X/Y Antenna Ground Terminals: A Small Sat Cost Effective Approach

Size: px
Start display at page:

Download "X/Y Antenna Ground Terminals: A Small Sat Cost Effective Approach"

Transcription

1 X/Y Antenna Ground Terminals: A Small Sat Cost Effective Approach March 21, 2014

2 Introduction With the insurgence of the small satellite market the demand for cost effective ground terminals has never been greater. The advancement in the small satellite technologies along with their ability to be launched in mass on hosted payloads or from the Space Station has greatly opened up this area to many companies and investors. Many of these small satellite manufacturers are start-up companies and must first rely on demonstration flights to gain technical momentum and future investments. Typically, during the demonstration phase of their development they will need to rely on contracted ground station services for data reception of their low-earth orbit (LEO) or medium-earth orbit (MEO) satellite technical demonstration flights. In the beginning this is an economical approach over owning and operating their dedicated ground terminals, until the constellation starts to grow. Some of the proposed and existing constellations could exceed 200 spacecraft. Tracking a large constellation would require ground terminals to perform 50 to 100 passes or more per day. This would become a costly expense if each of these passes were to be performed by a ground terminal contracted service provider. Some of these small satellite constellations require continued downlink communications as they orbit the earth in order to receive real time earth imagery. This continued continuity would require a worldwide network of ground terminals, which could result in a costly venture. With the advancements made in both hardware and software ground terminal technologies, the cost to own dedicated ground terminals has been greatly reduced. With the advancements made in both hardware and software ground terminal technologies, the cost to own dedicated ground terminals has been greatly reduced. This reduction in costs now makes it possible for small satellite start-up companies and universities with limited funds to procure their own dedicated ground terminals. One of the most efficient cost effective antenna configurations in support of LEO and MEO missions has proven to be the X/Y antenna configuration. There are many advantages to the use of this configuration over other pedestal geometries which are outlined in this white paper. Page 1

3 Introduction With the insurgence of the small satellite market the demand for cost effective ground terminals has never been greater. The advancement in the small satellite technologies along with their ability to be launched in mass on hosted payloads or from the Space Station has greatly opened up this area to many companies and investors. Many of these small satellite manufacturers are start-up companies and must first rely on demonstration flights to gain technical momentum and future investments. Typically, during the demonstration phase of their development they will need to rely on contracted ground station services for data reception of their low-earth orbit (LEO) or medium-earth orbit (MEO) satellite technical demonstration flights. In the beginning this is an economical approach over owning and operating their dedicated ground terminals, until the constellation starts to grow. Some of the proposed Advantages of and existing constellations could exceed 200 spacecraft. Tracking a large constellation would require ground terminals to perform 50 to 100 passes or more per day. This would become a costly expense if each of these passes were to be performed by a ground terminal contracted service provider. Some X/Y of these small satellite Antenna constellations require continued downlink communications as they orbit the earth in order to receive real time earth imagery. This continued continuity would require a worldwide network of ground terminals, which could result in a costly venture. Configuration With the advancements made in both hardware and software ground terminal technologies, the cost to own dedicated ground terminals has been greatly reduced. This reduction in costs now makes it possible for small satellite startup companies and universities with limited funds to procure their own dedicated ground terminals. One of the most efficient cost effective antenna configurations in support of LEO and MEO missions has proven to be the X/Y antenna configuration. There are many advantages to the use of this configuration over other pedestal geometries which are outlined in this white paper. Page 2

4 One of the biggest advantages of an X/Y configuration is its ability to eliminate the keyhole (loss of data reception) as the satellite approaches Zenith. Only the fastest and most expense elevation/azimuth pedestals can overcome this problem and provide continues uninterrupted LEO/MEO tracking. For example, a LEO pass with a 780 km orbit utilizing an elevation/azimuth pedestal with a max velocity of 6 degrees per second would start to loss reception at 85 degrees elevation and would remain off track for about 25 seconds as it ran full speed to catch-up to the satellite as it descends 1. One of the biggest advantages of an X/Y configuration is its ability to eliminate the keyhole (loss of data reception) as the satellite approaches Zenith. This would result in 25 seconds of lost data during a period where the signalto-noise ratio would be at its best. The cost to obtain a higher performance elevation/azimuth system capable of out running the keyhole becomes a cost challenge for most small satellite operators, especially if multiple antennas are required to support the mission. Some other cost draw backs resulting in this high dynamic operation is the increased wear and tear on the system. This may require in the long term increase maintenance to be performed, such as more frequent motor and gear box changes. Another cost factor sometimes over looked is the amount of electricity required for a high dynamic track. Most LEO and MEO stations are placed in remote locations where facility power is limited and or expensive. The elevation/azimuth-tilt pedestals, also known as a 3-axis pedestal is another configuration used for LEO tracking. This design eliminates the keyhole by titling back on its 3rd axis on those satellite passes that approach Zenith. This decreasing the elevation angle and allow ample time for the azimuth axis to rotate and stay on target. Some of disadvantages of this configuration is that there are more moving parts and these units can be more difficult to manufacturer, this increasing the cost to procure. We should point out there is sometimes debate whether or not a X/Y configuration has its own keyhole. This keyhole is not at Zenith, but at the East (90 degrees) and West (270 degrees) at an elevation of less than 2 degrees. Most X/Y pedestals can out run this keyhole, but in reality at this low angle there is no practical reason to track any spacecraft because the data quality would be very poor. This makes the keyhole debate regarding an X/Y antenna configuration used for tracking LEO or MEO spacecraft a moot point. 1 Selecting a Pedestal for Tracking LEO Satellites at Ka Band, by Keith Willey University of Technology, Sydney (UTS), Cooperative Research Centre for Satellite Systems Sydney, Australia, published in Microwave Journal, April 1, 2000 Page 3

