Air Interface and Physical Layer techniques for 60 GHz WPANs

Size: px
Start display at page:

Download "Air Interface and Physical Layer techniques for 60 GHz WPANs"

Transcription

1 Air Interface and Physical Layer techniques for 60 GHz WPANs (first author, presenter) Jimmy Nsenga Wim Van Thillo François Horlin Liesbet Van der Perre IMEC, Belgium SCVT 2006 Liège, November 2006

2 Standardization, applications, link budget The propagation 60 GHz Candidate modulation techniques Receivers Simulation results SCVT

3 Context: standardization and applications Multi-Gbit/s 60 GHz IEEE = High data rate WPAN IEEE c = PHY layer alternative for mm-wave SCVT

4 UM1 Uncompressed Video Streaming TV TV or Monitor U1/U3 Point-to-point PC, umpc, Set top Box (STB) SCVT

5 UM4 Conference Ad-hoc Computer (C2) U17 U16 Computer (C1) Wireless Bridge (WB) U17 U17 U16 U16 Computer (C0) U2 TV TV or Projector SCVT

6 UM5 Kiosk File-downloading U7/U9 U7/U9 STB, Game Consol Movie and Game Kiosk Mobile Storage Device, PDA SCVT

7 c Standard Timeline (1) 09/06 (Melbourne, Aus.) - Continued channel model discussions. Continued development of UMD. Future plan: 11/06 (Dallas TX) Finalize channel model. Finalize channel model document. Finalize UMD document. Finalize Technical Last Requirements. Issue CFP. Continue MAC discussions and make week! recommendation for MAC development. 01/07 (London, UK) Presentation of preliminary proposals. 03/07 (Orlando, FL) Final proposals due 1 week prior to meeting. Presentation of all proposals. 05/07 (Montreal, CA) Present updated/merged proposals. Down selection begins. If down-selection finishes, begin drafting Standard. SCVT

8 c Standard Timeline (2) 07/07 First letter ballot 09/07 Re-circulation 11/ Sponsor ballot 01/ Sponsor re-circulation 03/08 Standard finished. SCVT

9 Why 60 GHz? Lots of unlicensed BW GHz USA Canada Korea 40 dbm EIRP 40 dbm EIRP 10 dbm, EIRP TBD Japan 10 dbm, 57 dbm EIRP Australia Europe? Min 2500 MHz, 40 dbm EIRP SCVT

10 Antenna gain boosts difficult link budget Frequency 60 GHz 60 GHz Carrier frequency bandwidth Tx Tx power Tx antenna gain Channel distance LOS loss Oxygen attenuation Rx antenna gain Thermal noise Rx Noise figure Other RX losses coding rate coding gain processing gain SNR and Margins SNR QPSK (BER = 1e-5) margin QPSK Bit rates Overhead raw spectral efficiency (QPSK) Net bit rate (QPSK) BER BER Performance of QPSK and QAM16 in AWGN QPSK QAM16 QAM SNR = log 2 (M)*E B /N 0 (db) SCVT

11 The 60 GHz Channel Source for the channel measurements: [doc. IEEE c, Denver, March 2006] SCVT

12 Measurement scenarios plan (IMST) LOS NLOS Edge SCVT

13 Direction of Arrival vs. Time of Arrival (LOS scenario, horn antenna) 100 medn0054 ezl los t501 h01 = Delay, [ns] PDP [db] Multipath components are largely attenuated by directional antenna SCVT

14 Direction of Arrival vs. Time of Arrival (LOS scenario, biconical antenna) -60 medn0090 c zm los t501 b01 = PDP [db] -90 K ~ 15 db -100 K ~ 7 db -110 K < -50 db -120 Several strongly localized rays in time/angular dimensions for delays < 50 ns and angles < Delay, [ns] Strong multipath components may have Rician distribution or may be almost deterministic with random phases SCVT

