MODULE I. Simplex, Half duplex and Full Duplex Transmission Modes

Size: px
Start display at page:

Download "MODULE I. Simplex, Half duplex and Full Duplex Transmission Modes"

Transcription

1 CS307 DATA COMMUNICATION MODULE I Simplex, Half duplex and Full Duplex Transmission Modes There are three modes of transmission simplex, half duplex, and full duplex. Transmission mode describes the direction, of flow of signal between two connected devices. The main difference between simplex, half duplex, and full duplex is that in a simplex mode of transmission the communication is unidirectional whereas, in the halfduplex mode of transmission the communication is two directional but the channel is alternately used by the both the connected device. On the other hand, in the full duplex mode of transmission, the communication is bi-directional, and the channel is used by both the connected device simultaneously. Let us study the difference between simplex, half duplex, and full duplex with the help of comparison chart shown below.

2 Comparison chart BASIS FOR COMPARISON SIMPLEX HALF DUPLEX FULL DUPLEX Direction of Communication is Communication is Communication is Communication unidirectional. two-directional two directional and but, one at a time. done simultaneously. Send/Receive A sender can send A sender can send A sender can send data but, can not as well as receive as well as receive receive. the data but one at the data a time. simultaneously. Performance The half duplex The full duplex Full duplex has and full duplex mode yields higher better performance yields better performance than as it doubles the performance than half duplex. utilization of the Simplex. bandwidth.

3 BASIS FOR COMPARISON SIMPLEX HALF DUPLEX FULL DUPLEX Example Keyboard and Walkie-Talkies. Telephone. monitor. Definition of Simplex In a simplex transmission mode, the communication between sender and receiver occur only in one direction. That means only the sender can transmit the data, and receiver can only receive the data. The receiver can not reply in reverse to the sender. Simplex is like a one-way road in which the traffic travels only in one direction, no vehicle from opposite direction is allowed to enter. The entire channel capacity is only utilized by the sender. You can better understand the simplex transmission mode with an example of keyboard and monitor. The Keyboard can only transmit the input to the monitor, and the monitor can only receive the input and display it on the screen. The monitor can not transmit any information back to the keyboard. Definition of Half Duplex

4 In a half-duplex transmission mode, the communication between sender and receiver occurs in both the directions but, one at a time. The sender and receiver both can transmit and receive the information but, only one is allowed to transmit at a time. Half duplex is still a one way road, in which a vehicle traveling in opposite direction of the traffic has to wait till the road is empty. The entire channel capacity is utilized by the transmitter, transmitting at that particular time. Half duplex can be understood with an example of walkie-talkies. As the speaker at both the end of walkie-talkies can speak but they have to speak one by one. Both can not speak simultaneously. Definition of Full Duplex In a full duplex transmission mode, the communication between sender and receiver can occur simultaneously. Sender and receiver both can transmit and receive simultaneously at the same time. The full duplex transmission mode is like a two way road in which traffic can flow in both the direction at the same time. The entire capacity of the channel is shared by both the transmitted signal traveling in opposite direction. Sharing of the channel capacity can be achieved in two different ways. First, either you physically separate the link in two parts one for sending and other for receiving. Second, or you let the capacity of a channel to be shared by the two signals traveling in opposite direction.

5 Full duplex can be understood best, with an example of a telephone. When two people communicate over a telephone both are free to speak and listen at the same time. Periodic Analog signals: Sine wave, phase, wavelength, time and frequency domain, bandwidth Both analog and digital signals can take one of two forms : periodic or nonperiodic A Periodic signal complete a pattern within a measurable time span or time frame, and repeats that pattern over subsequent identical periods. Commonly used in analog signals, because they need less bandwidth. A non-periodic signal changes without exhibiting a pattern or cycle that repeats over a time. Commonly used in digital signals, because they can represent variation in data. A sine wave is the most fundamental form of

6 T Value a periodic analog signal A Sine wave can be represented by three parameters: Peak Amplitude Frequency Phase Peak Amplitude The peak amplitude of a signal is the absolute value of its highest intensity, proportional to the energy it carries. Normally measured in VOLTS. Amplitude Peak Amplitude Frequency Frequency refers to the number of period in 1sec. Formally expressed in Hertz(Hz), which is cycle per sec. Period refers to the amount of time, in seconds, a signal needs to complete 1 cycle. Period is the inverse of frequency and vice-versa.

7 F=1/T Amplitude 1 sec Amplitude A signal with frequency of 8 HZ 1 sec Time A signal with frequency of 3 HZ Time Phase Phase describe the position of the waveform relative to time 0. Wave as something that can be shifted backward or forward along with time axis, phase describe the amount of that shift. Measured in degrees or radian A phase shift of 360 degree correspondence to a shift of a complete period. 0 Time 0 Time 0 Degree 90 Degree

8 Wavelength binds the period or the frequency of a simple sine wave to the propagation speed of the medium It is the distance a simple signal can travel in one period Wave Length Transmission medium at time t Dir Pro Transmission medium at time t+t Wavelength=propagation speed*period Sine wave by using Time-Domain Plot Peak Value: 5V Time Frequency 5Hz 5V A sine wave in the time domain with peak value 5V and frequency 5Hz