5 Introduction With the insurgence of the small satellite market the demand for cost effective ground terminals has never been greater. The advancement in the small satellite technologies along with their ability to be launched in mass on hosted payloads or from the Space Cost Station has greatly opened up this area to many companies and investors. Many of these small satellite manufacturers are start-up companies and must first rely on demonstration flights to gain technical momentum and future investments. Typically, during the demonstration phase of their development Advantages they will need to rely on contracted ground station services for data reception of their low-earth orbit (LEO) or medium-earth orbit (MEO) satellite technical demonstration flights. In the beginning this is economical approach over owning and operating their dedicated ground terminals, until the constellation starts to grow. Some of the proposed and existing constellations could exceed 200 spacecraft. Tracking a large constellation would require ground terminals to perform 50 to 100 passes or more per day. This would become a costly expense if each of these passes were to be performed by a ground terminal contracted service provider. Some of these small satellite constellations require continued downlink communications as they orbit the earth in order to receive real time earth imagery. This continued continuity would require a worldwide network of ground terminals, which could result in a costly venture. With the advancements made in both hardware and software ground terminal technologies, the cost to own dedicated ground terminals has been greatly reduced. This reduction in costs now makes it possible for small satellite startup companies and universities with limited funds to procure their own dedicated ground terminals. One of the most efficient cost effective antenna configurations in support of LEO and MEO missions has proven to be the X/Y antenna configuration. There are many advantages to the use of this configuration over other pedestal geometries which are outlined in this white paper. Page 4

6 X/Y Pedestal Cost Savings Advantage The X/Y configuration basically has two orthogonal axes. The best way to describe this is to imagine to rolling pins stacked on each other, with the upper roller rotated 90 degree from the lower roller. The upper roller would be the X-Axis and the lower the Y-Axis as shown in Figure 1. This configuration has several advantages related to cost and operation. 1. The keyhole is eliminated because the upper axis just simply rotates as the satellite approach Zenith. This allows the antenna to move at a very low velocity of less than 1 degree per second during any antenna pass. This low velocity (low mechanical dynamic) and elimination of the keyhole has several cost advantages. a. Lower power consumption, this could provide a significant savings over a long period of time especially if the station is performing multiple tracks throughout a day. b. Less wear and tear on the components equate to maintenance cost savings. Motors should last 2 to 4 years depending on the number of passes the terminal is performing each day. Typically these are small low speed brushless motors and are not too expensive to procure. Figure 2 shows the velocity difference between an Elevation/Azimuth positioner and X/Y positioner on a LEO pass with an 800 Km orbit (1). This shows how fast the velocity must increases as it approaches 90 degrees elevation. The lower dynamic of the X/Y antenna also allows the system to point more accurately during a pass. This is an important factor especially when tracking Ka-band. Figure 1 Figure 2 Page 5

7 1. c. With the elimination of the keyhole more data becomes available during those high signal-to-noise ratio portions of the track. If a satellite operation relies on the sale imagery data, this ensures they will have the highest quality data product available throughout the satellite pass. 2. The X/Y configuration is less costly to manufacture over other pedestal configurations. a. The upper and lower axes use basically the same parts. With technology advancements in robotics, these same proven commercial technologies are being utilized in these new antenna pedestal designs. b. The use of less-parts than other types of positioners and the use proven commercial components increase the Mean-Time-Between- Failures (MTBF). Since the upper and lower axis use the same parts, less spare parts would need to be obtained. c. The X/Y housing and related castings are less costly to produce because the upper and lower units are cast in a single housing. In Figure 3, the example shows a technology now available in the X/Y configuration and the similarity the upper and lower house share. d. The X/Y movement eliminates cable wrap. This eliminates the need for costly slip rings or rotary joints. You can see in Figure 3 the use of energy chains. These provide a resting place for the cables to be secured as the system rotates left, right and up and down. Figure 3 Page 6

8 Conclusion Each of the antenna configurations has their place in aerospace. The Elevation/Azimuth is the best configuration for tracking along the horizon which is often performed when working on ranges in the development of aircraft and missile technologies. The 3-axis system has the ability to cross between range applications and satellite tracking applications but comes at a cost. The X/Y configuration is truly the one positioner technology designed specifically for LEO and MEO satellite tracking applications. It can be produced at a lower cost, has less moving parts and has proven itself to be very reliable because it operates at a very low dynamic regardless of the satellite position. This makes the system more obtainable by organizations such as small satellite operators and universities by providing an opportunity to purchase a cost effective ground terminal of their own. TCS Space & Component Technology has developed a cost effective X/Y antenna pedestal technology that specializes in precision satellite tracking. These systems are specifically designed for the Low and Medium satellite tracking in support of Earth Observation, Remote Sensing, and TT&C applications. With our state of the art manufacturing techniques, we offer the most efficient product delivery schedule in the industry. Advanced Transmit (TX) and Receive (RX) feed technologies through Ka-band are available. The system does not require a radome for operation, but if required TCS can provide a low cost solution. For more information visit or us at TrackMySat@telecomsys.com TeleCommunication Systems, Inc. (TCS). All rights reserved. Enabling Convergent Technologies is a registered trademark of TCS. All other trademarks are the property of their respective companies. Information subject to change without notice. NASDAQ: TSYS

Space Systems Engineering

Space Systems Engineering Space Systems Engineering This course studies the space systems engineering referring to spacecraft examples. It covers the mission analysis and design, system design approach, systems engineering process

