TEAK Sound and Music

Size: px
Start display at page:

Download "TEAK Sound and Music"

Transcription

1 Sound and Music

2 2 Instructor Preparation Guide Important Terms Wave A wave is a disturbance or vibration that travels through space. The waves move through the air, or another material, until a sensor detects the vibrations. For example, your eardrum vibrates from sound waves to allow you to sense them. Medium A medium is a substance or matter which a wave travels through. Examples of a medium include: water in the ocean, the air in a stadium at a concert, or the skin of a drum head. Sound Sound is a mechanical vibration that travels through matter as a compression waveform. Although it is commonly associated with moving through air, sound will readily travel through many other materials, such as water and metals. Because sound is the vibration of matter, it does not travel through a vacuum or in outer space. Also, there are certain insulating materials that absorb sound waves, preventing the waves from penetrating the material. Waveform A waveform refers to a graphical representation of sound, where the pressure is plotted on the vertical axis and time is plotted on the horizontal axis. This plot is the time domain representation of an audio signal.

3 3 Amplitude Amplitude refers to the magnitude of a wave. In the case of a sound wave, it would be the maximum pressure that occurs at a point the wave travels through. The greater the amplitude of a wave, the greater the intensity of the sound will be. Frequency Frequency means the number of times something occurs within a given time period. Frequency for waves is usually measured per second. The unit for frequency is Hertz (Hz), which means per second. So, a wave frequency of one Hz means that one wave occurs per second. High-pitched sounds are high-frequency; low-pitched sounds are low-frequency. Pitch Pitch refers to how high or low a sound seems depending on its frequency. The shorter the wavelength, the higher the frequency becomes, and the higher the pitch that we hear. Resonance Resonance is the tendency of a system to oscillate at larger amplitude at some frequencies than at others. For example, a guitar string plucked by itself makes a weak sound. But when added to the hollow body of the acoustic guitar, the sounds resonate and are amplified.

4 4 Sine Wave A sine wave is a mathematically unique waveform that is slowly varying. It is known as a pure tone. Square Wave A square wave is a common waveform that is easy to create electrically. Theoretically it consists of an infinite number of sine waves at odd harmonic intervals. Resistor A resistor is an object that prevents the passage of a steady electric current. Resistors have the effect of linearly reducing the amplitude of a signal passing through them.

5 5 Capacitor A capacitor is an electrical component that permits a certain amount of current to pass through it via an electrostatic interaction between two parallel strips of metal. At a certain point the capacitor cannot hold anymore charge, and therefore impedes the flow of current entirely. Thus, it blocks all constant signals and passes higher frequency content more easily. If an output is taken across a capacitor a low-pass filter is created. If an output is taken in series with a capacitor a high-pass filter is created. Amplifier An amplifier is a device that changes the amplitude of a wave without changing the waveform shape. What is happening mathematically is the signal is being multiplied by a constant value at every point. Any number multiple is referred to as gain. The process of amplification allows one to adjust the loudness or softness of music.

6 6 Filter A filter is a device that changes the waveform or frequency content of a signal. The filters in the activity are high-pass, and low-pass filters. High-pass suppresses low frequencies, and a low-pass suppresses high frequencies. The orientation of the electronic filters are shown below, low-pass on the left with high-pass on the right. Gain Gain is a measure of the ability of a circuit (or amplifier) to increase the power or amplitude of a signal from the input to the output. Resources ub_energy2/cub_energy2_lesson04.xml ub_soundandlight/cub_soundandlight_lesson3.xml uk_music_choi_less/duk_music_choi_less.xml Note: Many of these resources were used in assisting the creation of the following Lesson Plan and we want to thank and reference them for their valuable instruction.

7 7 Image Resources Date: March 31, 2010 Time: 10:51AM Date: March 31, 2010 Time: 11:05AM