9 5V Sine wave by using Frequency-Domain Plot Peak Value: 5V Freque A sine wave in the frequency domain with peak value 5V and frequency 5Hz The range of frequencies contained in a composite signal is its bandwidth. It is normally a difference between two numbers. Example: If a composite signal contains frequencies between 1000 and 5000, its bandwidth is =4000 The Bandwidth of a composite signal is the difference between the highest and the lowest frequencies contained in that signal. Amplitude 1000 Bandwidth= = Amplitude 1000 Bandwidth= =

10 Transmission Impairment This post is divided into two parts this is first part of this post to view second part click here. With any communications system, it must be recognized that the received signal will differ from the transmitted signal due to various transmission impairments. For analog signals, these impairments introduce various random modifications that degrade the signal quality. For digital signals, bit errors are introduced: A binary 1 is trans- formed into a binary 0 and vice versa. In this section, we examine the various impairments and comment on their effect on the information-carrying capacity of a communication link. The most significant communication impairments are as shown in fig: Attenuation: Attenuation means a loss of energy The strength of a signal falls off with distance over any transmission medium. For guided media, this reduction in strength, or attenuation, is generally logarithmic and is thus typically expressed as a constant number of decibels per unit distance. In fig. shows the effect of attenuation and amplification.

11 Fig-2: Attenuation For unguided media, attenuation is a more complex function of distance and of the makeup of the atmosphere. Attenuation introduces three considerations for the transmission engineer. First, a received signal must have sufficient strength so that the electronic circuitry in the receiver can detect and interpret the signal. Second, the signal must maintain a level sufficiently higher than noise to be received without error. Third, attenuation is an increasing function of frequency. Distortion: Distortion means that the signal changes its form or shape. Delay distortion is a phenomenon peculiar to guided transmission media. The distortion is caused by the fact that the velocity of propagation of a signal through a guided medium varies with frequency. For a bandlimited signal, the velocity tends to be highest near the center frequency and lower toward the two edges of the band. Thus, various frequency components of a signal will arrive at the receiver at different times. This effect is referred to as delay distortion, as the received signal is distorted due to variable delay in its components. The distortion effect as shown in fig-3.

12 Fig-3: Distortion Delay distortion is particularly critical for digital data. Consider that a sequence of bits is being transmitted, using either analog or digital signals. Because of delay distortion, some of the signal components of one bit position will spill over into other bit positions, causing intersymbol interference, which is a major limitation to maximum bit rate over a transmission control. Equalizing techniques can also be used for delay distortion. Noise: Noise is refers to any unwanted signal. For any data transmission event, the received signal will consist of the transmitted signal, modified by the various distortions imposed by the transmission system, plus additional unwanted signals that are inserted somewhere between transmission and reception; the latter, undesired signals are referred to as noise-a major limiting factor in communications system performance. Fig-4: Noise

13 Channel capacity Definition: the rate at which data can be transmitted over a given communication path, under given conditions Four important concepts in defining capacity Data rate In bits per second Rate at which data can be transmitted Bandwidth In Hertz Constrained by transmitter (regulations) and medium Noise Noise Bit Error Rate (BER Nyquist formulation For noise-free channels: C = 2W log 2 M W is the bandwidth, M is the number of signaling levels Question: What is the capacity of a telephone line modem that uses 8 signaling levels? Answer: C = = bps For a noiseless channel, Nyquist formula defines the theoretical maximum bit rate. According to this formula, there are two means to enhance the data rate. First, if we use a large number of signaling levels M, the capacity increases logarithmically. But, there are practical limitations when choosing M. Thus, the receiver will decide much easier if it has to distinguish between only two signaling levels (M=2) than in the case of a much larger number of levels (e.g. M=64). By the other hand, another way to increase the data rate is by increasing the bandwidth. As already seen, bandwidth is always a scarce resource, limited by physical constraints and regulations. Another example: We need to send information at a data rate of 256 kbps, over a

14 noiseless channel with 16KHz of bandwidth. How many signaling levels do we need? Answer: log2 M=C/2W=256*103/2*16*103=8. It follows that M=28=256 levels. Comment: This shows quite a large number of levels which are required, and the receiver task is difficult. The reason behind is that, through quite a low bandwidth we try to send a fairly high data rate. Shannon's Capacity formula. One of the most important practical questions which arises when we are designing or using an information transmission or processing system is, "What is the Capacity of this system? i.e. How much information can it transmit or process in a given time?" We formed a rough idea of how to answer this question in an earlier section of this set of webpages. We can now go on to obtain more well defined answer by deriving Shannon's Equation. This equation allows us to precisely determine the information carrying capacity of any signal channel. Consider a signal which is being efficiently communicated (i.e. no redundancy) in the form of a time-dependant analog voltage,. The pattern of voltage variations during a specific time interval, T, allows a receiver to identify which one of a possible set of messages has actually been sent. At any two moments, &, during a message the voltage will be &. Using the idea of intersymbol influence we can say that since there is no redundancy the values of & will appear to be independent of one another provided that they're far enough apart ( ) to be worth sampling separately. In effect, we can't tell what one of the values is just from knowing the other. Of course, for any specific message, both and are determined in advance by the content of that particular message. But the receiver can't know which of all the possible messages has arrived until it has arrived. If the receiver did know in advance which voltage pattern was to be transmitted then the message itself wouldn't provide any new information! i.e. the receiver wouldn't know any more after its arrival than before. This leads us to the remarkable conclusion that a signal which is efficiently