More information

S-Band TTCET Ground Station

S-Band TTCET Ground Station S-Band TTCET Ground Station Main Performances Reception frequency range : S Band: 2200 to 2300 MHz Downlink Budget G/T S band : > 10 db/ K @ 10 of elevation in whole Bandwidth Emission frequency range

More information

High-performance inflight connectivity for business aviation

High-performance inflight connectivity for business aviation High-performance inflight connectivity for business aviation Revolutionizing global inflight connectivity 04 The 2Ku antenna 10 Gogo s Ku network 14 Support and services For more than 20 years, Gogo has

More information

Tropnet: The First Large Small-Satellite Mission

Tropnet: The First Large Small-Satellite Mission Tropnet: The First Large Small-Satellite Mission SSC01-II4 J. Smith One Stop Satellite Solutions 1805 University Circle Ogden Utah, 84408-1805 (801) 626-7272 jay.smith@osss.com Abstract. Every small-satellite

More information

Future Concepts for Galileo SAR & Ground Segment. Executive summary

Future Concepts for Galileo SAR & Ground Segment. Executive summary Future Concepts for Galileo SAR & Ground Segment TABLE OF CONTENT GALILEO CONTRIBUTION TO THE COSPAS/SARSAT MEOSAR SYSTEM... 3 OBJECTIVES OF THE STUDY... 3 ADDED VALUE OF SAR PROCESSING ON-BOARD G2G SATELLITES...

More information

AIREON SPACE-BASED ADS-B

AIREON SPACE-BASED ADS-B AIREON SPACE-BASED ADS-B 2018 Transport Canada Delegates Conference Steve Bellingham Manager, Navigation Systems Engineering Steve.Bellingham@navcanada.ca CNS/ATM Systems Communication Navigation Surveillance

More information

Follow that Ground Station! And double the data throughput using polarization diversity.

Follow that Ground Station! And double the data throughput using polarization diversity. SSC09-VI-8 Follow that Ground Station! And double the data throughput using polarization diversity. Peter Garner, Nigel Phillips, Andrew Cawthorne, Alex da Silva Curiel, Phil Davies, Lee Boland Surrey

More information

A CubeSat-Based Optical Communication Network for Low Earth Orbit

A CubeSat-Based Optical Communication Network for Low Earth Orbit A CubeSat-Based Optical Communication Network for Low Earth Orbit Richard Welle, Alexander Utter, Todd Rose, Jerry Fuller, Kristin Gates, Benjamin Oakes, and Siegfried Janson The Aerospace Corporation

More information

An insight in the evolution of GEO satellite technologies for broadband services

An insight in the evolution of GEO satellite technologies for broadband services An insight in the evolution of GEO satellite technologies for broadband services EUROPEAN SATELLITE INDUSTRY ROADMAP MARCH 14 TH, BRUSSELS Future broadband technologies 1/2 2 The need for informing the

More information

Great Momentum In Technology, Financing and Commercialization

Great Momentum In Technology, Financing and Commercialization 14 Phasor on Target with New Flat Panel Phased Array Antenna... Great Momentum In Technology, Financing and Commercialization After nearly five years of development, Phasor's disruptive, new Electronically

More information

August 2015, website version

August 2015, website version August 2015, website versin TCS X/Y Antenna Prduct Line Features Antenna size ranges frm 1.2 meter t 7.6 meters (larger units available) X/Y axis cnfiguratin Transmit/Receive feed technlgies thrugh Ka-band

More information

In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to

In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to broadcast video or data with minimal infrastructure. A communications

More information

ICO Space Segment. Senior Vice President Space Systems

ICO Space Segment. Senior Vice President Space Systems ICO Space Segment Bob Day Senior Vice President Space Systems ICO and the freedom figure logo are trademarks of ICO Global Communications. All other trademarks are the property of their respective owners.

More information

Sounding the Atmosphere Ground Support for GNSS Radio-Occultation Processing

Sounding the Atmosphere Ground Support for GNSS Radio-Occultation Processing Sounding the Atmosphere Ground Support for GNSS Radio-Occultation Processing Atmospheric Sounding René Zandbergen & John M. Dow Navigation Support Office, Ground Systems Engineering Department, Directorate

More information

Incorporating a Test Flight into the Standard Development Cycle

Incorporating a Test Flight into the Standard Development Cycle into the Standard Development Cycle Authors: Steve Wichman, Mike Pratt, Spencer Winters steve.wichman@redefine.com mike.pratt@redefine.com spencer.winters@redefine.com 303-991-0507 1 The Problem A component

More information

First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat

First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat Rebecca Bishop 1, David Hinkley 1, Daniel Stoffel 1, David Ping 1, Paul Straus 1, Timothy Burbaker 2 1 The

More information

W-Band Satellite Transmission in the WAVE Mission

W-Band Satellite Transmission in the WAVE Mission W-Band Satellite Transmission in the WAVE Mission A. Jebril, M. Lucente, M. Ruggieri, T. Rossi University of Rome-Tor Vergata, Dept. of Electronic Engineering, Via del Politecnico 1, 00133 Rome - Italy

More information

Specification of Requirements. Request for tenders for antenna systems for Aalborg University. Side 1

Specification of Requirements. Request for tenders for antenna systems for Aalborg University. Side 1 Specification of Requirements Request for tenders for antenna systems for Aalborg University Side 1 1. Introduction The Department of Electronic Systems represents one of the areas of research of Aalborg

More information

Istanbul Technical University Faculty of Aeronautics and Astronautics Space Systems Design and Test Laboratory

