantage of wiring the bulbs in a string of decorative lights in parallel rather than in series. Answer: If one bulb is removed, the other bulbs will still carry current.

67 Standardized Test Prep Extended Response 15. Using standard symbols for circuit elements, draw a diagram of a circuit that contains a battery, an open switch, and a light bulb in parallel with a resistor. Add an arrow to indicate the direction of current if the switch were closed.

68 Standardized Test Prep Extended Response, continued 15. Using standard symbols for circuit elements, draw a diagram of a circuit that contains a battery, an open switch, and a light bulb in parallel with a resistor. Add an arrow to indicate the direction of current if the switch were closed. Answer:

69 Standardized Test Prep Extended Response, continued Use the diagram below to answer questions For the circuit shown, calculate the following: a. the equivalent resistance of the circuit b. the current in the light bulb. Show all your work for both calculations.

70 Standardized Test Prep Extended Response, continued Use the diagram below to answer questions For the circuit shown, calculate the following: a. the equivalent resistance of the circuit b. the current in the light bulb. Show all your work for both calculations. Answer: a. 4.2 Ω b. 2.9 A

71 Standardized Test Prep Extended Response, continued Use the diagram below to answer questions After a period of time, the 6.0 Ω resistor fails and breaks. Describe what happens to the brightness of the bulb. Support your answer.

72 Standardized Test Prep Extended Response, continued Use the diagram below to answer questions Answer: The bulb will grow dim. The loss of the 6.0 Ω resistor causes the equivalent resistance of the circuit to increase to 4.5 Ω. As a result, the current in the bulb drops to 2.7 A, and the brightness of the bulb decreases.

73 Standardized Test Prep Extended Response, continued 18. Find the current in and potential difference across each of the resistors in the following circuits: a. a 4.0 Ω and a 12.0 Ω resistor wired in series with a 4.0 V source. b. a 4.0 Ω and a 12.0 Ω resistor wired in parallel with a 4.0 V source. Show all your work for each calculation.

74 18. Find the current in and potential difference across each of the resistors in the following circuits: a. a 4.0 Ω and a 12.0 Ω resistor wired in series with a 4.0 V source. b. a 4.0 Ω and a 12.0 Ω resistor wired in parallel with a 4.0 V source. Show all your work for each calculation. Answers: a. 4.0 Ω: 0.25 A, 1.0 V 12.0 Ω: 0.25 A, 3.0 V b. 4.0 Ω: 1.0 A, 4.0 V Chapter 18 Standardized Test Prep Extended Response, continued

75 Standardized Test Prep Extended Response, continued 19. Find the current in and potential difference across each of the resistors in the following circuits: a. a 150 Ω and a 180 Ω resistor wired in series with a 12 V source. b. a 150 Ω and a 180 Ω resistor wired in parallel with a 12 V source. Show all your work for each calculation.

76 Standardized Test Prep Extended Response, continued 19. Find the current in and potential difference across each of the resistors in the following circuits: a. a 150 Ω and a 180 Ω resistor wired in series with a 12 V source. b. a 150 Ω and a 180 Ω resistor wired in parallel with a 12 V source. Answer: a.150 Ω: A, 5.4 V Show 180 Ω: all your A, work 6.5 Vfor each calculation. b. 150 Ω: A, 12 V 180 Ω: A, 12 V

77 Diagram Symbols Section 1 Schematic Diagrams and Circuits

Combined Series and Parallel Circuits

Combined Series and Parallel Circuits Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate the equivalent resistance of circuits combining

More information

Chapter 26: Direct current circuit

Chapter 26: Direct current circuit Chapter 26: Direct current circuit Resistors in circuits Equivalent resistance The nature of the electric potential and current in circuit Kirchhoff s rules (for complicated circuit analysis) Resistors

More information

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws. Kirchhoff s laws Objectives Apply Kirchhoff s first and second laws. Calculate the current and voltage for resistor circuits connected in parallel. Calculate the current and voltage for resistor circuits

More information

Combined Series and Parallel Circuits

Combined Series and Parallel Circuits Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel l circuits. it 2. Calculate the equivalent resistance of circuits combining

More information

AP Physics - Problem Drill 14: Electric Circuits

AP Physics - Problem Drill 14: Electric Circuits AP Physics - Problem Drill 14: Electric Circuits No. 1 of 10 1. Identify the four electric circuit symbols. (A) 1. AC power 2. Battery 3. Light Bulb 4. Resistor (B) 1. Ammeter 2. Resistor 3. AC Power 4.