15 communicating information will vary from moment to moment in an unpredictable, apparently random, manner. An efficient signal looks very much like random noise! This, of course, is why random noise can produce errors in a received message. The statistical properties of an efficiently signalled message are similar to those of random noise. If the signal and noise were obviously different the receiver could easily separate the noise from the signal and avoid making any errors. To detect and correct errors we therefore have to make the real signal less noiselike. This is what we're doing when we use parity bits to add redundancy to a signal. The redundancy produces predictable relationships between different sections of the signal pattern. Although this reduces the system's information carrying efficiency it helps us distinguish signal details from random noise. Here, however, we're interested in discovering the maximum possible information carrying capacity of a system. So we have to avoid any redundancy and allow the signal to have the unpredictable qualities which make it statistically similar to random noise. The amount of noise present in a given system can be represented in terms of its mean noise power where R is the characteristic impedance of the channel or system and is the rms noise voltage. In a similar manner we can represent a typical message in terms of its average signal power where is the signal's rms voltage. A real signal must have a finite power. Hence for a given set of possible messages there must be some maximum possible power level. This means that the rms signal voltage is limited to some range. It also means that the instantaneous signal voltage must be limited and can't be beyond some specific range,. A similar argument must also be true for noise. Since we are assuming that the signal system is efficient we can expect the signal and noise to have similar statistical properties. This implies that if we watched the signal or noise for a long while we'd find that

16 their level fluctuations had the same peak/rms voltage ratio. We can therefore say that, during a typical message, the noise voltage fluctuations will be confined to some range where the form factor,, (ratio of peak to rms levels) can be defined from the signal's properties as When transmitting signals in the presence of noise we should try to ensure that S is as large as possible so as to minimise the effects of the noise. We can therefore expect that an efficient information transmission system will ensure that, for every typical message, S is almost equal to some maximum value,. This implies that in such a system, most messages will have a similar power level. Ideally, every message should have the same, maximum possible, power level. In fact we can turn this argument on its head and say that only messages with mean powers similar to this maximum are typical. Those which have much lower powers are unusual i.e. rare. 8.2 Shannon's Equation. The signal and noise are uncorrelated that is, they are not related in any way which would let us predict one of them from the other. The total power obtained,, when combining these uncorrelated, apparently randomly varying quantities is given by i.e. the typical combined rms voltage,, will be such that Since the signal and noise are statistically similar their combination will have the same form factor value as the signal or noise taken by itself. We can therefore expect that the combined signal and noise will generally be confined to a voltage

17 range. Consider now dividing this range into bands will cover bands of equal size. (i.e. each of these.) To provide a different label for each band we require symbols or numbers. We can therefore always indicate which band the voltage level occupies at any moment in terms of a b-bit binary number. In effect, this process is another way of describing what happens when we take digital samples with a b-bit analog to digital convertor working over a total range. There is no real point in choosing a value for b which is so large that is smaller than. This is because the noise will simply tend to randomise the actual voltage by this amount, making any extra bits meaningless. As a result the maximum number of bits of information we can obtain regarding the level at any moment will given by i.e. which can be rearranged to produce If we make M, b-bit measurements of the level in a time, T, then the total number of bits of information collected will be This means that the information transmission rate, I, bits per unit time, will be

18 From the Sampling Theorem we can say that, for a channel of bandwidth, B, the highest practical sampling rate,, at which we can make independent measurements or samples of a signal will be Combining expressions 8.11 & 8.12 we can therefore conclude that the maximum information transmission rate, C, will be This expression represents the maximum possible rate of information transmission through a given channel or system. The maximum rate we can transmit information is set by the bandwidth, the signal level, and the noise level. C is therefore called the channel's information carrying Capacity. Expression 8.13 is called Shannon's Equation after the first person to derive it.

19 MODULE II

20 Transmission Media Physical path between transmitter and receiver Guided or unguided (wireless) Communication is in the form of electromagnetic waves Characteristics and quality of data transmission are determined by characteristics of medium and signal In guided media, medium characteristics is more important, whereas in unguided media, signal characteristics is more important

21 1. Guided Transmission Media Twisted Pair The oldest, least expensive, and mostcommonly used media Pair of insulated wires twisted together toreduce susceptibility to interference (two straight parallel wires tend to act as an antenna and pick up extraneous signals Quite highly susceptible to noise & interference Up to 250 khz analog and few Mbps digitalsignaling ( for long-distance point-to-point signaling Need repeater every 2-3 km (digital), andamplifier every 5-6 km (analog) May be already installed (telephone usage) Much efforts are undergoing to use it for high-speed ( Mbps) LAN

22 Coaxial Cable Most versatile medium LANs, Cable TV, Long-distance telephones, VCRto-TV connections Noise immunity is good Very high channel capacity few 100 MHz / few 100 Mbps Need repeater/amplifier every few kilometer or so ( about the same as with twisted pair ) Point-to-point transmission characteristics of guided media Transmission medium Total data rate Bandwidth Repeater spacing Twisted pair Coaxial cable Optical fiber 4 Mbps 500 Mbps 2 Gbps 3 MHz 350 MHz 2 GHz 2 to 10 km 1 to 10 km 10 to 100 km

23 Optical Fiber Flexible, thin (few to few hundred µ m), very pure glass / plastic fiber capable of conducting optical rays Extremely high bandwidth: capable of 2Gbps Very high noise immunity, resistant to electromagnetic interference Does not radiate energy/cause interference Very light Need repeaters only 10 s or 100 km apart Very difficult to tap Better security but multipoint not easy Need optical-electrical interface (more expensive than electrical interface)