15 Direction of arrival vs. Time of arrival (NLOS scenario, horn antenna) Broadening of direction of arrival angles due to scattering during the propagation of waves through the books -70 medn0059 dyi nlos t501 h01 = Magnitude [db] angle [deg] SCVT

16 DoA for Different Delays medn0091 cym los t501 b01 = delay-24 [ns] 0.08 medn0091 cym los t501 b01 = delay-34 [ns] angle [deg] angle [deg] 0.04 medn0091 cym los t501 b01 = delay-14 [ns] 0.07 medn0091 cym los t501 b01 = delay-9 [ns] medn0091 cym los t501 b01 = delay-6 [ns] angle [deg] angle [deg] angle [deg] SCVT

17 Modulation technique SCVT

18 PHY Layer Requirements Data rate: 2 Gbps mandatory 3 Gbps optional Physical bandwidth: 4 channels in 7 GHz: 7/4 = 1.75 GHz ~1.5 GHz? 3 channels in 7 GHz: 7/3 = 2.33 GHz ~2.0 GHz? Spectral efficiency (uncoded): 2 Gbps 2 x (4/3) / 1.5 = 1.78 b/s/hz 2 x (4/3) / 2.0 = 1.33 b/s/hz 3 Gbps 3 x (4/3) / 1.5 = 2.66 b/s/hz 3 x (4/3) / 2.0 = 2.00 b/s/hz 3 channels option relaxes spectral efficiency requirements. SCVT

19 System level approach Battery-powered PA is key consumer Simplify filtering Low spectral regrowth LOS & NLOS Possible Simplify equalization Avoid OFDM Avoid M-QAM Add CP for freq. domain equalizer PSK-based: CP-OQPSK CPM-based: CPM or CP-CPM (many flavours) SCVT

20 Achieving required bit rates with CP-M-PSK Q Q Q I I I QPSK O-QPSK 3π/8-8PSK 1.75 GHz 2.33 GHz 2 Gbps 1.78 b/s/hz CP-OQPSK 1.33 b/s/hz CP-OQPSK 3 Gbps 2.66 b/s/hz CP-3π/8-8PSK 2.00 b/s/hz CP-OQPSK SCVT

21 CPM modulation parameters log 2 M bits/symbol [Anderson, Digital Phase Modulation, 1986, Springer (Plenum Press)] Pulse shape and length (rect, raised cos, gaussian, ) SCVT

22 Achieving spectral efficiency with CPM 3COS,M=4,h=0.25 Good spectral performance 3COS,M=2,h=0.5 Low complexity 3COS,M=4,h=0.5 Good error performance SCVT

23 Achieving required bit rates with CP-CPM Q Q Q I I I QPSK CPM h=0.5 CPM h= Gbps 2 Gbps 3 Gbps 1.75 GHz 0.89 b/s/hz 3COS, M=2, h= b/s/hz 3COS, M=4, h= b/s/hz?? 2.33 GHz 0.67 b/s/hz 3COS, M=2, h= b/s/hz 3COS, M=4, h= b/s/hz 3COS, M=4, h=0.25 SCVT

24 Transceiver Architecture SCVT

25 Transceiver architecture & non-idealities Phase noise ADC clipping & resolution SCVT

26 Receivers SCVT

27 PHY Layer (CP-OQPSK) TX RX with integer sampling To FDE and symbol detection RX with fractional sampling To FDE and symbol detection SCVT

28 PHY Layer (CP-OQPSK) System model with real and imag. input + fractional sampling Fractional sampling only MMSE solution (complex!) Low complexity MMSE solution exploiting circulant structure and permutation matrices SCVT

29 CPM parameters reminder log 2 M bits/symbol [Anderson, Digital Phase Modulation, 1986, Springer (Plenum Press)] Pulse shape and length (rect, raised cos, gaussian, ) SCVT

30 Any CPM signal can be decomposed in a sum of linearly modulated pulses The Laurent decomposition: Pseudocoefficients Laurent functions amplitude C 0 > 99% of energy C 2 C 1 C time [T] SCVT

