Comparators V S+ v i. v o. Slope = G. R 1 R 2

Size: px
Start display at page:

Download "Comparators V S+ v i. v o. Slope = G. R 1 R 2"

Transcription

1 Comparators V S V L Slope G. V S R 1 R 2 V L Non-inverting amp. G 1R 2 /R 1. If the op amp has rail-to-rail outputs, then V L V S and V L V S. V S V S R 1 R 2 EE 230 comparators 1

2 X V L V L X For amplifier applications, we try to stay within the linear gain region and avoid operating in the saturated areas. This makes a good amplifier. V L V L But the saturation regions are not totally useless. For example, if the output is saturated at V L, then we know that the input must be large(ish) and positive. Or, if the output is saturated at V L, then we know that the input is large(ish) and negative. Saturated outputs give some comparative information the input is either positive or negative. EE 230 comparators 2

3 Using the saturated levels gives us a yes/no type of circuit. Is the input voltage high? Yes or no? Is the input voltage low? Yes or no? The weakness of using a regular feedback amplifier circuit in this way is the gain region is indeterminate. If the input voltage is such that amplifier is working in its linear region, then the answer to our simple question is Dunno. To make the circuit be more decisive, we should sharpen the gain region transition. This suggests a very simple alternative remove the feedback loop and use the op amp open loop. With its very high openloop gain, there will be an extremely sharp transition from being saturated at the low level to being saturated at the high level. V S V L We can call this a comparator. V S V L EE 230 comparators 3

4 Non-inverting comparator V S V S V S V S V L V L V L V L If > 0, V L if < 0, V L. It s that simple. Shift the comparison point: If >, V L if <, V L. EE 230 comparators 4

5 V S V S R 1 R2 V L V S V S V L Use a voltage divider. (Can be a potentiometer.) V S R 2 R 1 R 2 (V S V S ) Single-supply version. V S R 1 R2 V S V L R 2 V S R 1 R 2 EE 230 comparators 5

6 Inverting comparator Switch the inputs to have it work in the opposite fashion. V L V S V S V L If >, V S if <, V S. EE 230 comparators 6

7 Use positive feedback to improve performance Simple open-loop comparators have problem with chatter. If input signal is noisy and it is close to, the output can bounce back and forth. This is not desirable. We can limit this problem by using positive feedback to introduce hysteresis. Positive feedback also make the output switch even faster from one level to the other. R a Looks normal enough. But wait, the feedback loop is backwards. This is a positive feedback loop. In that case v v. If changes, it causes v to change. When v crosses v ( ), output will change. Extremely non-linear. Have to analyze it piecemeal. EE 230 comparators 7

8 Start by assuming that vi is positive enough to have v > VREF. Then vo VL. R b Write a node equation at the non-inverting input. vi v v v vi VL VREF vi 1 vo VL VL As long as v > VREF, the output will stay high. If we start decreasing vi, v will decrease correspondingly. If vi drops far enough, then v will become less than VREF, and the output will switch from high to low. We can find the input voltage at which the switch occurs. VREF EE 230 VTL 1 VL VTL VREF 1 VL comparators 8

9 V L R a V TL V L V TL 1 R a R a V L As moves from high to low, the output will switch from high to low, as expected, and the switch occurs when the input voltage crosses V TL. EE 230 comparators 9

10 Now consider the opposite case assume that vi is negative enough to have v < VREF. Then vo VL. vi v v v vi VL vi VREF 1 VL vo VL If we start increasing vi, v will increase correspondingly. If vi increases enough, then v will become greater than VREF, and the output will switch from low to high. We can find the input voltage at which the low-to-high switch occurs. VREF EE 230 VTH 1 VL VTH VREF 1 VL comparators 10

11 R a V L V TH V L- V TH 1 R a As moves from high to low, the output will switch from high to low, as expected, and the switch occurs when the input voltage crosses V TH. R a V L Put the two together. V TL V L V TH Since the up and down transitions occur at different voltages, the circuit exhibits hysteresis. V L- Hysteresis: ΔV T V TH V TL R a (V L V L ) EE 230 comparators 11

12 Inverting comparator with positive feedback The same kind of thing can be done with the inverting comparator. Using positive feedback will introduce hysteresis into the transfer characteristic. R a When is low, the output is high, V L. As increases, at some point it becomes bigger than v and the output will go low. So we need to know the value of v when the output is high. Writing the node equation at the non-inverting terminal, v R a v Solve for v with V L. v R a V L 1 R a This is voltage at which the input will switch from high to low. EE 230 comparators 12

13 V L V TH R a V L 1 R a V TH V L- Going the other way, when is high, the output is low, V L. As decreases, at some point it becomes smaller than v and the output will go high. So we need to know the value of v when the output is low. Again, writing the node equation, Solving for v with V L. v R a V L 1 R a This is the input voltage at which the input will switch from low to high. EE 230 comparators 13

14 V L V TL R a V L 1 R a V TL V L V L Put the two together. V TL V L V TH Hysteresis: ΔV T V TH V TL R a (V L V L ) 1 R V L V L a 1 R a EE 230 comparators 14