24 Principle of optical fiber transmission Based on the principle of total internal reflection Incident light Reflected light A B α β α Interface between two media A and B Refracted light If β > α, medium B (water) has a higher optical density than medium A (air) Index of refraction is defined by cos( α ) /cos ( β ) In case the index of refraction < 1 ( α > β ), if α is less than a certain critical angle, there is no refracted light. I.e., all the light is reflected. This is what makes fiber optics work. The cladding surrounding the core is also glass but is optically less dense than the core

25 Three types of fiber transmission Step index multimode Variety of angles that reflect. Each angle defines a path or a mode Limited data rate due to the different path lengths Single mode The diameter of the core is reduced to the order of wavelength s.t. only a single angle or mode can pass Superior performance

26 Graded index multimode Use the fact that speed of light depends on the medium; light travels faster through less optically dense media The boundary between core and cladding is not sharply defined; Moving out radially from the core, the material becomes gradually less dense B A A travels a greater distance but faster than B Typical fiber characteristics

27 2. Wireless Transmission (Terrestrial) Microwave Typically used where laying a cable is notpractical (No right-of-way needed) Parabolic dish shaped antenna ( 10 ft dia) transmits/receives electromagnetic waves in the 2-40 GHz range Travels in a straight line (line-of-sightpropagation) Maximum distance bet antenna in km d = 7.14 (4 3)h h: antenna ht in meters High data rates: 100 s Mbps Attenuation (4 d) 2 d: distance 10 log db λ: wavelength Repeaters spaced km apart Applications Long-distance telephone communication

28 Incoming signals Parabola s focus ( receiver ) Incoming signals Parabolic arc (reflector)

29 Satellite Microwave (Cont d) VSAT (Very Small Aperture System) For business data applications requiring high data rates for short periods of time (National Weather Service, news services, credit card verification, automatic tellers, car rental agencies, ) Commonly connects a central location with many remote ones Communication between two sites is via a satellite and allows a low-cost small antenna dishes ( 5 ft)

30 (Broadcast) Radio Electromagnetic wave in the range 30MHz ~ 1GHz Omnidirectional As with microwave, d = 7.14 (4 3)h h: antenna ht in meters ( d: distance Attenuation = 10 log db 4 d) 2 λ: wavelength Less attenuation than microwave since λ is larger Infrared For short-range communication Remote controls for TVs, VCRs, and stereos Indoor wireless LANs Do not pass through solid walls Better security and no interference (with a similar system in adjacent rooms) No government license is needed Cannot be used outdoors (due to the sunshine)

31 SPACE (DIRECT) WAVE PROPAGATION AND SKY WAVE PROPAGATION Space Waves, also known as direct waves, are radio waves that travel directly from the transmitting antenna to the receiving antenna. In order for this to occur, the two antennas must be able to see each other; that is there must be a line of sight path between them. The diagram on the next page shows a typical line of sight. The maximum line of sight distance between two antennas depends on the height of each antenna. If the heights are measured in feet, the maximum line of sight, in miles, is given by: Because a typical transmission path is filled with buildings, hills and other obstacles, it is possible for radio waves to be reflected by these obstacles, resulting in radio waves that arrive at the receive antenna from several different directions. Because the length of each path is different, the waves will not arrive in phase. They may reinforce each other or cancel each other, depending on the phase differences. This situation is known as multipath propagation. It can cause major distortion to certain types of signals. Ghost images seen on broadcast TV signals are the result of multipath one picture arrives slightly later than the other and is shifted in position on the screen. Multipath is very troublesome for mobile communications. When the transmitter and/or receiver are in motion, the path lengths are continuously changing and the signal fluctuates wildly in amplitude. For this reason, NBFM is used almost exclusively for mobile communications. Amplitude variations caused by multipath that make AM unreadable are eliminated by the limiter stage in an NBFM receiver. An interesting example of direct communications is satellite communications. If a satellite is placed in an orbit 22,000 miles above the equator, it appears to stand still in the sky, as viewed from the ground. A high gain antenna can be pointed at

32 the satellite to transmit signals to it. The satellite is used as a relay station, from which approximately ¼ of the earth s surface is visible. The satellite receives signals from the ground at one frequency, known as the uplink frequency, translates this frequency to a different frequency, known as the downlink frequency, and retransmits the signal. Because two frequencies are used, the reception and transmission can happen simultaneously. A satellite operating in this way is known as a transponder. The satellite has a tremendous line of sight from its vantage point in space and many ground stations can communicate through a single satellite. Sky-Wave or Skip Propagation Sky Waves Radio waves in the LF and MF ranges may also propagate as ground waves, but suffer significant losses, or are attenuated, particularly at higher frequencies. But as the ground wave mode fades out, a new mode develops: the sky wave. Sky waves are reflections from the ionosphere. While the wave is in the ionosphere, it is strongly bent, or refracted, ultimately back to the ground. From a long distance away this appears as a reflection. Long ranges are possible in this mode also, up to hundreds of miles. Sky waves in this frequency band are usually only possible at night, when the concentration of ions is not too great since the ionosphere also

33 tends to attenuate the signal. However, at night, there are just enough ions to reflect the wave but not reduce its power too much. Figure 14 The HF band operates almost exclusively with sky waves. The higher frequencies have less attenuation and less refraction in the ionosphere as compared to MF. At the high end, the waves completely penetrate the ionosphere and become space waves. At the low end, they are always reflected. The HF band operates with both these effects almost all of the time. The characteristics of the sky wave propagation depend on the conditions in the ionosphere which in turn are dependent on the activity of the sun. The ionosphere has several well-defined regions in altitude.