8 8 Activity Preparation Guide Overview The purpose of this kit is to help students understand how sound travels, both mechanically and electrically. After teaching the students the basics about sound waves, they will then participate in a handson activity that will help them visualize this concept. They will also get to complete activities that demonstrate how a hearing aid works, and use the engineering design process to optimize their own hearing aid! This kit will teach students about sound, engineering, and the value of teamwork. Learning Objectives By the end of this lesson, students should be able to Explain what sound is and how sound waves travel Understand the goal and necessity of amplification Explain how a hearing aid helps people who are hard of hearing Understand the engineering design process Engineering Connection Engineers use the design process to create a product that will fulfill the needs of a customer. In the case of a hearing aid, it was designed with the purpose of helping people with diminished hearing capacity improve their hearing level. The electrical components that make a hearing aid work must allow for customer input, such as volume adjustment. The engineering design process allows engineers to make decisions regarding the product, and then test the validity of their design. Through this kit, the students will get to see and test the behind the scenes things that make a hearing aid work. Activity Descriptions 1. Slinky Sound Waves 5 Minutes Teams of students will use a slinky to create transverse and longitudinal waves. This will allow them to visually see the way that waves travel through a medium. 2. Cup Telephone Activity 10 Minutes Teams of students will be given cup telephones with different string materials. They will test the cup telephones to see if sound is transmitted through the different strings, and determine which material works best. 3. Hearing Aid Activity 20 Minutes Teams of students will use Snap Circuits build their own hearing aid. They will be able to test the hearing aid by changing the gain of the amplifier, which will change the volume, and by speaking into the microphone. This will show the students that sound can be transmitted through an electrical circuit. The students will also need to record data, which will be used to prove or disprove their hypothesis.

9 9 Engineering Roles Mechanical Engineer (ME) Responsible for assembling mechanical components Electrical Engineer (EE) Responsible for attaching wires and electrical components Sound Engineer (SE) Responsible for speaker assembly and listening for sound changes during testing Data Engineer (DE) Responsible for recording data during testing Test Engineer (TE) Responsible for turning circuit on/off and talking into the microphone NYS Standards NYS Learning Standards: MST 1 E Scientific Inquiry Interpret organized observations and measurements, recognizing simple patterns, sequences, and relationships MST 1 E Engineering Design Discuss how best to test the solution; perform the test under teacher supervision; record and portray results through numerical and graphic means; discuss orally why things worked or did not work; and summarize results in writing, suggesting ways to make the solution better NYS Science Standards: Standard 4: Energy exists in many forms, and when these forms change energy is conserved. Students: Describe the sources and identify the transformations of energy observed in everyday life Describe situations that support the principle of conservation of energy This is evident, for example, when students: -Design and construct devices to transform/transfer energy. - Build an electromagnet and investigate the effects of using different types of core materials, varying thicknesses of wire, and different circuit types

10 10 DURATION 60 Minutes CONCEPTS What is Sound Sound Waves Mechanical Sound Travel Electrical Sound Travel

11 11 Sound & Sound Waves Introduction (5 Minutes) Background Information: Sound is a mechanical vibration that travels through matter as a compression waveform. Although it is commonly associated with moving through air, sound will readily travel through many other materials, such as water and metals. The sound waves move through the air, or another material, until a sensor detects the vibrations. Simplified Definitions: Sound o Sound is the vibration of matter (stuff). Sound Wave o A sound wave is the movement of air that is caused by stuff vibrating. A person detects sound when their ear drums feel the vibrating air. Group Discussion: (Pose the following questions to the group and let discussion flow naturally try to give positive feedback to each child that contributes to the conversation) Has anyone heard sound before? What types of sound have you heard? Most/all students should answer YES Loud, soft, phone ringing, talking, doorbell, etc Has anyone seen a sound wave before? All students should answer NO

12 12 Slinky Sound Wave Activity 5 minutes Learning Objectives By the end of this exercise, students should be able to See how sound waves travel Describe the two types of sound waves Materials Each group needs: (1) Slinky Procedure Read the instructions to the students step by step. Have students raise their hands after they complete a step so the instructor knows to move on. Give each group of students a slinky Have the students lay the slinky on a table or non-carpeted floor Have 2 students (one on each end) hold the slinky so that it is stretched out Demonstrate how to make a transverse wave and explain that the waves move up & down Have each group make a transverse wave Demonstrate how to make a longitudinal wave and explain that the waves move back & forth Have each group make a longitudinal wave Students can change positions (slinky holder vs. wave maker)and re-make the waves if there is time End Slinky Sound Wave Activity