31 We construct a reduced-complexity receiver by discarding pulses with little energy Optimal, highly complex receiver 1 st Laurent function (greatly) reduced complexity receiver SCVT

32 CPM receiver for multipath Time-domain equalizer Matched filter for strongest Laurent pulse SCVT

33 Simulation results SCVT

34 Simulation parameters CP-OQPSK Channel parameters (Saleh- Valenzuela) CPM SCVT

35 Performance in multipath O-QPSK CPM SCVT

36 Performance in multipath, with phase noise O-QPSK CPM (common phase rotation over block is removed) SCVT

37 Performance in multipath, with ADC resolution O-QPSK CPM (ideal AGC, ideal choice of clipping level) SCVT

38 Conclusion 60 GHz band offers huge bandwidth and big challenges CP-OQPSK and CPM are low PAPR modulations CP-OQPSK features easy (optional) FDE Integrated Phase noise requirement CP-OQPSK: ~-20 dbc CPM: ~-16dBc ADC resolution requirement CP-OQPSK: ~5-6 bits CPM: ~5 bits SCVT

39 SCVT

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [MSK-based 60GHz PHY Proposal] Date Submitted: [7 May, 2007] Source: [Troy Beukema, Brian Floyd, Brian Gaucher,

More information

Project: IEEE Working Group for Wireless Personal Area Networks (WPANs(

Project: IEEE Working Group for Wireless Personal Area Networks (WPANs( Project: IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs( WPANs) Title: [Panasonic PHY and MAC Proposal to IEEE802.15 TG3c CFP] Date Submitted: [07 May, 07] Source: [ Kazuaki Takahashi

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [The Scalability of UWB PHY Proposals] Date Submitted: [July 13, 2004] Source: [Matthew Welborn] Company [Freescale

More information

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals Rafael Cepeda Toshiba Research Europe Ltd University of Bristol November 2007 Rafael.cepeda@toshiba-trel.com

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 04.02.2016 @ 5G System Concept Seminar RF towards 5G Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 5.2.2016 2 Outline 5G challenges for RF Key RF system assumptions Channel SNR and related

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

Towards 100 Gbps: Ultra-high Spectral Efficiency using massive MIMO with 3D Antenna Configurations

Towards 100 Gbps: Ultra-high Spectral Efficiency using massive MIMO with 3D Antenna Configurations Towards 100 Gbps: Ultra-high Spectral Efficiency using massive with 3D Antenna Configurations ICC 2013, P10 12.06.2013 Budapest, Hungaria Eckhard Grass, grass@ihp-microelectronics.com grass@informatik.hu-berlin.de

More information

Millimeter-wave wireless R&D status in Panasonic and future research

Millimeter-wave wireless R&D status in Panasonic and future research Millimeter-wave wireless R&D status in Panasonic and future research 4th Japan-EU Symposium 19 th January, 2012 Michiaki MATSUO Kazuaki TAKAHASHI Panasonic corporation Outline Panasonic s R&D activities

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /MC-SS.2011.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /MC-SS.2011. Zhu, X., Doufexi, A., & Koçak, T. (2011). Beamforming performance analysis for OFDM based IEEE 802.11ad millimeter-wave WPANs. In 8th International Workshop on Multi-Carrier Systems & Solutions (MC-SS),

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels

Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels Sebastian Priebe, Thomas Kürner, 21.06.2012 Wireless

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Draft PHY Proposal for 60 GHz WPAN] Date Submitted: [11 November, 2005] Source: [Eckhard Grass, Maxim Piz,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Level Simulations of THz-Communications Date Submitted: 15 July, 2013 Source: Sebastian Rey, Technische Universität

More information

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS Navgeet Singh 1, Amita Soni 2 1 P.G. Scholar, Department of Electronics and Electrical Engineering, PEC University of Technology, Chandigarh, India 2