34 Figure 15 D-region: about km. Relatively weak ionization. Responsible for strong absorption of MF during daylight E-region: km. An important player in ionospheric scatter of VHF. Fregion: km. Has separate F1 and F2 layers during the day. The strongest concentration of ions. Responsible for reflection of HF radio waves. Since the propagation characteristics depend on frequency, several key frequencies can de defined: Critical frequency: The minimum frequency that will penetrate the ionosphere at vertical incidence. The critical frequency increases during the daylight and decrease at night. At other angles, the wave will be reflected back. At frequencies above the critical frequency, some range of waves from vertical incidence and down will become space waves. This will cause a gap in coverage on the ground known as a skip zone. In figure xx, the skip zone extends to about 1400 miles. The transmitted frequency was 5 MHz and the critical frequency was 3 MHz in this example. Maximum Useable Frequency (MUF): defined for two stations. The maximum frequency that will reflect back to the receiving station from the transmitter. Beyond the MUF, the wave will become a space wave. At MUF the skip zone extends to just short of the receiver. In figure xx, the MUF for a receiver at 1400 miles is 5 MHz. Lowest Useable Frequency (LUF): again defined for two stations. At low frequencies, the signal will be attenuated before it can be reflected. The LUF increases with sunlight and is a maximum near noon. Optimum Frequency for Traffic (OFT): for two stations, taking into account the exact conditions in the ionosphere, there will be the perfect frequency that gives the strongest signal. This can be predicted by powerful

35 modeling programs and is the best guarantee of success in HF. The diurnal variation if HF propagation is characterized a simple rule-ofthumb: the frequency follows the sun. At noon, the OFT is generally higher than at night. Line of Sight In the VHF band and up, the propagation tends to straighten out into line-ofsight(los) waves. However the frequency is still low enough for some significant effects.

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

Class 4 ((Communication and Computer Networks))

Class 4 ((Communication and Computer Networks)) Class 4 ((Communication and Computer Networks)) Lesson 3... Transmission Media, Part 1 Abstract The successful transmission of data depends principally on two factors: the quality of the signal being transmitted

More information

Maximum date rate=2hlog 2 V bits/sec. Maximum number of bits/sec=hlog 2 (1+S/N)

Maximum date rate=2hlog 2 V bits/sec. Maximum number of bits/sec=hlog 2 (1+S/N) Basics Data can be analog or digital. The term analog data refers to information that is continuous, digital data refers to information that has discrete states. Analog data take on continuous values.

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013 Wireless Transmission

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided,

More information

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Unguided Media and Matched Filter After this lecture, you will be able to Example? Unguided Media and Matched Filter After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media Example? B.1 Unguided media Guided to unguided

More information

Lecture Fundamentals of Data and signals

Lecture Fundamentals of Data and signals IT-5301-3 Data Communications and Computer Networks Lecture 05-07 Fundamentals of Data and signals Lecture 05 - Roadmap Analog and Digital Data Analog Signals, Digital Signals Periodic and Aperiodic Signals

More information

Introduction to Telecommunications and Computer Engineering Unit 3: Communications Systems & Signals

Introduction to Telecommunications and Computer Engineering Unit 3: Communications Systems & Signals Introduction to Telecommunications and Computer Engineering Unit 3: Communications Systems & Signals Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Acknowledgements

More information

Unguided Transmission Media

Unguided Transmission Media CS311 Data Communication Unguided Transmission Media by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

CS307 Data Communication

CS307 Data Communication CS307 Data Communication Course Objectives Build an understanding of the fundamental concepts of data transmission. Familiarize the student with the basics of encoding of analog and digital data Preparing

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

The information carrying capacity of a channel

The information carrying capacity of a channel Chapter 8 The information carrying capacity of a channel 8.1 Signals look like noise! One of the most important practical questions which arises when we are designing and using an information transmission

More information

Module 2. Studoob.in - Where Learning is Entertainment

Module 2. Studoob.in - Where Learning is Entertainment Module 2 Module 2 Transmission media - Guided Transmission Media: Twisted pair, Coaxial cable, optical fiber, Wireless Transmission, Terrestrial microwave, Satellite microwave. Wireless Propagation: Ground

More information

Transmission Media. Beulah A L/CSE. 2 July 2008 Transmission Media Beulah A. 1

Transmission Media. Beulah A L/CSE. 2 July 2008 Transmission Media Beulah A. 1 Transmission Media Beulah A L/CSE 2 July 2008 Transmission Media Beulah A. 1 Guided Transmission Media Magnetic Media A tape can hold 7 gigabytes. A box can hold about 1000 tapes. Assume a box can be delivered

More information

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib Computer Networks Lecture -4- Transmission Media Dr. Methaq Talib Transmission Media A transmission medium can be broadly defined as anything that can carry information from a source to a destination.