13 13 Sound & Engineering Introduction (5 Minutes) Background Information: Engineers need to understand how sound travels in order to create products that can make sound (like a speaker) and products that pick up sound (like a microphone). In order to transmit sound, engineers can use either mechanical or electrical methods. While each method has its positives and negatives, they are both vital in the engineering of sound transmission. Simplified Definitions: **May be helpful to show/draw pictures when explaining these concepts** Engineering o A technical profession that applies skills in math, science, technology, material, and electronics in order to design and create new products Amplitude o Amplitude is the height of the sound wave. A higher amplitude means that we hear a louder sound. Gain o Gain is an increase of the amplitude of a signal from the input to the output. Resistor o A resistor is an electrical object that only lets a certain amount of electricity though it. A big resistor means a small amplitude (and quieter sound). Group Discussion: (Pose the following questions to the group and let discussion flow naturally try to give positive feedback to each child that contributes to the conversation) Why do you think knowing about amplitude is important when designing a hearing aid? The person using the hearing aid needs to be able to control the volume of it. The engineers need to know how loud the hearing aid can get so they can make sure it stays at a safe level. There may be more correct answers than the ones listed. Do you think engineers are needed to design a hearing aid? Why or why not? YES!!! Engineers need to design the system that makes the hearing aid work Engineers need to choose what materials they will make the hearing aid out of Engineers need to test the hearing aid to make sure it works correctly Engineers need to design the speakers that are used in the hearing aid Do you know how a hearing aid helps people hear? The hearing aid has a microphone that picks up sounds. The sounds are made louder (amplified) and sent into the person s ear through a speaker.

14 14 Cup Telephone Activity 10 minutes Learning Objectives By the end of this exercise, students should be able to Understand that sound can be transmitted mechanically through a string Materials Each group needs: (1) Yarn Cup Telephone (1) String Cup Telephone Procedure Give each group an activity handout. Have them answer the Brain Challenge questions on the Mechanical side of the page. The Data Engineer should record all answers. Give the students 5 minutes. Read the instructions to the students step by step. Have students raise their hands after they complete a step so the instructor knows to move on. ME Take the cup telephones out of the micro-kit container. Make sure the strings are securely attached to the cups. TE & SE Each engineer should grab one of the orange cups and stand away from each other so that the string is taut. SE Put your ear up to the cup and wait for the TE to talk. TE Talk (do not yell) into the cup. SE Describe what you heard. Could you hear the TE? Was the TE s voice loud/soft, easy/hard to understand? DE Record what the SE heard through the cup telephone. EE Trade places with the SE and repeat the experiment. DE Record what the EE heard through the cup telephone. ALL Repeat the process with the green cups. After all groups have completed testing of both orange and green cup telephones, have the students answer the Engineering Analysis questions at the bottom of the Mechanical page. The Data Engineer should record all answers. Review the answers with the students. End Cup Telephone Activity

15 15 Hearing Aid Activity 20 minutes Learning Objectives By the end of this exercise, students should be able to Understand the goal and necessity of amplification Explain how a hearing aid helps people who are hard of hearing Understand the engineering design process Materials Each group needs: (1) Snap Circuit (SC) Board (2) Black Snap Wires (2) Red Snap Wires (2) Battery Holders (B1) (3) Resistors (R1,R3, R5) (1) Capacitor (C3) (1) Switch (S1) (1) Power Amplifier (U4) (1) 7 Snap Wire (1) 4 Snap Wire (3) 3 Snap Wires (2) 2 Snap Wires (2) Single Snap Wires (2) Speaker Stands Circuit Schematic

16 16 Layer 1 B1 goes from A9 to C9 B1 goes from E9 to G9 U4 goes between D6, D7, F6, F7 Single snap goes on A7 3 snap goes from E2 to E4 7 snap goes from G2 to G8 Layer 2 S1 goes from C9 to E9 4 snap goes from A7 to D7 Single snap goes on A9 2 snap goes from G8 to G9 2 snap goes from F6 to G6 C3 goes from E4 to E6 Resistor goes from E3 to G3 Layer 3 3 snap goes from A7 to A9 Safety Precautions Warn student not to put their ears too close to the speakers! While the speakers don t get loud enough to damage hearing, getting too close may hurt. Procedure Read the instructions to the students step by step. Have students raise their hands after they complete a step so the instructor knows to move on. ME Take all snap circuit components out of the micro-kit container. ME Following the circuit assembly guide, put LAYER 1 on the SC board. EE Following the circuit assembly guide, put LAYER 2 on the SC board.

17 17 SE Attach one black wire and one red wire to each speaker. SE Following the circuit assembly guide, attach the speakers to the circuit. Place the speakers as far apart as they will go. TE Make sure that the switch is OFF, and then put the batteries into the battery holders. **Instructor Go around and check each team s batteries to make sure they are in correctly! EE Following the circuit assembly guide, attach the R1 resistor. **Instructor Make sure to clarify which speaker is the microphone and which is the speaker. TE Turn the switch to the ON position. SE Get ready to listen to the speaker. TE Talk into the microphone in a normal voice. Sometimes, humming or making a noise may also work. DE Record what the SE heard out of the speaker. EE, ME, & DE Take turns listening to the TE talk into the microphone. EE Switch the R1 resistor with the R3 resistor. SE & TE Test the circuit by talking into the microphone and listening to the speaker output. DE - Record what the SE heard out of the speaker. EE, ME, & DE Take turns listening to the TE talk into the microphone. ALL Repeat steps with the last 2 resistors. ME When your group is done experimenting, carefully take apart the circuit and put the pieces away. ME Put all parts back into the micro-kit container. After all groups have completed testing their circuits, have the students answer the Engineering Analysis questions at the bottom of the Electrical page. The Data Engineer should record all answers. Review the answers with the students. End Hearing Aid Activity