Istanbul Technical University Faculty of Aeronautics and Astronautics Space Systems Design and Test Laboratory Title: Space Advertiser (S-VERTISE) Primary POC: Aeronautics and Astronautics Engineer Hakan AYKENT Organization: Istanbul Technical University POC email: aykent@itu.edu.tr Need Worldwide companies need

More information

Using Variable Coding and Modulation to Increase Remote Sensing Downlink Capacity

Using Variable Coding and Modulation to Increase Remote Sensing Downlink Capacity Using Variable Coding and Modulation to Increase Remote Sensing Downlink Capacity Item Type text; Proceedings Authors Sinyard, David Publisher International Foundation for Telemetering Journal International

More information

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave HEMERA Team Members: Andrea Bellome, Giulia Broggi, Luca Collettini, Davide Di Ienno, Edoardo Fornari, Leandro Lucchese, Andrea

More information

SPACE-BASED SOLUTIONS & ANALYTICS

SPACE-BASED SOLUTIONS & ANALYTICS SPACE-BASED SOLUTIONS & ANALYTICS Enable development and optimisation of airspace use, and no aircraft to be lost again wherever on Earth C N S S y m p o s i u m E u r o c o n t r o l 2 & 3 O c t o b e

More information

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures Background Keith Morris Lockheed Martin Space Systems Company Chris Rice Lockheed Martin Space Systems Company

More information

ICO S-BAND ANTENNAS TEST PROGRAM

ICO S-BAND ANTENNAS TEST PROGRAM ICO S-BAND ANTENNAS TEST PROGRAM Peter A. Ilott, Ph.D.; Robert Hladek; Charles Liu, Ph.D.; Bradford Arnold Hughes Space & Communications, El Segundo, CA Abstract The four antenna subsystems on each of

More information

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads 25 th Annual AIAA/USU Conference on Small Satellites August 9th 2011 Dr. Om P. Gupta Iridium Satellite LLC, McLean, VA, USA Iridium 1750

More information

Coherent detection of weak Mode-S signals from Low Earth Orbit

Coherent detection of weak Mode-S signals from Low Earth Orbit ADS-B over Satellite Coherent detection of weak Mode-S signals from Low Earth Orbit 4S Symposium, June 1 st 2016 in Valletta, Malta Toni Delovski, German Aerospace Center (DLR) Institute of Space Systems

More information

A novel pedestal geometry optimized for large diameter Ka-band antennas

A novel pedestal geometry optimized for large diameter Ka-band antennas A novel pedestal geometry optimized for large diameter Ka-band antennas Hubert Fröhlich, Tomaž Rodič SPACE-SI, Slovenian Centre of Excellence for Space Sciences and Technologies Aškerčeva 12, 1000 Ljubljana,

More information

SPACE. DG GROW Internal Market, Industry Entrepreneurship and SMEs GROW/I1 - Space Policy and Research Unit

SPACE. DG GROW Internal Market, Industry Entrepreneurship and SMEs GROW/I1 - Space Policy and Research Unit 1 SPACE DG GROW Internal Market, Industry Entrepreneurship and SMEs GROW/I1 - Policy and Research Unit mario.amaral@ec.europa.eu Lisbon, 14-15 September 2016 2017 call topics Competitiveness of the European

More information

2Ku. High-performance inflight connectivity. Gogo 2Ku specifications

2Ku. High-performance inflight connectivity. Gogo 2Ku specifications 2Ku High-performance inflight connectivity 1 specifications Introduction Revolutionary high performance technology Introduction 2Ku at a glance 2Ku is a groundbreaking inflight satellite technology from

More information

COTS ADAPTABLE MODULE FOR ATTITUDE DETERMINATION IN CUBESATS

COTS ADAPTABLE MODULE FOR ATTITUDE DETERMINATION IN CUBESATS COTS ADAPTABLE MODULE FOR ATTITUDE DETERMINATION IN CUBESATS Tristan C. J. E. Martinez College of Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT The goal of this research proposal

More information

DLR s Optical Communications Program for 2018 and beyond. Dr. Sandro Scalise Institute of Communications and Navigation

DLR s Optical Communications Program for 2018 and beyond. Dr. Sandro Scalise Institute of Communications and Navigation DLR.de Chart 1 DLR s Optical Communications Program for 2018 and beyond Dr. Sandro Scalise Institute of Communications and Navigation DLR.de Chart 3 Relevant Scenarios Unidirectional Links Main application

More information

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Unguided Media and Matched Filter After this lecture, you will be able to Example? Unguided Media and Matched Filter After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media Example? B.1 Unguided media Guided to unguided

More information

Exploiting Link Dynamics in LEO-to-Ground Communications

Exploiting Link Dynamics in LEO-to-Ground Communications SSC09-V-1 Exploiting Link Dynamics in LEO-to-Ground Communications Joseph Palmer Los Alamos National Laboratory MS D440 P.O. Box 1663, Los Alamos, NM 87544; (505) 665-8657 jmp@lanl.gov Michael Caffrey

More information

Space Situational Awareness 2015: GPS Applications in Space

Space Situational Awareness 2015: GPS Applications in Space Space Situational Awareness 2015: GPS Applications in Space James J. Miller, Deputy Director Policy & Strategic Communications Division May 13, 2015 GPS Extends the Reach of NASA Networks to Enable New

More information

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology QuikSCAT Mission Status QuikSCAT Follow-on Mission 2 QuikSCAT instrument and spacecraft are healthy, but aging June 19, 2009 will be the 10 year launch anniversary We ve had two significant anomalies during