More information

COMP211 Physical Layer

COMP211 Physical Layer COMP211 Physical Layer Data and Computer Communications 7th edition William Stallings Prentice Hall 2004 Computer Networks 5th edition Andrew S.Tanenbaum, David J.Wetherall Pearson 2011 Material adapted

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Chapter 2. Physical Layer

Chapter 2. Physical Layer Chapter 2 Physical Layer Lecture 1 Outline 2.1 Analog and Digital 2.2 Transmission Media 2.3 Digital Modulation and Multiplexing 2.4 Transmission Impairment 2.5 Data-rate Limits 2.6 Performance Physical

More information

Transmission Media. Transmission Media 12/14/2016

Transmission Media. Transmission Media 12/14/2016 Transmission Media in data communications DDE University of Kashmir By Suhail Qadir System Analyst suhailmir@uok.edu.in Transmission Media the transmission medium is the physical path between transmitter

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Data and Computer Communications. Chapter 3 Data Transmission

Data and Computer Communications. Chapter 3 Data Transmission Data and Computer Communications Chapter 3 Data Transmission Data Transmission quality of the signal being transmitted The successful transmission of data depends on two factors: characteristics of the

More information

DDPP 2163 Propagation Systems. Satellite Communication

DDPP 2163 Propagation Systems. Satellite Communication DDPP 2163 Propagation Systems Satellite Communication 1 Satellite Two far apart stations can use a satellite as a relay station for their communication It is possible because the earth is a sphere. Radio

More information

Figure 4-1. Figure 4-2 Classes of Transmission Media

Figure 4-1. Figure 4-2 Classes of Transmission Media Electromagnetic Spectrum Chapter 4 Transmission Media Computers and other telecommunication devices transmit signals in the form of electromagnetic energy, which can be in the form of electrical current,

More information

Data Concept Analog and Digital Signal Periodic and Non-Periodic Signal Sine Wave Wave length Time and Frequency Domain Composite Signal Bandwidth

Data Concept Analog and Digital Signal Periodic and Non-Periodic Signal Sine Wave Wave length Time and Frequency Domain Composite Signal Bandwidth Data Concept Analog and Digital Signal Periodic and Non-Periodic Signal Sine Wave Wave length and Frequency Domain Composite Signal Bandwidth BPS and Bit Length Data is a usable to a person or application.

More information

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna October 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

More information

DATA TRANSMISSION. ermtiong. ermtiong

DATA TRANSMISSION. ermtiong. ermtiong DATA TRANSMISSION Analog Transmission Analog signal transmitted without regard to content May be analog or digital data Attenuated over distance Use amplifiers to boost signal Also amplifies noise DATA

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Data Communication. Chapter 3 Data Transmission

Data Communication. Chapter 3 Data Transmission Data Communication Chapter 3 Data Transmission ١ Terminology (1) Transmitter Receiver Medium Guided medium e.g. twisted pair, coaxial cable, optical fiber Unguided medium e.g. air, water, vacuum ٢ Terminology

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

Data and Computer Communications Chapter 3 Data Transmission

Data and Computer Communications Chapter 3 Data Transmission Data and Computer Communications Chapter 3 Data Transmission Eighth Edition by William Stallings Transmission Terminology data transmission occurs between a transmitter & receiver via some medium guided

More information

Lecture 3: Data Transmission

Lecture 3: Data Transmission Lecture 3: Data Transmission 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Data Transmission DATA RATE LIMITS Transmission Impairments Examples DATA TRANSMISSION The successful transmission of data

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

William Stallings Data and Computer Communications. Bab 4 Media Transmisi

William Stallings Data and Computer Communications. Bab 4 Media Transmisi William Stallings Data and Computer Communications Bab 4 Media Transmisi Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided, the medium is

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali BOOKS Text Book: William Stallings, Wireless Communications and Networks, Pearson Hall, 2002. BOOKS Reference Books: Sumit Kasera, Nishit

More information

Introduction to Communications Part Two: Physical Layer Ch3: Data & Signals

Introduction to Communications Part Two: Physical Layer Ch3: Data & Signals Introduction to Communications Part Two: Physical Layer Ch3: Data & Signals Kuang Chiu Huang TCM NCKU Spring/2008 Goals of This Class Through the lecture of fundamental information for data and signals,

More information

Course 2: Channels 1 1

Course 2: Channels 1 1 Course 2: Channels 1 1 "You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing in Los Angeles. Do you understand this? And radio operates exactly

More information

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Chapter 2 Transmission Media and Propagation Mechanisms

Chapter 2 Transmission Media and Propagation Mechanisms Chapter 2 Transmission Media and Propagation Mechanisms 2.1 Introduction Signals generated by the source need to be transported to the destination over a communication s channel. A communication channel

More information

Point-to-Point Communications

Point-to-Point Communications Point-to-Point Communications Key Aspects of Communication Voice Mail Tones Alphabet Signals Air Paper Media Language English/Hindi English/Hindi Outline of Point-to-Point Communication 1. Signals basic

More information

Transmission Medium/ Media

Transmission Medium/ Media Transmission Medium/ Media The successful transmission of data depends principally on two factors: the quality of the signal being transmitted and the characteristics of the transmission medium Transmission

More information

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum.