15 Example 22 k! Find VTL and VTH for the non-inverting comparator shown. Also calculate the hysteresis width for the comparator. vi The op-amp has high and low output limits of VL 7.5 V and VL 7.5 V. VTL VREF <latexit sha1_base64"3n/5g/dbqfviq/fzg2r2ze/eww0">aaacv3icbvhbattaef2rt9s9xgkf7lufbysgqkumkalofchpzghjgoweap1yf68wonduykrq5sx/62v5gv7ylszobxq7nzmzunilzjs35/qgdfuvfspdh42hz18ns3tffswmafetgqmcrmzqwwldq4iekkl3odkmykh/h8u60pf6cxmtpntmhxnmjuy0qkiedfrdolqdzvvfwdddsy9cqvjhqjzgiewoipiugcldchuzoz7t/eixflroovymqarx9rr8mfhmea9bm6hhe41homlekaimocdauednnc7bkbqkq2zywmxbzggkiwc1pgjh5xl2ir9yziqnmxfhe1y1ytksk1dplhltifmdlurydu0uuhj0biuoi8itvg9lbsku8zri/leghskfg6amnl9lyszof/i2b3xyrj3jmjjkvkq0fjke9xifv2raudapbskrqcq6dcvnt2n3b9ar7zwu4l2cnelr5m4jz/wu5tbekynv4m2dwpnvcdu7ftk/er3eyw16wl6zdavaonbdvrm8gtlcf7df7w/56h72zp718leo11jxp2uz4i3ut6t</latexit> 1 10 kω (1 V) 1 22 kω VTH VREF <latexit sha1_base64"yneagwgb2l45oxuokjyc59lga">aaacv3icbvhbattaef2rt9s9oe1jx5aygkmti5vcw2gg9jy85mejcrywjbitr/bi1ursjkkm0hf1w/rq1/y3urjdij0m7hi4z2z250yck2nj9381vhv3hzx8tpw4etpscvwtsvl2xwgif9kanmxmzguumnfzkk8di3cgmscbdpvtb64aqnlzkp3mooxqmwizsadkqap1erox5ccupuann339uockeoshbmdegyrmiknffvwjkzeq70v5btf1onmvolbb7/ql4ldbsajttopetn0yhonmfclqegqshqztqmsdemhsgqghcucxawmohrqq4p2vc5mr/gbx4x5khl3npefe7oihntaerq7zbroaje1mrxlgxaufbyvuucfolh5jcccp4bsqfs4oc1nwbeea6v3ixbeclobvxxln0zlgstvjef1qkbiwbrkjrmubii5sc1pvuzqu25fo/toux813vsmjjlt3uot7rwzxtnsjtlwewwafxv033u/dypt93dz6udblhxbid1wmasen2zhqszwt7yx6zpyv98wbetrll6ley1xziq2fn/8hurleqw</latexit> 1 10 kω (1 V) 1 22 kω <latexit sha1_base64"ooywu9xdnzozqic3jiqfyfoiqm">aaadkxicfzlfaxnbemf3rv6o8vdah31zdukk7xexqq2gufcod4ipmkaqc2gzmbss2ds7duck4ch/5h/gfgtuo/4l5ysnmrbxagz8x3z3zmx5kubn3/hpu3lh56/buncbde/cfpgzu7vannccejyvqb4amwnskoihqalxmqawjcx0x7o3zbz/gbqrqfqeiwygcyuviarnangozwoagecns0cbhmwndlzahfpmwdnqeh5fmvah8wixmluhhbgk2ldqdoqqkr2vt/5bkpq0yn3ot6pbfxyo335f4ald/zv0a3nabywqsy7mjp6yetlocjkossgtmi/ayhbdmouirli8wnzizpwawd6yqwgbkwqykv6tnljjrktt0k6ypevxqsmwarjg1mwnbq6res/is2yde6hrzcztmc4utcus4pprrcgz0idrzlwjqma2f7pxzk7gtrlnajyurudpjgs4p5rgrpj1cjeueomyugmgfcla8qukzan6hsp9jev/l2oxelnicfyudhuqayhvzlbdhvbpxbbzu9jvfkcy6ow2evq53sksfkkwmtgjyqm/kedempcoejc50nqv3i/vn/e7xke6tqv5rdbm/fubfxkd4w</latexit> EE 230 ΔV (VL <latexit sha1_base64"ky/n4glevgsj24sto0nxkg24x0u">aaacthicbvfdi9nafj3gr7vbfcffrksqhd3sylirqcw4ki7emv2y40idxmb9qhk0myuzgwkh/kr/fn9mc46vbydr0wwgce/mptcplltk79a3q3bd7e27vffvdw0ep9zsgtkc1li3aocpwbywqskqlxsjiuxhygiusujppfh0yff0djza6/0arakiozlqkuqi6kox/dc1qefmtf8za1ikqvmdtusupqyuq9uvxdvkz5mw/acr0aozvtoct0z8nqsilvxxux52u3/fxwwcyao6bbodka1dqe5kdpujbryown8gqikdemhsg6hpcucxajmohfqq4y2qtyd1/yfy6y8zy07mviavv5rqwbtkktczgy0t7taq/5pm5sunkav1evjqmxvq2mpoow8cy9ppufbauuaccpdx7myg7onnmdbr6x7fyi2jqmwpzyinioq2hjbhxpktkqupmqgobys9l5p9r1a/jeuzxjskcxjxj0ysaudq/ltt0qgl3jb4lhq/7bfvdldffs3wynewze856lgan7ix9zgm2zil9yd/zb/bho/eit3h4leq1njvp2vz4i9ne9go</latexit> 10 k! VREF 1V vo VL 10 kω 22 kω <latexit sha1_base64"esucgzbr/hoqg4vdlsmw8ltv0e4">aaadkxicfzlfi9naemc38ddzf/x00zfvivtwlirfoq8udhtob8ee2otbu8p2o0mxbjzhdyitifr/4h/hu/qq/imzbinruhfobpzhdndmanmrqgffh4167fupmrb3brtt3791/0n5/eghsxhmy8fsmnlkdeihyiacjvxmglgyltcclt5w8efn0eak6houmhgnlfyiepyhrzp2v/qghhii7nigrfhiqs/kuit4jgcbhjwpi814efi0tliu4cceylywvv4t1dkjjfz/yh22vfxye9lsx3z6fhgnf/mk3fe9f2101wlqp0nq60/2nwe4s3megeiumtgjwm9wxdcngksow2fuign8wwiywvexbmy4we5pm8smdeo1fyopgt6vvgwxjhvmrwzcco5acyqk/ykmfo1bgqkssrfn8uinjjmaxvyuhmaoaov9zhxavbkvzzieldrfbvdz3z8c3xliscyv4oomglbhezsw0gaktqnpv0wfs/gyv/sh2vop334lyodn8uaupzzta4ubkbsuuimgoftcz9lwtlzh/0tl9xe9kjzwmt0mxbosynjl3pe8ghdtpndon75y7x9xv7nf35ybvdwrni7jl7q/feqyd4a</latexit> (7.5 V) 1.95 V VL 10 kω 22 kω ( 7.5 V) 4.86 V VL ) 6.81 V comparators 15