More information

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 In this lesson we: Lesson Description Discuss the application of Ohm s Law Explain the series and parallel connection of resistors Discuss the effect of internal

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Series and Parallel DC Circuits

Series and Parallel DC Circuits Series and Parallel DC Circuits asic Circuits n electric circuit is closed loop of conductive material (metal wire) that connects several circuit elements together (batteries, resistors, capacitors, etc.)

More information

Resistors in Series or in Parallel

Resistors in Series or in Parallel Resistors in Series or in Parallel Key Terms series parallel Resistors in Series In a circuit that consists of a single bulb and a battery, the potential difference across the bulb equals the terminal

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Outline 28.1 Electromotive Force 28.2 Resistors in Series and Parallel 28.3 Kirchhoff s Rules 28.1 Electromotive Force (emf) Because the potential difference at the battery

More information

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Circuitry II Mr. Alex Rawson Physics 1. Three resistors of 100, 140, and 80 are placed in a series circuit. a. Find the equivalent resistance. (Your answer should be between 0

More information

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Explain the behavior of the current and the voltage in a Series Circuit. Explain the behavior of the current

More information

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Circuits Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Preview Looking Ahead: Analyzing Circuits Practical circuits consist

More information

I = q/ t units are C/s = A (ampere)

I = q/ t units are C/s = A (ampere) Physics I - Notes Ch. 19-20 Current, Resistance, and Electric Circuits Electromotive force (emf = ε = V; units are volts) charge pump ; source that maintains the potential difference (voltage) in a closed

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

Series and parallel resistances

Series and parallel resistances Series and parallel resistances Objectives Calculate the equivalent resistance for resistors connected in both series and parallel combinations. Construct series and parallel circuits of lamps (resistors).

More information

Circuits and Circuit Elements

Circuits and Circuit Elements Circuits and Circuit Elements Schematic Diagrams A diagram that depicts the construction of an electrical apparatus is called a schematic diagram These diagrams use symbols to represent the bulb, battery,

More information

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance.

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance. Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page 1 Symbols Used

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 21 Electric Current and Direct-Current Circuit Outline 21-1 Electric Current 21-2 Resistance and Ohm s Law 21-3 Energy and Power in Electric Circuit 21-4 Resistance in Series and Parallel 21-5

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

Mixed Series & Parallel Circuits

Mixed Series & Parallel Circuits Add Important Mixed Series & arallel Circuits age: 477 Mixed Series & arallel Circuits NGSS Standards: N/A MA Curriculum Frameworks (006): 5. A hysics 1 Learning Objectives: 5.B.9.1, 5.B.9., 5.B.9., 5.C..1,

More information

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Lecture 10 review: EMF ξ is not a voltage V, but OK for now. Physical emf source has V ab = ξ - Ir internal. Power in a circuit element is P = IV. For

More information

Series and Parallel Circuits. Series Connection

Series and Parallel Circuits. Series Connection Series and Parallel Circuits When devices are connected in an electric circuits, they can be connected in series or in parallel with other devices. A Series Connection When devices are series, any current

More information

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011 AM 5-201 BASIC ELECTRONICS DC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Example: In the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what direction?