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [A Modified Performance Evaluation Scheme for Computer Simulation ] Date Submitted: [November 15,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Elements of an IR-UWB PHY for Body Area Networks] Date Submitted: [0 March, 2009] Source: Olivier Rousseaux,

More information

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts Signal Processing for OFDM Communication Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [IMEC UWB PHY Proposal] Date Submitted: [4 May, 2009] Source: Dries Neirynck, Olivier Rousseaux (Stichting

More information

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration 5.9 GHz V2X Modem Performance Challenges with Vehicle Integration October 15th, 2014 Background V2V DSRC Why do the research? Based on 802.11p MAC PHY ad-hoc network topology at 5.9 GHz. Effective Isotropic

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Channel Models Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Narrowband Channel Models Statistical Approach: Impulse response modeling: A narrowband channel can be represented by an impulse

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: Texas Instruments Impulse Radio UWB Physical Layer Proposal Date Submitted: 4 May, 29 Source: June Chul Roh,

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

Spectral Mask and Field Trials of a COFDM Modem

Spectral Mask and Field Trials of a COFDM Modem Spectral Mask and Field Trials of a COFDM Modem Document Number: IEEE 802.16.3p-01/44 Date Submitted: 2001-03-12 Source: Jonathan Labs, Yvon Belec, J. Pierre Lamoureux, Voice: (514) 956-6300 ext 325 Stephan

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 10 Performance of Communication System: Bit Error Rate (BER) Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video,

More information

Bit Error Rate Assessment of Digital Modulation Schemes on Additive White Gaussian Noise, Line of Sight and Non Line of Sight Fading Channels

Bit Error Rate Assessment of Digital Modulation Schemes on Additive White Gaussian Noise, Line of Sight and Non Line of Sight Fading Channels International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 8 ǁ August 2014 ǁ PP.06-10 Bit Error Rate Assessment of Digital Modulation Schemes

More information

Fractionally Spaced Equalizer for a NLOS Receiver in the 60 GHz Band

Fractionally Spaced Equalizer for a NLOS Receiver in the 60 GHz Band Microelectronic Systems Laboratory Prof. Y. Leblebici Berkeley Wireless Research Center Prof. B. Nikolic Master Thesis Fractionally Spaced Equalizer for a NLOS Receiver in the 60 GHz Band Author: Stefan

More information

IEEE C /008. IEEE Broadband Wireless Access Working Group <

IEEE C /008. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Interference scenarios in 2.4GHz and 5.8GHz UNII band 2006-01-09 Source(s) Mariana Goldhamer Alvarion

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs(

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs( Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Alternatives for Lower Frequency Band Extension Date Submitted: July 12, 2004 Source: Andreas Wolf, Dr. Wolf

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N doc.: IEEE 802.15-03101r0 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: [Channel ized, Optimum Pulse Shaped UWB PHY Proposal] Date Submitted:

More information

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 190 197 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

TSEK02: Radio Electronics Lecture 3: Modulation (II) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 3: Modulation (II) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 3: Modulation (II) Ted Johansson, EKS, ISY An Overview of Modulation Techniques chapter 3.3.2 3.3.6 2 Constellation Diagram (3.3.2) Quadrature Modulation Higher Order

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

UWB Small Scale Channel Modeling and System Performance

UWB Small Scale Channel Modeling and System Performance UWB Small Scale Channel Modeling and System Performance David R. McKinstry and R. Michael Buehrer Mobile and Portable Radio Research Group Virginia Tech Blacksburg, VA, USA {dmckinst, buehrer}@vt.edu Abstract

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture preview Wireless Networking

More information

Orthogonal Frequency Domain Multiplexing

Orthogonal Frequency Domain Multiplexing Chapter 19 Orthogonal Frequency Domain Multiplexing 450 Contents Principle and motivation Analogue and digital implementation Frequency-selective channels: cyclic prefix Channel estimation Peak-to-average