16 Example 3.3 k! Find VTL and VTH for the inverting comparator shown. Also calculate the hysteresis width for the comparator. The op-amp works with a single supply and has high and low output limits of VL 6 V and VL 0 V. VTL VREF 1 <latexit sha1_base64"8qliumxyidf/mjsr1g2jm5fkgzy">aaacrnicbzfdixmxfibt8wutx1299czyhbxxmioccgofpy96uzftdqedhkx6pg3njenyrrae/b1/jbck/hszbyvt1wmz3jzvstlnnlyswmic/2lf167fuhnr4hb7zt179x90dhewv0bdiouptbnobmghyircprwxhlgzs5hnc8/np74oxgrtdrfvqvpyezkfiizdcjr9m8ydzrw9d2dfozxf7ynnz7755vdscz8oq4mel712yb/is04178trovzfsrzdsy5gdtsbtmez1cqq5znzokrjc1dgdgkvw7wltowj8yeywcvkxemzq1qv6jsqgs20cushxdpljxwrrv2vecgsgs7svtfa/3mtgos3qroqqheu3zxu1jkipk3f6ewy4chxqtburphxyhcs9ajdd3dewd9dadpxf3usna9gz0q8qinc9aclkyopio3zdkmrl/onzx8kopyi7qhg8a8/ilavgu5tbdqni9ht/vyxe9t72kmvuv1325kckmfkctkicxlnuqrgzir4eqhulkd9reo2jnmo2qvfreyr2ylo8rfdithh</latexit> VTH <latexit sha1_base64"ih1vsi2itlob640u8ylljo7ulhq">aaacrnicbzhbahsxeibl7sl1t0572rtru0hjmluh0bzampsui1y4iy4d9rjo5vlbwcst0myjexqdpk1vwjbvgu7edsd0plr0fszkxeswexjv0olu379y9t3e//edho8dpovtpl6yudych11kby5xzkelbeavkukwmsdkxmmoxhxt/9b2mfvqd47kctgqzjqrbgqaudfoxmts/8fqdnrsgcre2z5/mp17ixjpnxyh/dpofcu2tv81ungvxgv9kzinqjlnjhi9lujyvtzugsfxdjrx0lcyeqyqcelpaktlaxvmazgaepwak2datspx0zyjqw2oslkk7o9rooldyuyzxklgzndtdr4p8cy3f29qjvduiiq8fkmpjudomb3qqdhcuyyaynyl8kvzfnqbobtbr6zurobvvekuaiw4nsiolxifhgvoausmvfovgzazxqp0pxzua/jbjzetai9og/poqwfyvlqw2w6jshybf1mmj3vvesm319381m9shz8oickis8ix1yqgzksdj5qx6sxr3lesjki2ydwru2px5rryimv8fz9byqq</latexit> VREF 1 VL VL VL VL ΔV 1 Ra <latexit sha1_base64"xvnqijuvwi2iew9dzptgngoowis">aaadanicbzfbi9nafmcn8bbwy3b10zfbirtutirwvialcy7ow4jvblvqldkznqrdj5mwcyitiy9a7ftkrx8sv4pottsq2uwcyofz5zjztphjyddzfjvutes3bt7au127c/fe/f36wyobsxpnoc9tmerzkbmqqkefbuo4zzswjjqwdodvk334bbqrqfqmywzgcyuviarnangk/o0gpycr0qe9pkgkgs8gklssgxxv3zzfv7hgnasnieyvker8glaggbbr2ubw8vjihc5lrrdrp0i8/l4emcsu2cgzaxdnslbz7939sb3hdbyv0cuov3eazgo9yyezdkypzxnqycuzzur7gy4lplfwcwutya1kjm9zdcprkpaagrer8zx0isvtgqxafgrpil7mkfhizdijbwtccgz2tqpepy1yjf6nc6gyhehxdamolxrtwu2ctougjnjphca1shelfmbs/nbubkvlqnygfoslxsjxgqdt2kesf6izhqywyujvryp6tnqvq/qftvuq3jwvsubzdfajr80wlx1ibzmvhvdv6y03/wed3xpz5vnlzz7gsppckpszp45cu5ie9jj/qjj38c6rscp5x97v7w/25dnwdtc5dsmxur78ujpwg</latexit> EE V 1 <latexit sha1_base64"cgdm1dnykhldmycn8b4y6kwvdhi">aaadkxicpzlfi9naemc38ddzf/x00zfvivtwcelpurmudhtob8ee2otbu8pmo0mxbjzhdyitifr/4h/hu/qq/imzbqtxdvdiwmn/m7ozmrrkubn3/hneu37j5q2d2607d/df9defxhmskjzgpbmzvo8ygakudbagrlocw0sjsqmo/nbwh9bm1epj7hmodxyhilysezwjrpf6vvabhrxsue9zjewgbjz6rnoyqyu2vhwdugjtkvwo8pjky6eozajdpcwds/21hldl8f91k9tq4pxdtlpd3zpxxm97asn0ygn9se7zjcczrxiqsgxzjhr4oc4lplgwsvurbawkdmzwmmrktycmzcrqzc0wewtgmcaxsu0hw9mfgy1jhlgtnilohmbgs1veobfrgfjuuh8gjb8fvfcsepzrregz0kdrzl0jqma2f7pxzg7ajrlnbjllxthpjgs8pfoqtpprbfjs5qmwsnymqeql9v9pm0p0nlf7ctv/puo5einpsfanh/rapm9y7etuwqgu3bx3ygpevf5y6by/bnayqx6tp6rlanjijsl70icdwp0nzontd07dl4397v7cx3qok3oi7jh7q/fxnwdoa</latexit> <latexit sha1_base64"lx4rp2upks4je/bn8jbbuiccby">aaadkxicpzlfi9naemc38ddzf/x00zfvivtwcenv/aukbwrng2ap7pwgkwwznarln5uwo5gwkp/i/8d/wif11x/etrv12rs3bxagz3dmdnzmo1wkg77/w3gvxl12/cbozdat23fu3mvv3j81wae5dhgmm30wmqnskbigqalnuqawrhkg0fxtrq8/gzyiu59wmcm4zyksseamlzq0v9i3niw142xpexyillckp9xtuekm3bvw4b3qrplx4ccuelzdckmtkhnurxpp87/vgl6vwx/vrwyrh17vx5etdsf3/jxri07qob3swhy6wzdacalfbryyywzbx6o45jpffxc1qolaznjc5baylqkpwdg5wrkfx1iyztgmbzhiv3r8xkls41zppgntbnozlzww8u0uyhxy3epvf4gkl6kc4kxyzwk6ntoygjxfqhcs1sr5tpmb0h2svu3lkqnqpfeem5kjtg2rs2qmqfamahauyzupwryj6t9meo7a29wrefscsgwb/qy3uh2uad652jzda9ivoooe98oktw87r62ynoqheuy6jcavybf5t/pkqljzydl2s6j8x95n53f65dxafjeua2zp31g3gxa6k</latexit> 2.5 V k! VREF 2.5 V 3.3 kω 3.3 kω 3.3 kω 3.3 kω (0 V) 3.3 kω 3.3 kω 3.3 kω 3.3 kω (6 V) vi vo 1.25 V 4.25 V 6V 0 3V 3.3 kω kω comparators 16