Example: In the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what direction? 0.8 Circuits Wired Partially in Series and Partially in Parallel Example: n the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what

More information

PHYS102 Previous Exam Problems. Circuits

PHYS102 Previous Exam Problems. Circuits PHYS102 Previous Exam Problems CHAPTER 27 Circuits Combination of resistors Potential differences Single loop circuits Kirchhoff laws Multiloop circuits RC circuits General 1. Figure 1 shows two resistors

More information

10 DIRECT-CURRENT CIRCUITS

10 DIRECT-CURRENT CIRCUITS Chapter 10 Direct-Current Circuits 435 10 DIRECT-CURRENT CIRCUITS Figure 10.1 This circuit shown is used to amplify small signals and power the earbud speakers attached to a cellular phone. This circuit

More information

ECET 3000 Electrical Principles

ECET 3000 Electrical Principles ECET 3000 Electrical Principles SeriesParallel Circuits Introduction The fundamental concepts and building blocks that form the foundation of basic circuit theory are: Ohm s Law Seriesconnected Resistors

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Pre-Lab for Batteries and Bulbs

Pre-Lab for Batteries and Bulbs Pre-Lab for Batteries and Bulbs Complex circuits composed of resistors can be simplified by using the concept of equivalent resistors. For example if resistors R 1, R 2, and R 3 are connected in series,

More information

Techniques for Passive Circuit Analysis for. State Space Differential Equations

Techniques for Passive Circuit Analysis for. State Space Differential Equations Techniques for Passive Circuit Analysis for chp4 1 State Space Differential Equations 1. Draw circuit schematic and label components (e.g., R 1, R 2, C 1, L 1 ) 2. Assign voltage at each node (e.g., e

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method Analysis of a singleloop circuit using the KVL method Below is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power delivered

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

Any path along which electrons can flow is a circuit A Battery and a Bulb

Any path along which electrons can flow is a circuit A Battery and a Bulb Any path along which electrons can flow is a circuit. Mechanical things seem to be easier to figure out for most people than electrical things. Maybe this is because most people have had experience playing

More information

18-3 Circuit Analogies, and Kirchoff s Rules

18-3 Circuit Analogies, and Kirchoff s Rules 18-3 Circuit Analogies, and Kirchoff s Rules Analogies can help us to understand circuits, because an analogous system helps us build a model of the system we are interested in. For instance, there are

More information

ELECTRIC Circuits Test

ELECTRIC Circuits Test ELECTRIC Circuits Test Name: /50 Multiple Choice (1 mark each) ( 13 marks) 1. Circle the best answer for each of the multiple choice questions below: Quantity measured Units used 1 -- potential difference

More information

Unit 6 ~ Learning Guide Name:

Unit 6 ~ Learning Guide Name: Unit 6 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

Survival Skills for Circuit Analysis

Survival Skills for Circuit Analysis P. R. Nelson Fall 2010 WhatToKnow - p. 1/46 Survival Skills for Circuit Analysis What you need to know from ECE 109 Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer

More information

Air. Radar 4- Television. Radio. Electronics UNITED ELECTRONICS LABORATORIES LOUISVILLE FILL KENTUCKY OHM'S LAW ---PARALLEL C CUITS ASSIGNMENT 8B

Air. Radar 4- Television. Radio. Electronics UNITED ELECTRONICS LABORATORIES LOUISVILLE FILL KENTUCKY OHM'S LAW ---PARALLEL C CUITS ASSIGNMENT 8B Electronics Radio Air Television Radar 4- UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY FILL REVISED 1966 Or COPYRIGHT 1956 UNITED ELECTRONICS LABORATORIES OHM'S LAW ---PARALLEL C CUITS ASSIGNMENT

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases)

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases) Old Exams-Chapter 27 T081 Q1. Fig 1 shows two resistors 3.0 Ω and 1.5 Ω connected in parallel and the combination is connected in series to a 4.0 Ω resistor and a 10 V emf device. The potential difference

More information

Book page Syllabus 2.8, 2.9, Series and parallel circuits

Book page Syllabus 2.8, 2.9, Series and parallel circuits Book page 77 79 Syllabus 2.8, 2.9, 2.14 Series and parallel circuits Find the Fib! (1) The symbol for a bulb is (2) In a parallel circuit potential difference is the same as the supply voltage on all branches.