More information

WIRELESS COMMUNICATIONS PRELIMINARIES

WIRELESS COMMUNICATIONS PRELIMINARIES WIRELESS COMMUNICATIONS Preliminaries Radio Environment Modulation Performance PRELIMINARIES db s and dbm s Frequency/Time Relationship Bandwidth, Symbol Rate, and Bit Rate 1 DECIBELS Relative signal strengths

More information

Elham Torabi Supervisor: Dr. Robert Schober

Elham Torabi Supervisor: Dr. Robert Schober Low-Rate Ultra-Wideband Low-Power for Wireless Personal Communication Area Networks Channel Models and Signaling Schemes Department of Electrical & Computer Engineering The University of British Columbia

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

Clipping and Filtering Technique for reducing PAPR In OFDM

Clipping and Filtering Technique for reducing PAPR In OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 91-97 Clipping and Filtering Technique for reducing PAPR In OFDM Saleh Albdran 1, Ahmed

More information

5 GHz Radio Channel Modeling for WLANs

5 GHz Radio Channel Modeling for WLANs 5 GHz Radio Channel Modeling for WLANs S-72.333 Postgraduate Course in Radio Communications Jarkko Unkeri jarkko.unkeri@hut.fi 54029P 1 Outline Introduction IEEE 802.11a OFDM PHY Large-scale propagation

More information

A High-Precision Ultra Wideband Impulse Radio Physical Layer Model for Network Simulation

A High-Precision Ultra Wideband Impulse Radio Physical Layer Model for Network Simulation A High-Precision Ultra Wideband Impulse Radio Physical Layer Model for Network Simulation Jérôme Rousselot, Jean-Dominique Decotignie 2 nd Omnet++ Workshop, Rome, 6.3.2009 Overview Research Problem and

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities January 2017 doc.: 15-17-0007-00-0thz_THz_Wireless_Communications_Challenges_and_Opportunities Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: THz Wireless

More information

Overview. Measurement of Ultra-Wideband Wireless Channels

Overview. Measurement of Ultra-Wideband Wireless Channels Measurement of Ultra-Wideband Wireless Channels Wasim Malik, Ben Allen, David Edwards, UK Introduction History of UWB Modern UWB Antenna Measurements Candidate UWB elements Radiation patterns Propagation

More information

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System Pranil Mengane 1, Ajitsinh Jadhav 2 12 Department of Electronics & Telecommunication Engg, D.Y. Patil College of Engg & Tech, Kolhapur

More information

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel Research Letters in Communications Volume 2009, Article ID 695620, 4 pages doi:0.55/2009/695620 Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel Haris Gacanin and

More information

Lecture 7/8: UWB Channel. Kommunikations

Lecture 7/8: UWB Channel. Kommunikations Lecture 7/8: UWB Channel Kommunikations Technik UWB Propagation Channel Radio Propagation Channel Model is important for Link level simulation (bit error ratios, block error ratios) Coverage evaluation

More information

A 60GHz Transceiver RF Front-End

A 60GHz Transceiver RF Front-End TAMU ECEN625 FINAL PROJECT REPORT 1 A 60GHz Transceiver RF Front-End Xiangyong Zhou, UIN 421002457, Qiaochu Yang, UIN 221007758, Abstract This final report presents a 60GHz two-step conversion heterodyne

More information

NOISE, INTERFERENCE, & DATA RATES

NOISE, INTERFERENCE, & DATA RATES COMP 635: WIRELESS NETWORKS NOISE, INTERFERENCE, & DATA RATES Jasleen Kaur Fall 2015 1 Power Terminology db Power expressed relative to reference level (P 0 ) = 10 log 10 (P signal / P 0 ) J : Can conveniently

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

Multiple Input Multiple Output (MIMO) Operation Principles

Multiple Input Multiple Output (MIMO) Operation Principles Afriyie Abraham Kwabena Multiple Input Multiple Output (MIMO) Operation Principles Helsinki Metropolia University of Applied Sciences Bachlor of Engineering Information Technology Thesis June 0 Abstract