18 18 Trouble Shooting Guide The waves can t be clearly seen with the slinky o Have the students pull the slinky tighter The speakers have background static o Move them farther apart The volume doesn t change with resistance change o Have the students speak at a constant level o Have the students cup their hands around the speaker when talking into it to prevent sound travel through the air The speaker to microphone circuit won t work o Check that the batteries aren t dead o Check that the circuit is put together correctly o Check that the speaker and microphone are attached in the correct places o Make sure that the switch is ON

19 19 Revisions Date Changes Made Changes Made By

ENGINEERing challenge workshop for science museums in the field of sound & acoustics

ENGINEERing challenge workshop for science museums in the field of sound & acoustics ENGINEERing challenge workshop for science museums in the field of sound & acoustics 1 Index Workshop ID card...3 Specific unit objectives...4 Resources...4 The workshop...5 Introduction...5 The main activity...6

More information

Fundamentals of Digital Audio *

Fundamentals of Digital Audio * Digital Media The material in this handout is excerpted from Digital Media Curriculum Primer a work written by Dr. Yue-Ling Wong (ylwong@wfu.edu), Department of Computer Science and Department of Art,

More information

Seeing Sound Waves. sound waves in many different forms, and you get to have fun making a loud mess.

Seeing Sound Waves. sound waves in many different forms, and you get to have fun making a loud mess. Seeing Sound Waves Overview: This section is actually a collection of the experiments that build on each other. We ll be playing with sound waves in many different forms, and you get to have fun making

More information

Chapter 15 Supplement HPS. Harmonic Motion

Chapter 15 Supplement HPS. Harmonic Motion Chapter 15 Supplement HPS Harmonic Motion Motion Linear Moves from one place to another Harmonic Motion that repeats over and over again Examples time, speed, acceleration Examples Pendulum Swing Pedaling

More information

Vibration. The Energy of Sound. Part A Sound Vibrations A vibration is the complete back andforth. object. May 12, 2014

Vibration. The Energy of Sound. Part A Sound Vibrations A vibration is the complete back andforth. object. May 12, 2014 The Energy of Sound In this lab, you will perform several activities that will show that the properties and interactions of sound all depend on one thing the energy carried by sound waves. Materials: 2

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S Duration 3 hours NO AIDS ALLOWED Instructions: Please answer all questions in the examination booklet(s) provided. Completely

More information

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals 2.1. Announcements Be sure to completely read the syllabus Recording opportunities for small ensembles Due Wednesday, 15 February:

More information

An introduction to physics of Sound

An introduction to physics of Sound An introduction to physics of Sound Outlines Acoustics and psycho-acoustics Sound? Wave and waves types Cycle Basic parameters of sound wave period Amplitude Wavelength Frequency Outlines Phase Types of

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

While you are hearing a sound, dip the ends of the tuning fork into the beaker of water. What is the result?

While you are hearing a sound, dip the ends of the tuning fork into the beaker of water. What is the result? SOUND STATIONS LAB Name PROPERTIES OF SOUND Visit each station. Follow the directions for that station and write your observations and the answers to any questions on this handout. You don't have to visit

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

Psychology of Language

Psychology of Language PSYCH 150 / LIN 155 UCI COGNITIVE SCIENCES syn lab Psychology of Language Prof. Jon Sprouse 01.10.13: The Mental Representation of Speech Sounds 1 A logical organization For clarity s sake, we ll organize

More information

CHAPTER 12 SOUND. Sound: Sound is a form of energy which produces a sensation of hearing in our ears.

CHAPTER 12 SOUND. Sound: Sound is a form of energy which produces a sensation of hearing in our ears. CHAPTER 12 SOUND Sound: Sound is a form of energy which produces a sensation of hearing in our ears. Production of Sound Sound is produced due to the vibration of objects. Vibration is the rapid to and

More information

Name Date Class _. Holt Science Spectrum

Name Date Class _. Holt Science Spectrum Holt Science Spectrum Holt, Rinehart and Winston presents the Guided Reading Audio CD Program, recorded to accompany Holt Science Spectrum. Please open your book to the chapter titled Sound and Light.