More information

ARMADILLO: Subsystem Booklet

ARMADILLO: Subsystem Booklet ARMADILLO: Subsystem Booklet Mission Overview The ARMADILLO mission is the Air Force Research Laboratory s University Nanosatellite Program s 7 th winner. ARMADILLO is a 3U cube satellite (cubesat) constructed

More information

MEASUREMENT OF THE EARTH-OBSERVER-1 SATELLITE X-BAND PHASED ARRAY

MEASUREMENT OF THE EARTH-OBSERVER-1 SATELLITE X-BAND PHASED ARRAY MEASUREMENT OF THE EARTH-OBSERVER-1 SATELLITE X-BAND PHASED ARRAY Kenneth Perko (1), Louis Dod (2), and John Demas (3) (1) Goddard Space Flight Center, Greenbelt, Maryland, (2) Swales Aerospace, Beltsville,

More information

This presentation consists of L-3 Communications Corporation Datron Advanced Technologies Division general capabilities information that is not

This presentation consists of L-3 Communications Corporation Datron Advanced Technologies Division general capabilities information that is not This presentation consists of L-3 Communications Corporation Datron Advanced Technologies Division general capabilities information that is not defined as controlled technical data under This presentation

More information

EuLISA. Mechanisms. Final Internal Presentation ESTEC, 8th July Prepared by the ICPA / CDF* Team. (*) ESTEC Concurrent Design Facility

EuLISA. Mechanisms. Final Internal Presentation ESTEC, 8th July Prepared by the ICPA / CDF* Team. (*) ESTEC Concurrent Design Facility EuLISA Mechanisms Final Internal Presentation ESTEC, 8th July 2011 Prepared by the ICPA / CDF* Team (*) ESTEC Concurrent Design Facility Mechanisms OPTION 1 Dual Soyuz Launch - 2 Mechanisms

More information

RECOMMENDATION ITU-R SA (Question ITU-R 210/7)

RECOMMENDATION ITU-R SA (Question ITU-R 210/7) Rec. ITU-R SA.1016 1 RECOMMENDATION ITU-R SA.1016 SHARING CONSIDERATIONS RELATING TO DEEP-SPACE RESEARCH (Question ITU-R 210/7) Rec. ITU-R SA.1016 (1994) The ITU Radiocommunication Assembly, considering

More information

Glossary of Satellite Terms

Glossary of Satellite Terms Glossary of Satellite Terms Satellite Terms A-D The following terms and definitions will help familiarize you with your Satellite solution. Adaptive Coding and Modulation (ACM) Technology which automatically

More information

AMSAT Fox Satellite Program

AMSAT Fox Satellite Program AMSAT Space Symposium 2012 AMSAT Fox Satellite Program Tony Monteiro, AA2TX Topics Background Fox Launch Strategy Overview of Fox-1 Satellite 2 Background AO-51 was the most popular ham satellite Could

More information

BENEFITS FOR DEPLOYABLE QUADRIFILAR HELICAL ANTENNA MODULES FOR SMALL SATELLITES

BENEFITS FOR DEPLOYABLE QUADRIFILAR HELICAL ANTENNA MODULES FOR SMALL SATELLITES BENEFITS FOR DEPLOYABLE ANTENNA MODULES FOR SMALL SATELLITES 436.5 and 2400 MHz QHA s compared with Monopole Antennas on Small Satellites 1 2400 MHZ ISO-FLUX ANTENNA MOUNTED ON A 2U SMALL SATELLITE Axial

More information

Multipath Analysis of the QuikSCAT Calibration Ground Station

Multipath Analysis of the QuikSCAT Calibration Ground Station Brigham Young University Department of Electrical and Computer Engineering 459 Clyde Building Provo, Utah 8462 Multipath Analysis of the QuikSCAT Calibration Ground Station Arden Anderson 16 April 21 MERS

More information

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard Michael Pearlman Director Central Bureau International Laser Ranging Service Harvard-Smithsonian Center for Astrophysics Cambridge MA

More information

Opportunistic Vehicular Networks by Satellite Links for Safety Applications

Opportunistic Vehicular Networks by Satellite Links for Safety Applications 1 Opportunistic Vehicular Networks by Satellite Links for Safety Applications A.M. Vegni, C. Vegni, and T.D.C. Little Outline 2 o o o Opportunistic Networking as traditional connectivity in VANETs. Limitation

More information

Passive Microwave Products. Facts - Products - Applications

Passive Microwave Products. Facts - Products - Applications Passive Microwave Products Facts - Products - Applications High technology for the global satellite market 1. The Motive page 4 Over the course of five decades, Tesat-Spacecom has developed in-depth expertise

More information

SURREY GSA CATALOG. Surrey Satellite Technology US LLC 8310 South Valley Highway, 3rd Floor, Englewood, CO

SURREY GSA CATALOG. Surrey Satellite Technology US LLC 8310 South Valley Highway, 3rd Floor, Englewood, CO SURREY CATALOG Space-Qualified flight hardware for small satellites, including GPS receivers, Attitude Determination and Control equipment, Communications equipment and Remote Sensing imagers Professional

More information

HFCC 2018 Bratislava Product Launch: Low Power Solid-State Shortwave

HFCC 2018 Bratislava Product Launch: Low Power Solid-State Shortwave HFCC 2018 Bratislava Product Launch: Low Power Solid-State Shortwave 27.08.2018 1 Our Mission Science MedTech Ampegon designs and delivers high power systems for world-class research facilities. «We offer

More information

9/22/08. Satellite Systems. History of satellite communication. Applications. History Basics Localization Handover Routing Systems

9/22/08. Satellite Systems. History of satellite communication. Applications. History Basics Localization Handover Routing Systems Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 first satellite SPUTNIK