More information

Noise in a DVB-T System

Noise in a DVB-T System Noise in a DVB-T System John Salter Summary This note was written to clarify a simple theoretical noise model of a DVB-T system described in [Reference 1]. This model gives the system carrier-to-noise

More information

Combined Transmitter Diversity and Multi-Level Modulation Techniques

Combined Transmitter Diversity and Multi-Level Modulation Techniques SETIT 2005 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 27 3, 2005 TUNISIA Combined Transmitter Diversity and Multi-Level Modulation Techniques

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Robust Synchronization for DVB-S2 and OFDM Systems

Robust Synchronization for DVB-S2 and OFDM Systems Robust Synchronization for DVB-S2 and OFDM Systems PhD Viva Presentation Adegbenga B. Awoseyila Supervisors: Prof. Barry G. Evans Dr. Christos Kasparis Contents Introduction Single Frequency Estimation

More information

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

Performance Analysis of WiMAX Physical Layer Model using Various Techniques Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 316-320 Performance Analysis of WiMAX Physical

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Model for Indoor Residential Environment] Date Submitted: [2 September, 24] Source: [Chia-Chin

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Pulsed DS-UWB with optional CS-UWB for Various Applications] Date Submitted: [January 2005] Source: [Huan-Bang

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

Wireless Personal Area Networks

Wireless Personal Area Networks 1 IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Samsung physical layer proposal Date Submitted Source Re: 31 Kiran Bynam,

More information

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises ELT-44006 Receiver Architectures and Signal Processing Fall 2014 1 Mandatory homework exercises - Individual solutions to be returned to Markku Renfors by email or in paper format. - Solutions are expected

More information

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY Study Of IEEE P802.15.3a physical layer proposals for UWB: DS-UWB proposal and Multiband OFDM

More information

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20 Challenges of 5G mmwave RF Module Ren-Jr Chen rjchen@itri.org.tw M300/ICL/ITRI 2018/06/20 Agenda 5G Vision and Scenarios mmwave RF module considerations mmwave RF module solution for OAI Conclusion 2 5G

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

Wireless Communication Systems: Implementation perspective

Wireless Communication Systems: Implementation perspective Wireless Communication Systems: Implementation perspective Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless

More information

Chapter 3 Communication Concepts

Chapter 3 Communication Concepts Chapter 3 Communication Concepts 1 Sections to be covered 3.1 General Considerations 3.2 Analog Modulation 3.3 Digital Modulation 3.4 Spectral Regrowth 3.7 Wireless Standards 2 Chapter Outline Modulation

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Ultrawideband Radiation and Propagation

Ultrawideband Radiation and Propagation Ultrawideband Radiation and Propagation by Werner Sörgel, Christian Sturm and Werner Wiesbeck LS telcom Summit 26 5. July 26 UWB Applications high data rate fine resolution multimedia localisation UWB

More information

Does The Radio Even Matter? - Transceiver Characterization Testing Framework

Does The Radio Even Matter? - Transceiver Characterization Testing Framework Does The Radio Even Matter? - Transceiver Characterization Testing Framework TRAVIS COLLINS, PHD ROBIN GETZ 2017 Analog Devices, Inc. All rights reserved. 1 Which cost least? 3 2017 Analog Devices, Inc.