17 Example Design the non-inverting comparator shown at right so that it has VTL 2.0 V and VTH 4.0 V vi The op-amp has high and low output limits of VL 6 V and VL 0. VTH VREF <latexit sha1_base64"yneagwgb2l45oxuokjyc59lga">aaacv3icbvhbattaef2rt9s9oe1jx5aygkmti5vcw2gg9jy85mejcrywjbitr/bi1ursjkkm0hf1w/rq1/y3urjdij0m7hi4z2z250yck2nj9381vhv3hzx8tpw4etpscvwtsvl2xwgif9kanmxmzguumnfzkk8di3cgmscbdpvtb64aqnlzkp3mooxqmwizsadkqap1erox5ccupuann339uockeoshbmdegyrmiknffvwjkzeq70v5btf1onmvolbb7/ql4ldbsajttopetn0yhonmfclqegqshqztqmsdemhsgqghcucxawmohrqq4p2vc5mr/gbx4x5khl3npefe7oihntaerq7zbroaje1mrxlgxaufbyvuucfolh5jcccp4bsqfs4oc1nwbeea6v3ixbeclobvxxln0zlgstvjef1qkbiwbrkjrmubii5sc1pvuzqu25fo/toux813vsmjjlt3uot7rwzxtnsjtlwewwafxv033u/dypt93dz6udblhxbid1wmasen2zhqszwt7yx6zpyv98wbetrll6ley1xziq2fn/8hurleqw</latexit> VTL VREF <latexit sha1_base64"3n/5g/dbqfviq/fzg2r2ze/eww0">aaacv3icbvhbattaef2rt9s9xgkf7lufbysgqkumkalofchpzghjgoweap1yf68wonduykrq5sx/62v5gv7ylszobxq7nzmzunilzjs35/qgdfuvfspdh42hz18ns3tffswmafetgqmcrmzqwwldq4iekkl3odkmykh/h8u60pf6cxmtpntmhxnmjuy0qkiedfrdolqdzvvfwdddsy9cqvjhqjzgiewoipiugcldchuzoz7t/eixflroovymqarx9rr8mfhmea9bm6hhe41homlekaimocdauednnc7bkbqkq2zywmxbzggkiwc1pgjh5xl2ir9yziqnmxfhe1y1ytksk1dplhltifmdlurydu0uuhj0biuoi8itvg9lbsku8zri/leghskfg6amnl9lyszof/i2b3xyrj3jmjjkvkq0fjke9xifv2raudapbskrqcq6dcvnt2n3b9ar7zwu4l2cnelr5m4jz/wu5tbekynv4m2dwpnvcdu7ftk/er3eyw16wl6zdavaonbdvrm8gtlcf7df7w/56h72zp718leo11jxp2uz4i3ut6t</latexit> VREF 1 VL 1 VL vo Subtracting the bottom equation from the top gives: VTH VTL <latexit sha1_base64"qcdnouc8w84oerzsfiwflewmngc">aaacqxicbvhbihnbeo2mtzvenqupvjqgiytjmbfbryufbfchd3hzbikzmnr0apimpt1dd41sgozj/bpf9dg/sscbyzo1olsp59slqyrolbtk38a3q3bd7eo7jffpdw0epd1tgtc5svrubizcozkxgskqlxrjiutnkdkmykx/hqu62pv6oxmtpntm5xlsjcy0qkiedfrfcxuxlwvxqz1dxjzxmdijylilkxxevkkyo49tby4r3ea16vwjkyknhuavt9/2n8zsg2ii229owomqmw3kmihq1cqxwtgm/p1kjhqrqwdxdwmioygulndqoiuu7kzddvvyfyy8yyw7mvigvr5rqmrtoo2dzwq0tptatf5pmxauvj2vuucforzxhzjcccp4ptilwyfqbudiix0fvicw5m5aa7u2wto0ex00l5wwgpsjnusyouyyajlvikutddlunqbjm60e7fdxfswxkmx3uivdlwzxdxzntlweewp/iyyveq/6wdfx7dppmx3csceseeswwl2hp2wuzzkiybyd/at/wk/va535k28b1euxmmb85ttmcfaiv71og</latexit> (VL VL ) <latexit sha1_base64"c//q6ttrcxxljqkrppmilpifgm">aaac2nicbzhpb9mwfmed8guux904crgojg2xvsk6wzbamgqso/rq0npoaqpidv86q44t2sovzqtj8svv4wb/wlh7lawtenjsb7fj/tvpfgurqggcx596fefuvz37tqcphz1ut/d65us0bx6pjozvhgza1io6kfacre5bpaojqzgs/foh3wbbusmzngrq5syqrkj4awtiutylgjgy88xqxrxnf3dex6cxlvjxdp1nvbtl5wdemdajzxeudjxdmwnkm4/lary1zw2yugr3w7h9ubqcpzbb4pwlrpkhd141xumjhkvuldijtnmgay5rixtklieqjyqdosmz9guhlyqlokjymvbkrpvyyqmmbapqrqk13euldvmkdqi91ogl2bbc/b/3rda5cqqhcolbmvxfywfpjhr12m6ero4youvjgth/5xys2a7hxysg7csz86bb1rszgsledablspxjppzaabtjpsrquwyauepsr/ynuf4wqcxfwgoo848/kgbziu5dbskmltxt8uvapwm1b46bhxny9kx3yjdwnbyqkr8kposnd0ioc/cs/pc/z/cj/6n/zv69sfw95ynzcp/hh8y05xk</latexit> VTH VL VTL 4V 2V VL 6V Choose a pair resistors with this ratio. Then, using the VTL equation: VREF <latexit sha1_base64"hywww/joxufod/xn64reuoz7cs">aaadc3icbzhnbhoxeme9m36k9cokpfzifvucjuk7ulwjvkri/txwofgasicq18ychde7smcr0gpfow/qtip6rup0bepf2guocpzgv/mp2n7jkikmoh5fxz34m7de/cph5qepnr85kh8/lrn4lrz6pjyxvo6yaakunbfgrkuew0scit0g/m7it7/ctqiwf3hmofrxkzkhiiztghc/t4bz5cfpua0ryehzjyz56t2frixi5zbrcgt7r9kuezvxviw2vqgcismkm9myohxkpxbzabqy2mm6ytyesbyqavyu2j81bzrjguv7y6tzk67/gbp0i21hkfo/3hjozpbaq5zmymfc/bucy0ci4hlw1tawnjczafgxuvi8cmslufc/rskgkny22xqrqitzmyfhmzjakrjbjozg6sgpldvimz0azuemkopj6ojcvfgnadivohaaocmkdxrwwb6v8xmxf0y5u65zv7qt41kyoejyewqyuuudmldwdehcplxwytlnx8t9s6xw8l5mbzrtdhe8/aqb5rvb2pidhb/bh2n26if1/0vryoxbzczostpyqtsjt55qy7iz9ihxckda6fmnjym8394f50f62lrrpjeua2zp39fwynia</latexit> EE 230 VL Ra VTL 1 2 V (0.333) (6 V) 3V 1 (0.333) (Using VTH equation would give the same answer.) comparators 17