More information

Orbit Simulator Software (9581-H0)

Orbit Simulator Software (9581-H0) Orbit Simulator Software 581901 (9581-H0) LabVolt Series Datasheet Festo Didactic en 04/2019 Table of Contents General Description 2 Telemetry and Instrumentation 2 Data Transfer 3 Orbit Simulator 5 Topic

More information

Electric Solar Wind Sail tether payloads onboard CubeSats

Electric Solar Wind Sail tether payloads onboard CubeSats Electric Solar Wind Sail tether payloads onboard CubeSats Jouni Envall, Petri Toivanen, Pekka Janhunen Finnish Meteorological Institute, Helsinki, Finland (jouni.envall@fmi.fi) Outline E-sail & Coulomb

More information

SPACOMM 2009 PANEL. Challenges and Hopes in Space Navigation and Communication: From Nano- to Macro-satellites

SPACOMM 2009 PANEL. Challenges and Hopes in Space Navigation and Communication: From Nano- to Macro-satellites SPACOMM 2009 PANEL Challenges and Hopes in Space Navigation and Communication: From Nano- to Macro-satellites Lunar Reconnaissance Orbiter (LRO): NASA's mission to map the lunar surface Landing on the

More information

world leader in capacity, performance and costefficiency.

world leader in capacity, performance and costefficiency. Boeing 702 Fleet 01PR 01507 High resolution image available here Satellite operators have responded enthusiastically to the vastly increased capabilities represented by the Boeing 702. Boeing Satellite

More information

RockBLOCK+ Developer guide

RockBLOCK+ Developer guide RockBLOCK+ Developer guide Version 1.4-12th December 2016 Table of Contents Introduction 3 What is RockBLOCK? 3 About Short Burst Data 3 About Iridium 3 Getting Help 4 Functional Description 4 Power supply

More information

Problem Areas of DGPS

Problem Areas of DGPS DYNAMIC POSITIONING CONFERENCE October 13 14, 1998 SENSORS Problem Areas of DGPS R. H. Prothero & G. McKenzie Racal NCS Inc. (Houston) Table of Contents 1.0 ABSTRACT... 2 2.0 A TYPICAL DGPS CONFIGURATION...

More information

Annex B: HEO Satellite Mission

Annex B: HEO Satellite Mission Annex B: HEO Satellite Mission Table of Content TABLE OF CONTENT...I 1. INTRODUCTION...1 1.1. General... 1 1.2. Response Guidelines... 1 2. BRAODBAND CAPACITY...2 2.1. Mission Overview... 2 2.1.1. HEO

More information

STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS

STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS Chapter Five STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS SPACE DEVELOPMENT IN KOREA Hong-Yul Paik, Director, Satellite Operation Center, Korea Aerospace Research Institute, South Korea Korea is a young

More information

High Accuracy Spherical Near-Field Measurements On a Stationary Antenna

High Accuracy Spherical Near-Field Measurements On a Stationary Antenna High Accuracy Spherical Near-Field Measurements On a Stationary Antenna Greg Hindman, Hulean Tyler Nearfield Systems Inc. 19730 Magellan Drive Torrance, CA 90502 ABSTRACT Most conventional spherical near-field

More information

L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE

L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE Anoop Parthasarathy Mtech. Digital Signal Processing Centre for Emerging Technologies Jain University ACKNOWLEDGEMENTS My sincere thanks to Dr. G.

More information

DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY

DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY EDMOND NORSE, GNSS PORTFOLIO MANAGER, TRIMBLE SURVEY DIVISION WESTMINSTER, CO USA ABSTRACT In September 2003 Trimble introduced

More information

Active Antennas: The Next Step in Radio and Antenna Evolution

Active Antennas: The Next Step in Radio and Antenna Evolution Active Antennas: The Next Step in Radio and Antenna Evolution Kevin Linehan VP, Chief Technology Officer, Antenna Systems Dr. Rajiv Chandrasekaran Director of Technology Development, RF Power Amplifiers

More information

Lecture 1 Introduction

Lecture 1 Introduction Advanced Electronic Communication Systems Lecture 1 Introduction Dr.Eng. Basem ElHalawany Title Lecturer: Lecturer Webpage: Room/Email Teaching Assistant (TA) Course Webpage References Course Info Advanced

More information

Perspectives of development of satellite constellations for EO and connectivity

Perspectives of development of satellite constellations for EO and connectivity Perspectives of development of satellite constellations for EO and connectivity Gianluca Palermo Sapienza - Università di Roma Paolo Gaudenzi Sapienza - Università di Roma Introduction - Interest in LEO

More information

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer Miguel A. Aguirre Introduction to Space Systems Design and Synthesis ) Springer Contents Foreword Acknowledgments v vii 1 Introduction 1 1.1. Aim of the book 2 1.2. Roles in the architecture definition

More information

Workshop on Intelligent System and Applications (ISA 17)

Workshop on Intelligent System and Applications (ISA 17) Telemetry Mining for Space System Sara Abdelghafar Ahmed PhD student, Al-Azhar University Member of SRGE Workshop on Intelligent System and Applications (ISA 17) 13 May 2017 Workshop on Intelligent System

More information

SMART COMMUNICATION SATELLITE (SCS) PROJECT OVERVIEW. Jin JIN Space Center, Tsinghua University 2015/8/10

SMART COMMUNICATION SATELLITE (SCS) PROJECT OVERVIEW. Jin JIN Space Center, Tsinghua University 2015/8/10 SMART COMMUNICATION SATELLITE (SCS) PROJECT OVERVIEW Jin JIN Space Center, Tsinghua University 2015/8/10 OUTLINE Overview System Scheme Technical Challenges Flight Results Future 2 1 Overview Tsinghua