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum. 2 ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

Data Transmission (II)

Data Transmission (II) Agenda Lecture (02) Data Transmission (II) Analog and digital signals Analog and Digital transmission Transmission impairments Channel capacity Shannon formulas Dr. Ahmed ElShafee 1 Dr. Ahmed ElShafee,

More information

Chapter 3. Data Transmission

Chapter 3. Data Transmission Chapter 3 Data Transmission Reading Materials Data and Computer Communications, William Stallings Terminology (1) Transmitter Receiver Medium Guided medium (e.g. twisted pair, optical fiber) Unguided medium

More information

Review of Lecture 2. Data and Signals - Theoretical Concepts. Review of Lecture 2. Review of Lecture 2. Review of Lecture 2. Review of Lecture 2

Review of Lecture 2. Data and Signals - Theoretical Concepts. Review of Lecture 2. Review of Lecture 2. Review of Lecture 2. Review of Lecture 2 Data and Signals - Theoretical Concepts! What are the major functions of the network access layer? Reference: Chapter 3 - Stallings Chapter 3 - Forouzan Study Guide 3 1 2! What are the major functions

More information

Data Communications & Computer Networks

Data Communications & Computer Networks Data Communications & Computer Networks Chapter 3 Data Transmission Fall 2008 Agenda Terminology and basic concepts Analog and Digital Data Transmission Transmission impairments Channel capacity Home Exercises

More information

14. COMMUNICATION SYSTEM

14. COMMUNICATION SYSTEM 14. COMMUNICATION SYSTEM SYNOPSIS : INTRODUCTION 1. The exchange of information between a sender and receiver is called communication. 2. The arrangement of devices to transfere the information is called

More information

Jaringan Komputer. Outline. The Physical Layer

Jaringan Komputer. Outline. The Physical Layer Jaringan Komputer The Physical Layer Outline Defines the mechanical, electrical, and timing interfaces to the network Theoretical analysis of data transmission Kinds of transmission media Examples: the

More information

Lecture 2 Physical Layer - Data Transmission

Lecture 2 Physical Layer - Data Transmission DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Data Transmission Mei Yang Based on Lecture slides by William Stallings 1 DATA TRANSMISSION The successful transmission of data depends on two

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point. Terminology (1) Chapter 3 Data Transmission Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Spring 2012 03-1 Spring 2012 03-2 Terminology

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter DATA AND SIGNALS 1 من 42

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter DATA AND SIGNALS 1 من 42 3.1 DATA AND SIGNALS 1 من 42 Communication at application, transport, network, or data- link is logical; communication at the physical layer is physical. we have shown only ; host- to- router, router-to-

More information

COMMUNICATION SYSTEMS -I

COMMUNICATION SYSTEMS -I COMMUNICATION SYSTEMS -I Communication : It is the act of transmission of information. ELEMENTS OF A COMMUNICATION SYSTEM TRANSMITTER MEDIUM/CHANNEL: The physical medium that connects transmitter to receiver

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Data Communication Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture No # 6 Unguided Media

Data Communication Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture No # 6 Unguided Media Data Communication Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture No # 6 Unguided Media Hello and welcome to today s lecture on unguided media.

More information

Data Communications and Networks

Data Communications and Networks Data Communications and Networks Abdul-Rahman Mahmood http://alphapeeler.sourceforge.net http://pk.linkedin.com/in/armahmood abdulmahmood-sss twitter.com/alphapeeler alphapeeler.sourceforge.net/pubkeys/pkey.htm

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Introduction to LAN/WAN. Physical Layer

Introduction to LAN/WAN. Physical Layer Introduction to LAN/WAN Physical Layer Topics Introduction Theory Transmission Media Purpose of Physical Layer Transport bits between machines How do we send 0's and 1's across a medium? Ans: vary physical

More information

Chapter 4: Transmission Media

Chapter 4: Transmission Media Chapter 4: Transmission Media Page 1 Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided, the medium is more important For unguided, the bandwidth

More information

Polarization orientation of the electric field vector with respect to the earth s surface (ground).

Polarization orientation of the electric field vector with respect to the earth s surface (ground). Free space propagation of electromagnetic waves is often called radio-frequency (rf) propagation or simply radio propagation. The earth s atmosphere, as medium introduces losses and impairments to the

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link. Chapter 3 Data Transmission Terminology (1) Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Corneliu Zaharia 2 Corneliu Zaharia Terminology

More information

CHAPTER -15. Communication Systems

CHAPTER -15. Communication Systems CHAPTER -15 Communication Systems COMMUNICATION Communication is the act of transmission and reception of information. COMMUNICATION SYSTEM: A system comprises of transmitter, communication channel and

More information

Reading 28 PROPAGATION THE IONOSPHERE

Reading 28 PROPAGATION THE IONOSPHERE Reading 28 Ron Bertrand VK2DQ http://www.radioelectronicschool.com PROPAGATION THE IONOSPHERE The ionosphere is a region of the upper atmosphere extending from a height of about 60 km to greater than 500

More information

Antennas and Propagation. Prelude to Chapter 4 Propagation

Antennas and Propagation. Prelude to Chapter 4 Propagation Antennas and Propagation Prelude to Chapter 4 Propagation Introduction An antenna is an electrical conductor or system of conductors for: Transmission - radiates electromagnetic energy into space (involves

More information

CS441 Mobile & Wireless Computing Communication Basics

CS441 Mobile & Wireless Computing Communication Basics Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Communication Basics Dr. Kemal Akkaya E-mail: kemal@cs.siu.edu Kemal Akkaya Mobile & Wireless Computing

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

EC 554 Data Communications

EC 554 Data Communications EC 554 Data Communications Mohamed Khedr http://webmail. webmail.aast.edu/~khedraast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week

More information

UNIT-1. Basic signal processing operations in digital communication

UNIT-1. Basic signal processing operations in digital communication UNIT-1 Lecture-1 Basic signal processing operations in digital communication The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system