More information

Sound Quiz A. Which of the graphs represents the sound that has the lowest pitch? Question Prompt: 1 Total Points: 6

Sound Quiz A. Which of the graphs represents the sound that has the lowest pitch? Question Prompt: 1 Total Points: 6 Sound Quiz A Question Prompt: 1 During a laboratory investigation, Aaron used an oscilloscope to create graphs of sounds that he produced using tuning forks. Which of these four graphs represents the sound

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

The Nature of Sound. What produces sound?

The Nature of Sound. What produces sound? 1 The Nature of Sound What produces sound? Every sound is produced by an object that vibrates. For example, your friends voices are produced by the vibrations of their vocal cords, and music from a carousel

More information

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced.

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced. Sound How does the sound produced by a vibrating object in a medium reach your ear? - Vibrations in an object create disturbance in the medium and consequently compressions and rarefactions. Because of

More information

Introduction. Physics 1CL WAVES AND SOUND FALL 2009

Introduction. Physics 1CL WAVES AND SOUND FALL 2009 Introduction This lab and the next are based on the physics of waves and sound. In this lab, transverse waves on a string and both transverse and longitudinal waves on a slinky are studied. To describe

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

The quality of your written communication will be assessed in your answer. (Total 6 marks)

The quality of your written communication will be assessed in your answer. (Total 6 marks) Q1.A stationary wave is formed on a stretched string. Discuss the formation of this wave. Your answer should include: an explanation of how the stationary wave is formed a description of the features of

More information

SOUND & MUSIC. Sound & Music 1

SOUND & MUSIC. Sound & Music 1 SOUND & MUSIC Sound is produced by a rapid variation in the average density or pressure of air molecules. We perceive sound as these pressure changes cause our eardrums to vibrate. Sound waves are produced

More information

3A: PROPERTIES OF WAVES

3A: PROPERTIES OF WAVES 3A: PROPERTIES OF WAVES Int roduct ion Your ear is complicated device that is designed to detect variations in the pressure of the air at your eardrum. The reason this is so useful is that disturbances

More information

Sound. Introduction. Key concepts of sound

Sound. Introduction. Key concepts of sound Sound Introduction This topic explores the key concepts of sound as they relate to: the nature of sound the transmission of sound resonance the speed of sound sound and hearing. Key concepts of sound The

More information

NAME: SECOND YEAR: A. EXERCISES LESSON 11: Waves. Light and sound. Exercise sheet 1

NAME: SECOND YEAR: A. EXERCISES LESSON 11: Waves. Light and sound. Exercise sheet 1 NAME: SECOND YEAR: A NATURAL SCIENCE 2º ESO EXERCISES LESSON 11: Waves. Light and sound READING 1: What is sound? Exercise sheet 1 Have you ever touched a loudspeaker as it is emitting sound? If so, you

More information

Diwali Holiday Homework Class IX A

Diwali Holiday Homework Class IX A Diwali Holiday Homework - 2017 Class IX A Subject English Hindi Mathematics Physics Chemistry Diwali Break Homework Refer to Page 20 in your Student Book. The last point in the Writing Task says: Taking

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

Below you will find science standards as presented in Minnesota, along with a number of music lessons that help bring these standards to life.

Below you will find science standards as presented in Minnesota, along with a number of music lessons that help bring these standards to life. Music education overlaps with many other curricular areas, including science, technology, engineering and math otherwise known as the S.T.E.M. curriculum. S.T.E.M. is getting a great deal of attention

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: STANDING WAVES QUESTIONS No Brain Too Small PHYSICS PAN FLUTES (2016;1) Assume the speed of sound in air is 343 m s -1. A pan flute is a musical instrument made of a set of pipes that are closed

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

Final Project for Summer Physics Institute Electricity and Magnetism Instructor: Dr. Meera Chandrasekhar University of Missouri-Columbia

Final Project for Summer Physics Institute Electricity and Magnetism Instructor: Dr. Meera Chandrasekhar University of Missouri-Columbia Build Your Own Telephone Hixson Middle School Runnrz26@aol.com Marion Count R-II Rrm009@mail.connect.more.net Holman Middle School williams.dane@webster.k12.mo.us Final Project for Summer Physics Institute

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER 12 Sound

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM  CHAPTER 12 Sound 1. Production of Sound CHAPTER 12 Sound KEY CONCEPTS [ *rating as per the significance of concept] 1 Production of Sound **** 2 Propagation of Sound ***** 3 Reflection of Sound ***** 4 Echo **** 5 Uses

More information

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by PC1141 Physics I Speed of Sound 1 Objectives Determination of several frequencies of the signal generator at which resonance occur in the closed and open resonance tube respectively. Determination of the

More information

Properties of Sound. Goals and Introduction

Properties of Sound. Goals and Introduction Properties of Sound Goals and Introduction Traveling waves can be split into two broad categories based on the direction the oscillations occur compared to the direction of the wave s velocity. Waves where

More information

Sound Lab. How well can you match sounds?