18 Example Design the inverting comparator shown at right so that it has VTL 1.0 V and VTH 3.0 V VTH <latexit sha1_base64"ih1vsi2itlob640u8ylljo7ulhq">aaacrnicbzhbahsxeibl7sl1t0572rtru0hjmluh0bzampsui1y4iy4d9rjo5vlbwcst0myjexqdpk1vwjbvgu7edsd0plr0fszkxeswexjv0olu379y9t3e//edho8dpovtpl6yudych11kby5xzkelbeavkukwmsdkxmmoxhxt/9b2mfvqd47kctgqzjqrbgqaudfoxmts/8fqdnrsgcre2z5/mp17ixjpnxyh/dpofcu2tv81ungvxgv9kzinqjlnjhi9lujyvtzugsfxdjrx0lcyeqyqcelpaktlaxvmazgaepwak2datspx0zyjqw2oslkk7o9rooldyuyzxklgzndtdr4p8cy3f29qjvduiiq8fkmpjudomb3qqdhcuyyaynyl8kvzfnqbobtbr6zurobvvekuaiw4nsiolxifhgvoausmvfovgzazxqp0pxzua/jbjzetai9og/poqwfyvlqw2w6jshybf1mmj3vvesm319381m9shz8oickis8ix1yqgzksdj5qx6sxr3lesjki2ydwru2px5rryimv8fz9byqq</latexit> 1 VL VTL VREF 1 <latexit sha1_base64"8qliumxyidf/mjsr1g2jm5fkgzy">aaacrnicbzfdixmxfibt8wutx1299czyhbxxmioccgofpy96uzftdqedhkx6pg3njenyrrae/b1/jbck/hszbyvt1wmz3jzvstlnnlyswmic/2lf167fuhnr4hb7zt179x90dhewv0bdiouptbnobmghyircprwxhlgzs5hnc8/np74oxgrtdrfvqvpyezkfiizdcjr9m8ydzrw9d2dfozxf7ynnz7755vdscz8oq4mel712yb/is04178trovzfsrzdsy5gdtsbtmez1cqq5znzokrjc1dgdgkvw7wltowj8yeywcvkxemzq1qv6jsqgs20cushxdpljxwrrv2vecgsgs7svtfa/3mtgos3qroqqheu3zxu1jkipk3f6ewy4chxqtburphxyhcs9ajdd3dewd9dadpxf3usna9gz0q8qinc9aclkyopio3zdkmrl/onzx8kopyi7qhg8a8/ilavgu5tbdqni9ht/vyxe9t72kmvuv1325kckmfkctkicxlnuqrgzir4eqhulkd9reo2jnmo2qvfreyr2ylo8rfdithh</latexit> Subtracting the right equation from the left one gives: vi VREF The op-amp has high and low output limits of VL 5 V and VL 5 V. VREF VTH Finally, using the VTH equation: <latexit sha1_base64"8jyt7k9k/nu1ehmhmhng6dcvyqm">aaadbhicbzhnbhmxeme9y1cjxykcuvinkfi1ibjabuhuqgqspeqqujnuykar15lnrhi9k3swjvrtmtfgltghrrwh78ibowmlarhpvx/95uxprnluhhst395/o2bt27f2btbuxf/wcnh1f3hfzpmmkoppzlvfxeziiwchgqucjfpyekkyrdn37n84dnoi1j1jssmrgmbkhelztcicfvrggvgi0/jqlqlkkjxzpuogclbrjnwiwpqpnz2xt/tqlswsx3umqyyef7tscsoix3vzhqi2mmzwsixexqlkxbtsmw/ykab2pq7v2q70kuiucjairtxth94gnkq8t0ahl8yyyddocfqwjyjlkcthbibjfm6mmlrssqtmqfg1sktpljnqonx2u0hx9oqogixgljpiohogm3m95d/csmc49ejqqgsr1b8fvccs4opddoge6gbo1xawbgw9q6uz5jtkdqzbz2yqp0b33pjsciv4okerlgjc9tmqgoymkhcq4ouk3bokv2lbt3h6/fvkbpdfyy8uedzavect2fmh1xuk3vpwm1bw8wxt9o1mjnvkktkgdrkqvsunjeu6rfofnsh3phx8l/43/zv/o11fc2e56qrfb//gfnzpsd</latexit> VL VTH VREF VTH <latexit sha1_base64"/pmstvrrkhv6px7uocn2pakmdye">aaacv3icbvhbattaef2rt9s9oe1jx5aygknsi5vcw2gg9jy85mejcrywjbitr/bi1ursjkkm0hf1w/rq1/y3urjdij0m7hi4z2z250yck2nj9381vhv3hzx8tpw4etpscvwtsvl2xwgif9kanmxmzguumnfzkk8di3cgmscbdpvtb64aqnlzkp3mooxqmwizsadkqap1eroxz9x8vpaonr9xockeosfembgq5vkelbvikjrymqxdt0v5bte1onmrolbb7/ql4ldbsajttopetn0yhonmfclqegqshqztqmsdemhsgqghcucxawmohrqq4p2vc5mr/gbx4x5khl3npefe7oihntaerq7zbroaje1mrxlgxaufbyvuucfolh5jcccp4bsqfs4oc1nwbeea6v3ixbeclobvxxln0zlgstvjef1qkbiwbrkjrmubii5sc1pvuzqu25fo/toux813vsmjjlt/uov7rwzxtnsjtlwewwafxv033u/dypt93dz6udblhxbid1wmasen2zhqszwt7yx6zpyv98wbetrll6ley1xziq2fn/8htiheqq</latexit> VTL VL VTL 1 (3 V) ( ) <latexit sha1_base64"3ftejjrlnbxrz1ijb1ztit0pmig">aaac1nicbzfbaxnbfmcnwy81xprqoydquixlrtewgulbqv98cgcasrzegynz5mhszplznmssiqfv/9zl77pxxvnm1uouk9mpdnd25zzokzkswgwagt3xj5q3b23ead/df7dt2n14ynvuops4ltqcxsycfap6kfdcawaapbgefjx7x/r7z2cs0oorljiypmyirci4q4dgrelrjchbzssiyy4fpvlgrkymuffhkd6jgx9wcfjt5xveyxv6ttcrhiwi7meo1y78iov0esirewb1nyd7tb60vjzpawfxdjrb2gq4bbgbgwxsgxguywm8rmbwmbjxvkww2k1kiv96siyjtq4p5cu6nwmgqxwltlyymp3btv8l/qy5jmghvbzjqb41sjjjuvny/3sstdaus6cynwi91fkp8wwju4ka11wttpga5mu81wjrsewqsxo0tahlwdkhcqnkrpmujmqfyldvzj3poijqlv/uxtufzqas70rsu13inbz8ddf74x/1g/vgofv6tvsk0ekyekq0jysi7jj9ilpcljt/kb/cf/vw/euxfhfa9cvuad84ismffjh6rh5ii</latexit> EE 230 vo VL (VL 1 <latexit sha1_base64"kutqhiafuhpmddd0s6pgvozfb6s">aaac0hicbvfdixmxfe3hr7vdfxrl2aruuy2ziiggskcgvvqh6rb7ukndjn0thuasybkjmwzgvjql/mvcd81uczbre2xs8kozxz701yblpiytemfzwcgzdv3b6zd7d57/6dh49a4/prc4nhyhxupvzlfmqqseqbuo4lwywpjuwshfva330fywvwp3isobjzmzkziiz9ftssss6vtedeuj7g7gmeg8sqwkgfnjt8nzpktdberszkerdvf0d90tetr0l3uxbud7ls5pnuoeeq6huqbucbbgkq7ddg8vtzmgefxdjrx1fy4kribgwx4jpxaafgfmfmmpzqsrzspfqz4ehzz0xppo1fcumkvvprsdzazz76zjzh3o5qnfk/bvxi9npscvwuciqvl8pksvht2lk6fqy4yquhjbvh30r5nhkv0pu/dcuqdwf86yfvke11pyysveoggetia5e6rvtvg0g9q6uva96v5zgcxe2iprv49neala6u5db9kkjd46d4yvem1706wx7o1mjnvkkxlgoiqir8gxosedmisc/cs/yr/yn/gslinvwfd1atdy1dwhwxh8acolowr</latexit> After a bit of algebra (note the inversion of the ratio): 5V 1 3V VL ) ( 5 V) ( 1 V) or <latexit sha1_base64"ar0/n30h9x61e30iz1i5m9wdmfi">aaachxicbvfdaxnbfj2svwp8svwhd30zdiukzdmvklpqlltqpviqijgfjis7k7vpknmzzezuavj21/iqp8h/42waoum9mmph3o9zk1xjr1h0pxe82nr85gnzwev5i5evxre33/xwprac8ioy68sckikxj5junivw4qsuthi5qe1f3cd1kmjv9mix3egmy1tkya8nwnvjfilovw2gcp/scu/8yjsdo8m7u4urkvjd0g8ah22st5kuzeyty0omtqkfdg3jkocxivykkjh1rovdnmqc5jh0emngbpxudyg4nuemfluwp808sv7p6oezllf5ufby4cu3aavjv/ngxaufhyxuucforz3jdjcctk8lonppuvbauebccv9rfxcg5eevghrxza1cxrrm5s3hzbcthgdvxrlfjzpkdkqut6q7ihyqmvzj/b1an7/tm4kuyovtfpg3clo39lbfltxjvcpwt9dfxgf8edk4rw7szlvshdtnmttijyc9vifcvaxnwxx00gza4dlp3oufjlfowrvnw5s/ixsy1</latexit> VL (0.667) (5 V) 1.67 V comparators 18