More information

PAP-240 Three Axis Antenna Pedestal and feed drive

PAP-240 Three Axis Antenna Pedestal and feed drive Présentation générale. ANTENNE MOTORISEE 3 AXES Versions : RxO Ku, RxO Ku&C (4 ports), RxTx Ku (2 ports), RxTx C (2 ports) PAP-240 Three Axis Antenna Pedestal and feed drive The two axis Motorized antenna

More information

A Solution for Every Application. Trimble GNSS Geodetic Antennas TRANSFORMING THE WAY THE WORLD WORKS

A Solution for Every Application. Trimble GNSS Geodetic Antennas TRANSFORMING THE WAY THE WORLD WORKS A Solution for Every Application Trimble GNSS Geodetic Antennas TRANSFORMING THE WAY THE WORLD WORKS Trimble GNSS Geodetic Antennas Trimble geodetic antennas mitigate multipath in different ways. Each

More information

The Future for CubeSats Present and Coming Launch Opportunities 18th Annual AIAA / USU Conference on Small Satellites CubeSat Workshop

The Future for CubeSats Present and Coming Launch Opportunities 18th Annual AIAA / USU Conference on Small Satellites CubeSat Workshop The Future for CubeSats Present and Coming Launch Opportunities 18th Annual AIAA / USU Conference on Small Satellites CubeSat Workshop Presented By: Armen Toorian California Polytechnic State University

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

Rome, Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer

Rome, Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer Rome, 07.12.2017 4 th IAA Conference on University Satellite Missions and Cubesat Workshop Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer Stephan Roemer Head of Space

More information

UNISCAN AND ALICE-SC GROUND STATIONS AND DEVELOPMENT OF THEIR NETWORKS

UNISCAN AND ALICE-SC GROUND STATIONS AND DEVELOPMENT OF THEIR NETWORKS UNISCAN AND ALICE-SC GROUND STATIONS AND DEVELOPMENT OF THEIR NETWORKS Gershenzon V.E., Gershenzon O.N. R&D Center ScanEx Commission WG IV/9 KEY WORDS: Uniscan, Alice-SC, Stations, Geo-Portals ABSTRACT:

More information

C-COM Satellite Systems Inc. Page 1 of 39

C-COM Satellite Systems Inc. Page 1 of 39 Page 1 of 39 inetvu Fly-75V & Fly-98G/H/V & Fly-981 User Manual The inetvu brand and logo are registered trademarks of C-COM Satellite Systems, Inc. Copyright 2006 C-COM Satellite Systems, Inc. 1-877-iNetVu6

More information

Earth Observation from a Moon based SAR: Potentials and Limitations

Earth Observation from a Moon based SAR: Potentials and Limitations Earth Observation from a Moon based SAR: Potentials and Limitations F. Bovenga 1, M. Calamia 2,3, G. Fornaro 5, G. Franceschetti 4, L. Guerriero 1, F. Lombardini 5, A. Mori 2 1 Politecnico di Bari - Dipartimento

More information

Challenging, innovative and fascinating

Challenging, innovative and fascinating O3b 2.4m antennas operating in California. Photo courtesy Hung Tran, O3b Networks Challenging, innovative and fascinating The satellite communications industry is challenging, innovative and fascinating.

More information

Skyworker: Robotics for Space Assembly, Inspection and Maintenance

Skyworker: Robotics for Space Assembly, Inspection and Maintenance Skyworker: Robotics for Space Assembly, Inspection and Maintenance Sarjoun Skaff, Carnegie Mellon University Peter J. Staritz, Carnegie Mellon University William Whittaker, Carnegie Mellon University Abstract

More information

DEEP SPACE TELECOMMUNICATIONS

DEEP SPACE TELECOMMUNICATIONS DEEP SPACE TELECOMMUNICATIONS T. B. H. KUIPER Jet Propulsion Laboratory 169-506 California Institute of Technology Pasadena, CA 91109 U. S. A. E-mail: kuiper@jpl.nasa.gov G. M. RESCH Jet Propulsion Laboratory

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

Electronic components: the electronic card

Electronic components: the electronic card Electronic components: the electronic card Role The CubeSat have a telecommunication subsystem that will allow communication between the CubeSat and the ground station to share telemetry data. The primary

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

CubeSat Advisors: Mechanical: Dr. Robert Ash ECE: Dr. Dimitrie Popescu 435 Team Members: Kevin Scott- Team Lead Robert Kelly- Orbital modeling and

CubeSat Advisors: Mechanical: Dr. Robert Ash ECE: Dr. Dimitrie Popescu 435 Team Members: Kevin Scott- Team Lead Robert Kelly- Orbital modeling and CubeSat Fall 435 CubeSat Advisors: Mechanical: Dr. Robert Ash ECE: Dr. Dimitrie Popescu 435 Team Members: Kevin Scott- Team Lead Robert Kelly- Orbital modeling and power Austin Rogers- Attitude control

More information

OPTIMAL OPERATIONS PLANNING FOR SAR SATELLITE CONSTELLATIONS IN LOW EARTH ORBIT

OPTIMAL OPERATIONS PLANNING FOR SAR SATELLITE CONSTELLATIONS IN LOW EARTH ORBIT 1 OPTIMAL OPERATIONS PLANNING FOR SAR SATELLITE CONSTELLATIONS IN LOW EARTH ORBIT S. De Florio, T. Zehetbauer, and Dr. T. Neff DLR - Microwaves and Radar Institute, Oberpfaffenhofen, Germany ABSTRACT Satellite