Sound Lab. How well can you match sounds? How well can you match sounds? Shake each container and listen to the noise it makes. Can you hear the different sounds they make? Describe each of the sounds you hear on your lab sheet. Do two or more

More information

Have sound panels fitted on A-frame best to slot in bottom hook first, then top.

Have sound panels fitted on A-frame best to slot in bottom hook first, then top. I Can Hear 1 - Pitch and Volume Topic: I can hear sound Time: 20 mins Age group: 4-7 What you need The Kia Rapua playground A frame with sound panels fitted Drum stick with rubber tip Optional: Extra sound

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

Interference & Superposition. Creating Complex Wave Forms

Interference & Superposition. Creating Complex Wave Forms Interference & Superposition Creating Complex Wave Forms Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing

More information

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound Preview What are the two categories of waves with regard to mode of travel? Mechanical Electromagnetic Which type of wave requires a medium?

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

UDL AND SCIENCE LESSON OVERVIEW. Unit Description - Sound can make matter vibrate, and vibrating matter can make sound.

UDL AND SCIENCE LESSON OVERVIEW. Unit Description - Sound can make matter vibrate, and vibrating matter can make sound. UDL AND SCIENCE LESSON OVERVIEW Title: Vibrating Strings Author: Battle Creek Area: Mathematics & Science Center Subject: Science Grade Level 3 rd grade Duration 2 class periods - 40 minutes each Unit

More information

Waves and Sound. AP Physics 1

Waves and Sound. AP Physics 1 Waves and Sound AP Physics 1 What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Classes of waves

More information

Name: Design Musical Instruments Engineer s Journal ANSWER GUIDE

Name: Design Musical Instruments Engineer s Journal ANSWER GUIDE Name: Design Musical Instruments Engineer s Journal ANSWER GUIDE YOUR GRAND ENGINEERING DESIGN CHALLENGE: Design and build a musical instrument that can play at least three different notes and be part

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adapters, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Complete the sound and music introductory lesson and the Musical Instruments Part I lesson. Gather supplies (see materials list).

Complete the sound and music introductory lesson and the Musical Instruments Part I lesson. Gather supplies (see materials list). Acoustical Society of America Musical Instruments: Part II Adams, W.K. Edited by: Kelseigh Schneider Reviewed by: American Association of Physics Teachers Physics Teacher Resource Agents ASA Activity Kit

More information

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave.

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave. SOUND - we can distinguish three aspects of any sound. First, there must be a source for a sound. As with any wave, the source of a sound wave is a vibrating object. Second, the energy is transferred from

More information

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions Practice 1. Define diffraction of sound waves. 2. Define refraction of sound waves. 3. Why are lower frequency sound waves more likely to diffract than higher frequency sound waves? SUMMARY Diffraction

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

MUS 302 ENGINEERING SECTION

MUS 302 ENGINEERING SECTION MUS 302 ENGINEERING SECTION Wiley Ross: Recording Studio Coordinator Email =>ross@email.arizona.edu Twitter=> https://twitter.com/ssor Web page => http://www.arts.arizona.edu/studio Youtube Channel=>http://www.youtube.com/user/wileyross

More information

Trigonometric functions and sound

Trigonometric functions and sound Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

More information

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples.

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples. Digital Data Transmission Modulation Digital data is usually considered a series of binary digits. RS-232-C transmits data as square waves. COMP476 Networked Computer Systems Analog and Digital Signals

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

Chapter 4: AC Circuits and Passive Filters

Chapter 4: AC Circuits and Passive Filters Chapter 4: AC Circuits and Passive Filters Learning Objectives: At the end of this topic you will be able to: use V-t, I-t and P-t graphs for resistive loads describe the relationship between rms and peak

More information

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear? Intext Exercise 1 How does the sound produced by a vibrating object in a medium reach your ear? When an vibrating object vibrates, it forces the neighbouring particles of the medium to vibrate. These vibrating

More information

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1 E40M Sound and Music M. Horowitz, J. Plummer, R. Howe 1 LED Cube Project #3 In the next several lectures, we ll study Concepts Coding Light Sound Transforms/equalizers Devices LEDs Analog to digital converters

More information

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION 5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION So far we have studied oscillations and waves on springs and strings. We have done this because it is comparatively easy to observe wave behavior directly

More information

SUPERCHARGED SCIENCE. Unit 6: Sound.