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Chapter 4 CONVERTING VOLTAGE AND CURRENT Name: Date: Chapter 4 AN INTRODUCTION TO THE EXPERIMENTS

Chapter 4 CONVERTING VOLTAGE AND CURRENT Name: Date: Chapter 4 AN INTRODUCTION TO THE EXPERIMENTS Chapter 4 AN INTRODUCTION TO THE EXPERIMENTS The following experiments are designed to demonstrate the use of the op-amp in forming current sources, voltage-to-current converters, and current-to-voltage

More information

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

EECE251 Circuit Analysis I Set 5: Operational Amplifiers EECE251 Circuit Analysis I Set 5: Operational Amplifiers Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Amplifiers There are various

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input signals and produce a digital or logic level output based

More information

Operational Amplifiers. Boylestad Chapter 10

Operational Amplifiers. Boylestad Chapter 10 Operational Amplifiers Boylestad Chapter 10 DC-Offset Parameters Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset: Input offset voltage Input

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Chapter 3: Operational Amplifiers

Chapter 3: Operational Amplifiers Chapter 3: Operational Amplifiers 1 OPERATIONAL AMPLIFIERS Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance:

More information

General Purpose Operational Amplifiers

General Purpose Operational Amplifiers General Purpose Operational Amplifiers OUTLINE Lecture 0, 0/7/05 Corrected 0/9/05 Op-Amp from -Port Blocks Op-Amp Model and its Idealization Negative Feedback for Stability Components around Op-Amp define

More information

SKEE 2742 BASIC ELECTRONICS LAB

SKEE 2742 BASIC ELECTRONICS LAB Faculty: Subject Subject Code : SKEE 2742 FACULTY OF ELECTRICAL ENGINEERING : 2 ND YEAR ELECTRONIC DESIGN LABORATORY Review Release Date Last Amendment Procedure Number : 1 : 2013 : 2013 : PK-UTM-FKE-(0)-10

More information

using dc inputs. You will verify circuit operation with a multimeter.