More information

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD)

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Satellite Signals and Communications Principles Dr. Ugur GUVEN Aerospace Engineer (P.hD) Principle of Satellite Signals In essence, satellite signals are electromagnetic waves that travel from the satellite

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

Transmission Impairments

Transmission Impairments 1/13 Transmission Impairments Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: 11 July 2000 Transmissions Impairments 1/13 Type of impairments 2/13 Attenuation Delay distortion

More information

Contents. Telecom Service Chae Y. Lee. Data Signal Transmission Transmission Impairments Channel Capacity

Contents. Telecom Service Chae Y. Lee. Data Signal Transmission Transmission Impairments Channel Capacity Data Transmission Contents Data Signal Transmission Transmission Impairments Channel Capacity 2 Data/Signal/Transmission Data: entities that convey meaning or information Signal: electric or electromagnetic

More information

Unbounded Transmission Media

Unbounded Transmission Media Unbounded Transmission Media Unbounded Media The three main types of wireless media are Radio Microwave infrared Electromagnetic spectrum for wireless communication Unguided waves can travel from source

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

CPSC Network Programming. How do computers really communicate?

CPSC Network Programming.   How do computers really communicate? CPSC 360 - Network Programming Data Transmission Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu February 11, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Transmission Media. - Bounded/Guided Media - Uubounded/Unguided Media. Bounded Media

Transmission Media. - Bounded/Guided Media - Uubounded/Unguided Media. Bounded Media Transmission Media The means through which data is transformed from one place to another is called transmission or communication media. There are two categories of transmission media used in computer communications.

More information

Broad Principles of Propagation 4C4

Broad Principles of Propagation 4C4 Broad Principles of Propagation ledoyle@tcd.ie 4C4 Starting at the start All wireless systems use spectrum, radiowaves, electromagnetic waves to function It is the fundamental and basic ingredient of

More information

CS311 -Data Communication Unguided Transmission Media

CS311 -Data Communication Unguided Transmission Media CS311 -Data Communication Unguided Transmission Media Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in INTRODUCTION -Physical Path between transmitter and receiver

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmission Fundamentals Why Digital Communications? CSE 3213, Winter 2010 Instructor: Foroohar Foroozan A Transmission System Transmitter Receiver Communication channel Transmitter

More information

Chapter-1: Introduction

Chapter-1: Introduction Chapter-1: Introduction The purpose of a Communication System is to transport an information bearing signal from a source to a user destination via a communication channel. MODEL OF A COMMUNICATION SYSTEM

More information

Channel Modeling and Characteristics

Channel Modeling and Characteristics Channel Modeling and Characteristics Dr. Farid Farahmand Updated:10/15/13, 10/20/14 Line-of-Sight Transmission (LOS) Impairments The received signal is different from the transmitted signal due to transmission

More information

Chapter 13: Wave Propagation. EET-223: RF Communication Circuits Walter Lara

Chapter 13: Wave Propagation. EET-223: RF Communication Circuits Walter Lara Chapter 13: Wave Propagation EET-223: RF Communication Circuits Walter Lara Electrical to Electromagnetic Conversion Since the atmosphere is not a conductor of electrons (instead a good insulator), electrical

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/9/2017 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1 Announcement 18-759: Wireless Networks Lecture 3: Physical Layer Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2010 http://www.cs.cmu.edu/~prs/wirelesss10/

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

Data Transmission. ITS323: Introduction to Data Communications. Sirindhorn International Institute of Technology Thammasat University ITS323

Data Transmission. ITS323: Introduction to Data Communications. Sirindhorn International Institute of Technology Thammasat University ITS323 ITS323: Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L03, Steve/Courses/2012/s1/its323/lectures/transmission.tex,

More information

two computers. 2- Providing a channel between them for transmitting and receiving the signals through it.

two computers. 2- Providing a channel between them for transmitting and receiving the signals through it. 1. Introduction: Communication is the process of transmitting the messages that carrying information, where the two computers can be communicated with each other if the two conditions are available: 1-

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

RADIO WAVE PROPAGATION

RADIO WAVE PROPAGATION CHAPTER 2 RADIO WAVE PROPAGATION Radio direction finding (RDF) deals with the direction of arrival of radio waves. Therefore, it is necessary to understand the basic principles involved in the propagation

More information

Chapter 3 Data and Signals 3.1

Chapter 3 Data and Signals 3.1 Chapter 3 Data and Signals 3.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Note To be transmitted, data must be transformed to electromagnetic signals. 3.2

More information

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation =============================================================== Antenna Fundamentals

More information

Overview. Chapter 4. Design Factors. Electromagnetic Spectrum

Overview. Chapter 4. Design Factors. Electromagnetic Spectrum Chapter 4 Transmission Media Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided, the medium is more important For unguided, the bandwidth

More information

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp ECE 271 Week 8 Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook computers - Uses radio transmission - Point-to-multipoint

More information

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 6: Propagation and Noise Ted Johansson, EKS, ISY 2 Propagation and Noise - Channel and antenna: not in the Razavi book - Noise: 2.3 The wireless channel The antenna Signal

More information

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE WAVE PROPAGATION OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE IONOSPHERIC LAYERS ABSORPTION AND FADING

More information

Wireless Transmission Rab Nawaz Jadoon

Wireless Transmission Rab Nawaz Jadoon Wireless Transmission Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication Frequency Spectrum Note: The figure shows

More information