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

Current, resistance, and Ohm s law

Current, resistance, and Ohm s law Current, resistance, and Ohm s law Apparatus DC voltage source set of alligator clips 2 pairs of red and black banana clips 3 round bulb 2 bulb sockets 2 battery holders or 1 two-battery holder 2 1.5V

More information

Direct Current Circuits

Direct Current Circuits PC1143 Physics III Direct Current Circuits 1 Objectives Apply Kirchhoff s rules to several circuits, solve for the currents in the circuits and compare the theoretical values predicted by Kirchhoff s rule

More information

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Component modeling This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

Physics 25 Chapters Dr. Alward

Physics 25 Chapters Dr. Alward Physics 25 Chapters 19-20 Dr. Alward Electric Circuits Batteries store chemical energy. When the battery is used to operate an electrical device, such as a lightbulb, the chemical energy stored in the

More information

Activity Electrical Circuits Simulation

Activity Electrical Circuits Simulation Activity 1.2.3 Electrical Circuits Simulation Introduction Since the late 1800s, engineers have designed systems to utilize electrical energy due to its ability to be converted, stored, transmitted, and

More information

Electric Circuits. Have you checked out current events today?

Electric Circuits. Have you checked out current events today? Electric Circuits Have you checked out current events today? Circuit Symbolism We can simplify this circuit by using symbols All circuits have an energy source and a load, with wires completing the loop

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

SCRIPT. Voltage Dividers

SCRIPT. Voltage Dividers SCRIPT Hello friends in our earlier discussion we talked about series resistive circuits, when connected in series, resistors form a "string" in which there is only one path for current. Ohm's law can

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

Circuits and Circuit Elements

Circuits and Circuit Elements CHAPTER 18 Circuits and Circuit Elements Planning Guide OBJECTIVES LABS, DEMONSTRATIONS, AND ACTIVITIES TECHNOLOGY RESOURCES PACING 45 min pp. 638 639 ANC Discovery Lab Exploring Circuit Elements* b CD

More information

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat Electric Circuits I Simple Resistive Circuit Dr. Firas Obeidat 1 Resistors in Series The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances. It

More information

Chapter two. Basic Laws. 2.1 Introduction

Chapter two. Basic Laws. 2.1 Introduction 2.1 Introduction Chapter two Basic Laws Chapter 1 introduced basic concepts in an electric circuit. To actually determine the values of these variables in a given circuit requires that we understand some

More information

Lab #2 Voltage and Current Division

Lab #2 Voltage and Current Division In this experiment, we will be investigating the concepts of voltage and current division. Voltage and current division is an application of Kirchoff s Laws. Kirchoff s Voltage Law Kirchoff s Voltage Law

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

Circuits. Ch. 35 in your text book

Circuits. Ch. 35 in your text book Circuits Ch. 35 in your text book Objectives Students will be able to: 1) Draw schematic symbols for electrical circuit components 2) Calculate the equivalent resistance for a series circuit 3) Calculate

More information

Activity Electrical Circuits Simulation

Activity Electrical Circuits Simulation Activity 1.2.3 Electrical Circuits Simulation Introduction Since the late 1800s, engineers have designed systems to utilize electrical energy due to its ability to be converted, stored, transmitted, and

More information

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise Lecture Week 4 Homework Voltage Divider Equivalent Circuit Observation Exercise Homework: P6 Prove that the equation relating change in potential energy to voltage is dimensionally consistent, using the

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Resistance and Ohm s Law Textbook pages 290 301 Section 8.3 Summary Before You Read Do you think electrons can move through all conducting substances equally well? Give your reasons why or why not on the

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory PC1222 Fundamentals of Physics II Basic Circuits 1 Objectives Investigate the relationship among three variables (resistance, current and voltage) in direct current circuits. Investigate the behaviours

More information

SF026: PAST YEAR UPS QUESTIONS

SF026: PAST YEAR UPS QUESTIONS CHAPTER 3: ELECTRIC CURRENT AND DIRECT-CURRENT CIRCUITS UPS SEMESTER 2 2011/2012 1. (a) (i) What is meant by electrical resistivity? (ii) Calculate the resistance of an iron wire of uniform diameter 0.8

More information

21.1 Resistors in Series and Parallel

21.1 Resistors in Series and Parallel 808 Chapter 21 Circuits and DC Instruments Explain why batteries in a flashlight gradually lose power and the light dims over time. Describe what happens to a graph of the voltage across a capacitor over