using dc inputs. You will verify circuit operation with a multimeter. Op Amp Fundamentals using dc inputs. You will verify circuit operation with a multimeter. FACET by Lab-Volt 77 Op Amp Fundamentals O circuit common. a. inverts the input voltage polarity. b. does not invert

More information

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

More information

Section3 Chapter 2: Operational Amplifiers

Section3 Chapter 2: Operational Amplifiers 2012 Section3 Chapter 2: Operational Amplifiers Reference : Microelectronic circuits Sedra six edition 1/10/2012 Contents: 1- THE Ideal operational amplifier 2- Inverting configuration a. Closed loop gain

More information

Common Reference Example

Common Reference Example Operational Amplifiers Overview Common reference circuit diagrams Real models of operational amplifiers Ideal models operational amplifiers Inverting amplifiers Noninverting amplifiers Summing amplifiers

More information

Lecture #3 Basic Op-Amp Circuits

Lecture #3 Basic Op-Amp Circuits Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #3 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Comparators Summing Amplifiers Integrators

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY Electronics Circuits II Laboratory (EEE 208) Simulation Experiment No. 02 Study of the Characteristics and Application of Operational Amplifier (Part B)

More information

6. The Operational Amplifier

6. The Operational Amplifier 1 6. The Operational Amplifier This chapter introduces a new component which, although technically nonlinear, can be treated effectively with linear models This element known as the operational amplifier

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

v 0 = A (v + - v - ) (1)

v 0 = A (v + - v - ) (1) UNIVERSITI TEKNOLOGI MALAYSIA KURSUS KEJURUTERAAN ELEKTRIK ELECTRONIC ENGINEERING LABORATORY 2 EXPERIMENT 2 : OPERATIONAL AMPLIFIER PRELIMINARY REPORT Name : Section : Group : Lecturer : Marks : 20 Attach

More information

Operational Amplifiers

Operational Amplifiers Objective Operational Amplifiers Understand the basics and general concepts of operational amplifier (op amp) function. Build and observe output of a comparator and an amplifier (inverting amplifier).

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL V SEMESTER Department of Electronics and communication Engineering Government Engineering College, Dahod-389151 http://www.gecdahod.ac.in/ L A B M A N U

More information

Lecture # 4 Network Analysis

Lecture # 4 Network Analysis CPEN 206 Linear Circuits Lecture # 4 Network Analysis Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026-907-3163 February 22, 2016 Course TA David S. Tamakloe 1 What is Network Technique o Network

More information

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1 CHAPTER-6. OP-AMP [1]. A non inverting closed loop op amp circuit generally has a gain factor A. Less than one B. Greater than one C. Of zero D. Equal to one HINT: - For non inverting amplifier the gain

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TRIGGER AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

Designing Information Devices and Systems I Discussion 10A

Designing Information Devices and Systems I Discussion 10A Last Updated: 2019-04-09 07:42 1 EECS 16A Spring 2019 Designing Information Devices and Systems I Discussion 10A For Reference: Circuits Cookbook, Abridged Voltage Divider Voltage Summer Unity Gain Buffer

More information

EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1. BJT Amplifiers EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

More information

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current Testing Op Amps Chapter 3 Goals Understand the requirements for testing Op Amp DC parameters. Objectives Describe the basic DC characteristics of an op amp. Select a test methodology for evaluating voltage

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Lecture #4 Basic Op-Amp Circuits

Lecture #4 Basic Op-Amp Circuits Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question The amplifier below has infinite input resistance, zero output resistance and an openloop gain. If, find the value of the feedback factor as well as so that the closed-loop

More information

MOSFET Amplifier Design Project Electrical Engineering 310 Section 002 Shawn Moser

MOSFET Amplifier Design Project Electrical Engineering 310 Section 002 Shawn Moser MOSFET Amplifier Design Project Electrical Engineering 0 Section 00 Shawn Moser Introduction: In this lab, my partner and I were tasked with the construction of a linear electronic circuit that functions

More information

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev B 3/3/2010 (9:13 PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev B 3/3/2010 (9:13 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/21 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev B 3/3/2010 (9:13 PM) Prof. Ali M. Niknejad University of California, Berkeley

More information

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev A 2/10/2010 (6:47 PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev A 2/10/2010 (6:47 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/21 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev A 2/10/2010 (6:47 PM) Prof. Ali M. Niknejad University of California, Berkeley

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

An amplifier increases the power (amplitude) of an

An amplifier increases the power (amplitude) of an Amplifiers Signal In Amplifier Signal Out An amplifier increases the power (amplitude) of an electronic signal, as shown in the figure above. Amplifiers are found everywhere in TV s, radios. MP3 players,

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS II EKT 214 Semester II (2013/2014) EXPERIMENT # 4 OP-AMP (COMPARATOR BASICS) EXPERIMENT 4 Op-Amp (Comparator Basics) 1. OBJECTIVE: 1.1 To demonstrate the op-amp

More information

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain.

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain. AIM: SUBJECT: ANALOG ELECTRONICS (2392) EXPERIMENT NO. 5 DATE : TITLE: TO CONFIGURE OP-AMP IN INVERTING AND NON- INVERTING AMPLIFIER MODE AND MEASURE THEIR GAIN. DOC. CODE : DIET/EE/3 rd SEM REV. NO. :./JUNE-25

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

6.002 Circuits and Electronics Final Exam Practice Set 1

6.002 Circuits and Electronics Final Exam Practice Set 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.002 Circuits and Electronics Set 1 Problem 1 Figure 1 shows a simplified small-signal model of a certain

More information

The Field Effect Transistor

The Field Effect Transistor FET, OPAmps I. p. 1 Field Effect Transistors and Op Amps I The Field Effect Transistor This lab begins with some experiments on a junction field effect transistor (JFET), type 2N5458, and then continues

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008 Name MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.09 Hands-On Introduction to EE Lab Skills Laboratory No. BJT, Op Amps IAP 008 Objective In this laboratory, you will become familiar with a simple bipolar junction

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 5 Operational Amplifiers Operational amplifiers (or Op Amp) is an active circuit element that can perform mathematical operations between signals (e.g., amplify, sum, subtract, multiply, divide,

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS 1.1 Basic operational amplifier circuit- hte basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and

More information

Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational Amplifiers (Op Amps) Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS II EMT 212 2009/2010 EXPERIMENT # 3 OP-AMP (OSCILLATORS) 1 1. OBJECTIVE: 1.1 To demonstrate the Wien bridge oscillator 1.2 To demonstrate the RC phase-shift

More information

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab.