More information

APTUS : Applications for Tether United Satellites

APTUS : Applications for Tether United Satellites SSC01-VII-5 APTUS : Applications for Tether United Satellites m_fitzpatrick@mail.utexas.edu The University of Texas at Austin Department of Aerospace Engineering WRW 412A C0600 The University of Texas

More information

Aaron J. Dando Principle Supervisor: Werner Enderle

Aaron J. Dando Principle Supervisor: Werner Enderle Aaron J. Dando Principle Supervisor: Werner Enderle Australian Cooperative Research Centre for Satellite Systems (CRCSS) at the Queensland University of Technology (QUT) Aaron Dando, CRCSS/QUT, 19 th AIAA/USU

More information

VLBI and DDOR activities at ESOC

VLBI and DDOR activities at ESOC VLBI and DDOR activities at ESOC Claudia Flohrer 1, Mattia Mercolino 2, Erik Schönemann 1, Tim Springer 1, Joachim Feltens 1, René Zandbergen 1, Werner Enderle 1, Trevor Morley 3 1) Navigation Support

More information

Satellite Communications Training System

Satellite Communications Training System Satellite Communications Training System LabVolt Series Datasheet Festo Didactic en 220 V - 60 Hz 07/208 Table of Contents General Description 2 System Configurations and Capabilities 3 Topic Coverage

More information

ICG-12 Kyoto Japan WG-B December Dr. Lisa Mazzuca

ICG-12 Kyoto Japan WG-B December Dr. Lisa Mazzuca ICG-12 Kyoto Japan WG-B December 5 2017 Dr. Lisa Mazzuca MEOSAR: SPACE SEGMENT BDS & Cospas-Sarsat: C-S JC-31 (Oct 2017) China Working Papers BDS 406 MHz MEOSAR REPEATER TECHNOLOGY STATUS (JC31-9/2) Executive

More information

FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES

FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES Presented at the ESA/ESTEC Workshop on Innovative System Concepts February 21, 2006 Ivan Bekey President, Bekey Designs, Inc. 4624

More information

NCUBE: The first Norwegian Student Satellite. Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther

NCUBE: The first Norwegian Student Satellite. Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther NCUBE: The first Norwegian Student Satellite Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther Motivation Build space related competence within: mechanical engineering, electronics,

More information

SpaceDataHighway. Commercial Data Relay Service and its Evolution

SpaceDataHighway. Commercial Data Relay Service and its Evolution SpaceDataHighway Commercial Data Relay Service and its Evolution 23rd Ka-Band Broadband - Optical Technology and Systems Panel Trieste, 17 th October 2017 Mr. Hughes Boulnois Airbus SpaceDataHighway TM

More information

Galileo. 7th ITFS, Rome, Italy, 3-5 November Dr. Stefan Bedrich. Kayser-Threde GmbH Wolfratshauser Str Munich

Galileo. 7th ITFS, Rome, Italy, 3-5 November Dr. Stefan Bedrich. Kayser-Threde GmbH Wolfratshauser Str Munich Kayser-Threde GmbH Wolfratshauser Str. 48 81379 Munich spacetech@kayser-threde.com Galileo 7th ITFS, Rome, Italy, 3-5 November 2009 Dr. Stefan Bedrich w w w. k a y s e r - t h r e d e. c o m Outline Motivation

More information

ESPA Satellite Dispenser

ESPA Satellite Dispenser 27th Annual Conference on Small Satellites ESPA Satellite Dispenser for ORBCOMM Generation 2 Joe Maly, Jim Goodding Moog CSA Engineering Gene Fujii, Craig Swaner ORBCOMM 13 August 2013 ESPA Satellite Dispenser

More information

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Federico Bacci di Capaci Nicola Melega, Alessandro Tambini, Valentino Fabbri, Davide Cinarelli Observation Index 1. Introduction

More information

Ground Systems for Small Sats: Simple, Fast, Inexpensive

Ground Systems for Small Sats: Simple, Fast, Inexpensive Ground Systems for Small Sats: Simple, Fast, Inexpensive but Effective 15 th Ground Systems Architecture Workshop March 1, 2011 Mr Andrew Kwas, Mr Greg Shreve, Northrop Grumman Corp, Mr Adam Yozwiak, Cornell

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Part of the contents of this presentation originates from the lecture Space Engineering and Technology I, Part I (ae1-801/1),

More information

Outernet: Development of a 1U Platform to Enable Low Cost Global Data Provision

Outernet: Development of a 1U Platform to Enable Low Cost Global Data Provision Outernet: Development of a 1U Platform to Enable Low Cost Global Data Provision Introduction One of the UK s leading space companies, and the only wholly UK-owned Prime contractor. ISO 9001:2008 accredited

More information

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems Tracking Radar H.P INTRODUCTION Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems 2 RADAR FUNCTIONS NORMAL RADAR FUNCTIONS 1. Range (from pulse

More information

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed 1 SATELLITE SUBSYSTEMS Networks and Communication Department Dr. Marwah Ahmed Outlines Attitude and Orbit Control System (AOCS) Telemetry, Tracking, Command and Monitoring (TTC & M) Power System Communication

More information

INSTITUTE FOR TELECOMMUNICATIONS RESEARCH (ITR)

INSTITUTE FOR TELECOMMUNICATIONS RESEARCH (ITR) INSTITUTE FOR TELECOMMUNICATIONS RESEARCH (ITR) The ITR is one of Australia s most significant research centres in the area of wireless telecommunications. SUCCESS STORIES The GSN Project The GSN Project

More information