SUPERCHARGED SCIENCE. Unit 6: Sound. SUPERCHARGED SCIENCE Unit 6: Sound www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! Sound is a form of

More information

Sound. Question Paper. Cambridge International Examinations. Score: /34. Percentage: /100. Grade Boundaries:

Sound. Question Paper. Cambridge International Examinations. Score: /34. Percentage: /100. Grade Boundaries: Sound Question Paper Level Subject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Waves Sound Question Paper Time llowed: 41 minutes Score: /34 Percentage: /100 Grade oundaries:

More information

Signals and Noise, Oh Boy!

Signals and Noise, Oh Boy! Signals and Noise, Oh Boy! Overview: Students are introduced to the terms signal and noise in the context of spacecraft communication. They explore these concepts by listening to a computer-generated signal

More information

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review) Linguistics 401 LECTURE #2 BASIC ACOUSTIC CONCEPTS (A review) Unit of wave: CYCLE one complete wave (=one complete crest and trough) The number of cycles per second: FREQUENCY cycles per second (cps) =

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

What Do You Think? For You To Do GOALS

What Do You Think? For You To Do GOALS Let Us Entertain You Activity 2 Sounds in Strings GOALS In this activity you will: Observe the effect of string length and tension upon pitch produced. Control the variables of tension and length. Summarize

More information

Tuning Forks TEACHER NOTES. Sound Laboratory Investigation. Teaching Tips. Key Concept. Skills Focus. Time. Materials (per group)

Tuning Forks TEACHER NOTES. Sound Laboratory Investigation. Teaching Tips. Key Concept. Skills Focus. Time. Materials (per group) Laboratory Investigation TEACHER NOTES Tuning Forks Key Concept Sound is a disturbance that travels through a medium as a longitudinal wave. Skills Focus observing, inferring, predicting Time 40 minutes

More information

Music. Sound Part II

Music. Sound Part II Music Sound Part II What is the study of sound called? Acoustics What is the difference between music and noise? Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear

More information

9.3 The Physics of Music. Grade 9 Activity Plan

9.3 The Physics of Music. Grade 9 Activity Plan 9.3 The Physics of Music Grade 9 Activity Plan Reviews and Updates 9.3 Waves and Sound Objectives: 1. To understand the law of conservation of energy with regard to how other forms of energy are converted

More information

ALTERNATING CURRENT (AC)

ALTERNATING CURRENT (AC) ALL ABOUT NOISE ALTERNATING CURRENT (AC) Any type of electrical transmission where the current repeatedly changes direction, and the voltage varies between maxima and minima. Therefore, any electrical

More information

Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Class #3: Experiment Signals, Instrumentation, and Basic Circuits Class #3: Experiment Signals, Instrumentation, and Basic Circuits Purpose: The objectives of this experiment are to gain some experience with the tools we use (i.e. the electronic test and measuring equipment

More information

Amateur Wireless Station Operators License Exam

Amateur Wireless Station Operators License Exam Amateur Wireless Station Operators License Exam Study material 2017 South India Amateur Radio Society, Chennai CHAPTER 5 1 Chapter 5 Amateur Wireless Station Operators License Exam Study Material Chapter

More information

Speed of Sound. Introduction. Ryerson University - PCS 130

Speed of Sound. Introduction. Ryerson University - PCS 130 Introduction Speed of Sound In many experiments, the speed of an object such as a ball dropping or a toy car down a track can be measured (albeit with some help from devices). In these instances, these

More information

No.01 Transistor Tester

No.01 Transistor Tester Blocks used Tester Circuits No.01 Transistor Tester Electronic components may break down if used or connected improperly. Let s start with a simple tester circuit project designed to teach you how to handle

More information

Creating Digital Music

Creating Digital Music Chapter 2 Creating Digital Music Chapter 2 exposes students to some of the most important engineering ideas associated with the creation of digital music. Students learn how basic ideas drawn from the

More information

Waves and Modes. Part I. Standing Waves. A. Modes

Waves and Modes. Part I. Standing Waves. A. Modes Part I. Standing Waves Waves and Modes Whenever a wave (sound, heat, light,...) is confined to a finite region of space (string, pipe, cavity,... ), something remarkable happens the space fills up with

More information

Ans: A wave is periodic disturbance produced by vibration of the vibrating. 2. What is the amount of sound energy passing per second through unit area