More information

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE ANALYSIS OF INTEGRATED WIFI/WIMAX MESH NETWORK WITH DIFFERENT MODULATION SCHEMES Mr. Jogendra Raghuwanshi*, Mr. Girish

More information

Nutaq OFDM Reference

Nutaq OFDM Reference Nutaq OFDM Reference Design FPGA-based, SISO/MIMO OFDM PHY Transceiver PRODUCT SHEET QUEBEC I MONTREAL I NEW YORK I nutaq.com Nutaq OFDM Reference Design SISO/2x2 MIMO Implementation Simulation/Implementation

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

DATE: June 14, 2007 TO: FROM: SUBJECT:

DATE: June 14, 2007 TO: FROM: SUBJECT: DATE: June 14, 2007 TO: FROM: SUBJECT: Pierre Collinet Chinmoy Gavini A proposal for quantifying tradeoffs in the Physical Layer s modulation methods of the IEEE 802.15.4 protocol through simulation INTRODUCTION

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Oyetunji S. A 1 and Akinninranye A. A 2 1 Federal University of Technology Akure, Nigeria 2 MTN Nigeria Abstract The

More information

2.

2. PERFORMANCE ANALYSIS OF STBC-MIMO OFDM SYSTEM WITH DWT & FFT Shubhangi R Chaudhary 1,Kiran Rohidas Jadhav 2. Department of Electronics and Telecommunication Cummins college of Engineering for Women Pune,

More information

PERFORMANCE ANALYSIS OF MIMO WIRELESS SYSTEM WITH ARRAY ANTENNA

PERFORMANCE ANALYSIS OF MIMO WIRELESS SYSTEM WITH ARRAY ANTENNA PERFORMANCE ANALYSIS OF MIMO WIRELESS SYSTEM WITH ARRAY ANTENNA Mihir Narayan Mohanty MIEEE Department of Electronics and Communication Engineering, ITER, Siksha O Anusandhan University, Bhubaneswar, Odisha,

More information

Next Generation Mobile Communication. Michael Liao

Next Generation Mobile Communication. Michael Liao Next Generation Mobile Communication Channel State Information (CSI) Acquisition for mmwave MIMO Systems Michael Liao Advisor : Andy Wu Graduate Institute of Electronics Engineering National Taiwan University

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Proposals for Amendments to the FSK PHY of LECIM draft 15-12-0089-02-004k ] Date Submitted: [14 March 2012] Source:

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

Williams, C., Nix, A. R., Beach, M. A., Prado, A., Doufexi, A., & Tameh, E. K. (2006). Capacity and coverage enhancements of MIMO WLANs in realistic.

Williams, C., Nix, A. R., Beach, M. A., Prado, A., Doufexi, A., & Tameh, E. K. (2006). Capacity and coverage enhancements of MIMO WLANs in realistic. Williams, C., Nix, A. R., Beach, M. A., Prado, A., Doufexi, A., & Tameh, E. K. (006). Capacity and coverage enhancements of MIMO WLANs in realistic. Peer reviewed version Link to publication record in

More information

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Prashanth G S 1 1Department of ECE, JNNCE, Shivamogga ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

Towards 5G: Performance Evaluation 60 GHz UWB OFDM Communications under both Channel and RF impairments.

Towards 5G: Performance Evaluation 60 GHz UWB OFDM Communications under both Channel and RF impairments. Towards 5G: Performance Evaluation 60 GHz UWB OFDM Communications under both Channel and RF impairments. Rodolfo Gomes a,b, Akram Hammoudeh b, Rafael F. S. Caldeirinha a,b,, Zaid Al-Daher a, Telmo Fernandes

More information

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS G.Joselin Retna Kumar Research Scholar, Sathyabama University, Chennai, Tamil Nadu, India joselin_su@yahoo.com K.S.Shaji Principal,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Title: [General Atomics Call For Proposals Presentation] Date Submitted: [4 ] Source: Naiel Askar, Susan Lin, General Atomics-

More information

ChSim A wireless channel simulator for OMNeT++

ChSim A wireless channel simulator for OMNeT++ ChSim A wireless channel simulator for OMNeT++ Simulation workshop TKN, TU Berlin September 08, 2006 Computer Networks Group Universität Paderborn Outline Introduction Example scenario, results & modeling

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Two Hopeful Technologies for TG4a --- DS-UWB and CS-UWB] Date Submitted: [05, November, 2004] Source: [Huan-Bang

More information