More information

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT PSPM II 2005/2006 NO. 3 3. (a) Write Kirchhoff s law for the conservation of energy. FIGURE 2 (b) A circuit of two batteries and two resistors is

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

Chapter 23: Circuits Solutions

Chapter 23: Circuits Solutions Chapter 3: Circuits Solutions Questions: (4, 5), 14, 7, 8 Exercises & Problems: 5, 11, 19, 3, 6, 41, 49, 61 Q3.4,5: The circuit has two resistors, with 1 >. (a) Which resistor dissipates the larger amount

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note Introduction to Electrical Circuit Analysis

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note Introduction to Electrical Circuit Analysis EECS 16A Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 11 11.1 Introduction to Electrical Circuit Analysis Our ultimate goal is to design systems that solve people s problems.

More information

Experiment P-24 Circuits and Series Resistance

Experiment P-24 Circuits and Series Resistance 1 Experiment P-24 Circuits and Series Resistance Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors

More information

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles.

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles. Learning Objectives At the end of this unit you should be able to; Represent an electrical circuit using a circuit diagram. Correctly identify common components in a circuit diagram. Calculate current,

More information

CK-12 Physics Concepts - Intermediate Answer Key

CK-12 Physics Concepts - Intermediate Answer Key Chapter 19: Electrical Circuits 19.1 Series Circuits CK-12 Physics Concepts - Intermediate Answer Key 1. There are three 20.0 Ohm resistors connected in series across a 120 V generator. a. What is the

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates Introduction to Engineering ENG 1100 - Electrical Engineering Dr. Coates Branches of Electrical Engineering Circuits/Microelectronics Communications Computer Hardware and Software, Digital Logic, Microprocessor

More information

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Lecture Week 5 Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Voltage Divider Method The voltage divider is a method/tool that can be used to: Design voltage

More information

AC/DC ELECTRICAL SYSTEMS

AC/DC ELECTRICAL SYSTEMS AC/DC ELECTRICAL SYSTEMS LEARNING ACTIVITY PACKET COMBINATION CIRCUITS BB227-BC05UEN LEARNING ACTIVITY PACKET 5 COMBINATION CIRCUITS INTRODUCTION This LAP will continue to build on series circuits and

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

Downloaded from

Downloaded from Question 1: What does an electric circuit mean? An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are connected by conducting wires. Question 2: Define

More information

Ohm's Law and the Measurement of Resistance

Ohm's Law and the Measurement of Resistance Ohm's Law and the Measurement of Resistance I. INTRODUCTION An electric current flows through a conductor when a potential difference is placed across its ends. The potential difference is generally in

More information

Unit 23: DIRECT CURRENT CIRCUITS* Estimated classroom time: Two 100 minute sessions

Unit 23: DIRECT CURRENT CIRCUITS* Estimated classroom time: Two 100 minute sessions Name Section Date Unit 23: DIRECT CURRENT CIRCUITS* Estimated classroom time: Two 100 minute sessions OBJECTIVES I have a strong resistance to understanding the relationship between voltage and current.

More information

CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS

CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Level 1 Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS Foreword The Industry Training Authority (ITA) is pleased to release this

More information

The following symbols are used in electric circuits:

The following symbols are used in electric circuits: Circuit Electricity The following symbols are used in electric circuits: Four devices are commonly used in the laboratory to study Ohm s law: the battery, the voltmeter, the ammeter and a resistance. The

More information

Lecture # 3 Circuit Configurations

Lecture # 3 Circuit Configurations CPEN 206 Linear Circuits Lecture # 3 Circuit Configurations Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 0269073163 February 15, 2016 Course TA David S. Tamakloe CPEN 206 Lecture 3 2015_2016 1 Circuit

More information

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it.

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it. DC Circuits KET Virtual Physics Labs Worksheet Lab 12-1 As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact values you record

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Series Circuit. Addison Danny Chris Luis

Series Circuit. Addison Danny Chris Luis Series Circuit Addison Danny Chris Luis Series A circuit is in series whenever the current (flow of charge) is in sequence An example of this could be a person holding a screwdriver. The charge from the

More information