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Prior to Lab 1. If it has been awhile since you last used the lab

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Physical Limitations of Op Amps

Physical Limitations of Op Amps Physical Limitations of Op Amps The IC Op-Amp comes so close to ideal performance that it is useful to state the characteristics of an ideal amplifier without regard to what is inside the package. Infinite

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Chapter 6: Operational Amplifier (Op Amp)

Chapter 6: Operational Amplifier (Op Amp) Chapter 6: Operational Amplifier (Op Amp) 6.1 What is an Op Amp? 6.2 Ideal Op Amp 6.3 Nodal Analysis of Circuits with Op Amps 6.4 Configurations of Op Amp 6.5 Cascaded Op Amp 6.6 Op Amp Circuits & Linear

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

Learning Objectives:

Learning Objectives: Learning Objectives: At the end of this topic you will be able to; Analyse and design a DAC based on an op-amp summing amplifier to meet a given specification. 1 Digital and Analogue Information Module

More information

Module 4 Unit 4 Feedback in Amplifiers

Module 4 Unit 4 Feedback in Amplifiers Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Amplification Objective The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Equipment List Introduction Computer running Windows (NI ELVIS installed) National Instruments

More information

Operational Amplifiers Part IV of VI Working Your Amplifier Inside the Single-Supply Voltage Box

Operational Amplifiers Part IV of VI Working Your Amplifier Inside the Single-Supply Voltage Box Operational Amplifiers Part IV of VI Working Your Amplifier Inside the Single-Supply Voltage Box by Bonnie C. Baker Microchip Technology, Inc. bonnie.baker@microchip.com It may seem easy enough to transfer

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Spring 2008 Sean Lynch Lambros Samouris Tom Groshans History of Op Amps Non Named for their originally intended functions: performing mathematical operations and amplification Addition

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Physics 364, Fall 2014, reading due your answers to by 11pm on Sunday

Physics 364, Fall 2014, reading due your answers to by 11pm on Sunday Physics 364, Fall 2014, reading due 2014-10-05. Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: (a) First

More information

While the Riso circuit is both simple to implement and design it has a big disadvantage in precision circuits. The voltage drop from Riso is

While the Riso circuit is both simple to implement and design it has a big disadvantage in precision circuits. The voltage drop from Riso is Hello, and welcome to part six of the TI Precision Labs on op amp stability. This lecture will describe the Riso with dual feedback stability compensation method. From 5: The previous videos discussed

More information

Operational Amplifier (Op-Amp)

Operational Amplifier (Op-Amp) Operational Amplifier (Op-Amp) 1 Contents Op-Amp Characteristics Op-Amp Circuits - Noninverting Amplifier - Inverting Amplifier - Comparator - Differential - Summing - Integrator - Differentiator 2 Introduction

More information

Experiment #2 OP-AMP THEORY & APPLICATIONS

Experiment #2 OP-AMP THEORY & APPLICATIONS Experiment #2 OP-MP THEOY & PPLICTIONS Jonathan oderick Scott Kilpatrick Burgess Introduction: Operational amplifiers (op-amps for short) are incredibly useful devices that can be used to construct a multitude

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

2 Thermistor + Op-Amp + Relay = Sensor + Actuator

2 Thermistor + Op-Amp + Relay = Sensor + Actuator Physics 221 - Electronics Temple University, Fall 2005-6 C. J. Martoff, Instructor On/Off Temperature Control; Controlling Wall Current with an Op-Amp 1 Objectives Introduce the method of closed loop control

More information

EE 501 Lab 4 Design of two stage op amp with miller compensation

EE 501 Lab 4 Design of two stage op amp with miller compensation EE 501 Lab 4 Design of two stage op amp with miller compensation Objectives: 1. Design a two stage op amp 2. Investigate how to miller compensate a two-stage operational amplifier. Tasks: 1. Build a two-stage

More information

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier Michael W. Marcellin The first portion of this document describes preparatory work to be completed in

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 13: Basic op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering Introduction Review of the Precedent Lecture Op-amp operation modes and parameters

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Lecture 330 Low Power Op Amps (3/27/02) Page 330-1

Lecture 330 Low Power Op Amps (3/27/02) Page 330-1 Lecture 33 Low Power Op Amps (3/27/2) Page 33 LECTURE 33 LOW POWER OP AMPS (READING: AH 39342) Objective The objective of this presentation is:.) Examine op amps that have minimum static power Minimize

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

With integrated circuit amplifiers, it is possible to come close to ideal characteristics.

With integrated circuit amplifiers, it is possible to come close to ideal characteristics. Feedback With integrated circuit amplifiers, it is possible to come close to ideal characteristics. R i can be very large: 1 MΩ 1 GΩ R o can be quite small: 1 Ω 100 Ω A (gain) can be big Generally, huge

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

EE 501 Lab7 Bandgap Reference Circuit

EE 501 Lab7 Bandgap Reference Circuit Objective: EE 501 Lab7 Bandgap Reference Circuit 1. Understand the bandgap reference circuit principle. 2. Investigate how to build bandgap reference circuit. Tasks and Procedures: The bandgap reference

More information

Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith)

Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith) Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith) Prepared by: S V UMA, Associate Professor, Department of ECE, RNSIT, Bangalore Reference: Microelectronic Circuits Adel Sedra and K C Smith 1 Objectives

More information

EE 230 Lecture 23. Nonlinear Op Amp Applications - waveform generators

EE 230 Lecture 23. Nonlinear Op Amp Applications - waveform generators EE 230 Lecture 23 Nonlinear Op Amp Applications - waveform generators Quiz 6 Obtain an expression for and plot the transfer characteristics of the following circuit. Assume =2K, 2 =8K, =0K, DD +5, SS =-5

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Chapter 14.1 Electrical Engineering: Principles and Applications Chapter 5.1-5.3 Fundamentals of

More information

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G)

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G) ECE 341 Homework 4 Problem 1. In each of the ideal-diode circuits shown below, is a 1 khz sinusoid with zero-to-peak amplitude 1 V. For each circuit, sketch the output waveform and state the values of

More information

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp Introduction to Op Amps By ussell Anderson, BurrBrown Corp Introduction Analog design can be intimidating. If your engineering talents have been focused in digital, software or even scientific fields,

More information