Ans: A wave is periodic disturbance produced by vibration of the vibrating. 2. What is the amount of sound energy passing per second through unit area One mark questions 1. What do you understand by sound waves? Ans: A wave is periodic disturbance produced by vibration of the vibrating body. 2. What is the amount of sound energy passing per second through

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

Sound & Waves Review. Physics - Mr. Jones

Sound & Waves Review. Physics - Mr. Jones Sound & Waves Review Physics - Mr. Jones Waves Types Transverse, longitudinal (compression) Characteristics Frequency, period, wavelength, amplitude, crest, trough v = f! Review: What is sound? Sound is

More information

Lecture Notes Intro: Sound Waves:

Lecture Notes Intro: Sound Waves: Lecture Notes (Propertie es & Detection Off Sound Waves) Intro: - sound is very important in our lives today and has been throughout our history; we not only derive useful informationn from sound, but

More information

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ υιοπασδφγηϕκλζξχϖβνµθωερτψυιοπασδ φγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκλζ ξχϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ Nature of Sound υιοπασδφγηϕκτψυιοπασδφγηϕκλζξχϖβν

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Key Terms. Loud Soft Quiet High pitch Low pitch Noise Deafness Frequency. Amplitude Wave Loudness Volume Dynamics Medium Speed of sound

Key Terms. Loud Soft Quiet High pitch Low pitch Noise Deafness Frequency. Amplitude Wave Loudness Volume Dynamics Medium Speed of sound Objectives Understand the idea of sound and hearing Learn how sound travels through media Explain how the ear works, find out about the harmful effects of loud noise and how loud noise can be reduced Key

More information

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1 E40M Sound and Music M. Horowitz, J. Plummer, R. Howe 1 LED Cube Project #3 In the next several lectures, we ll study Concepts Coding Light Sound Transforms/equalizers Devices LEDs Analog to digital converters

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

Name: SPH 3U Date: Unit 4: Waves and Sound Independent Study Unit. Instrument Chosen:

Name: SPH 3U Date: Unit 4: Waves and Sound Independent Study Unit. Instrument Chosen: Unit 4: Waves and Sound Independent Study Unit Name: Instrument Chosen: In this ISU, you will be investigating sound and waves, as well as analyzing a musical instrument of your choosing. It will be up

More information

Psychological psychoacoustics is needed to perceive sound to extract features and meaning from them -human experience

Psychological psychoacoustics is needed to perceive sound to extract features and meaning from them -human experience Physics of Sound qualitative approach basic principles of sound Psychological psychoacoustics is needed to perceive sound to extract features and meaning from them -human experience Fundamentals of Digital

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

Copy #1 of 2015 Sound Unit Test

Copy #1 of 2015 Sound Unit Test 1 of 6 2/5/2015 11:15 AM Copy #1 of 2015 Sound Unit Test Question Prompt: 1 During a laboratory investigation, Aaron used an oscilloscope to create graphs of sounds that he produced using tuning forks.

More information

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Physics 101 Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct.

More information

Acoustic Resonance Lab

Acoustic Resonance Lab Acoustic Resonance Lab 1 Introduction This activity introduces several concepts that are fundamental to understanding how sound is produced in musical instruments. We ll be measuring audio produced from

More information

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved. Section 1 Sound Waves Sound Waves Section 1 Sound Waves The Production of Sound Waves, continued Sound waves are longitudinal. Section 1 Sound Waves Frequency and Pitch The frequency for sound is known

More information

NCERT solution for Sound

NCERT solution for Sound NCERT solution for Sound 1 Question 1 How does the sound produce by a vibrating object in a medium reach your ear? When an object vibrates, it vibrates the neighboring particles of the medium. These vibrating

More information

Compiled by: A. Olivier

Compiled by: A. Olivier Other books in this series Warning!! All rights reserved according to the South African copyright act. No part of this book may be reproduced by photocopying or any other method without written permission

More information

Test Review # 7. Physics R: Form TR7.17A. v C M = mach number M = C v = speed relative to the medium v sound C v sound = speed of sound in the medium

Test Review # 7. Physics R: Form TR7.17A. v C M = mach number M = C v = speed relative to the medium v sound C v sound = speed of sound in the medium Physics R: Form TR7.17A TEST 7 REVIEW Name Date Period Test Review # 7 Frequency and pitch. The higher the frequency of a sound wave is, the higher the pitch is. Humans can detect sounds with frequencies

More information

Lab 12. Vibrating Strings

Lab 12. Vibrating Strings Lab 12. Vibrating Strings Goals To experimentally determine relationships between fundamental resonant of a vibrating string and its length, its mass per unit length, and tension in string. To introduce

More information