CSE237d: Embedded System Design Junjie Su May 8, 2008

Size: px
Start display at page:

Download "CSE237d: Embedded System Design Junjie Su May 8, 2008"

Transcription

1 Jamie Steck CSE237d: Embedded System Design Junjie Su May 8, 2008 Project Progress Report: Efficient Energy Management and Task Scheduling of a Solar-Powered System Background Every two years, a team of engineers and technicians inspects all United States governmentowned bridges in order to determine the "health" of the structure. However, as seen in the recent crash of a bridge in Minneapolis, these inspections do not always accurately reflect the condition of the bridge. Due to the need for better bridge inspection methods and in response to advances in sensor technology, sensors networks are being employed to enhance this two-year inspection requirement. These sensor networks can measure qualities of a bridge such as strain, temperature, and seismic activity, and using data processing, these measurements can indicate possible failure or need for repair. Monitoring certain features of a structure over time and evaluating these features to determine the health of a structure is referred to as Structural Health Monitoring (SHM). Structural Health Monitoring is a popular area of research in the fields of embedded systems and structural engineering and encompasses not only bridges, but also other structures such as buildings, aircraft, spacecraft, and oilrigs. Currently, most deployed SHM systems are wired, and thus take a significant amount of time to install and are usually expensive. Current research, such as the work of Wisden and Shimmer, as well as government initiatives, are working to develop wireless SHM systems in order to reduce cost, time of installation, and maintenance requirements. Over the years, many methods have been developed to identify and detect damage in a structure. Some of these methods include: natural frequency observations, fiber optic sensing systems, impedance-based methods, and lamb waves. First, natural frequency observations exploit the fact that a change in a structure affects the natural frequency of the structure. Natural frequency changes can be used to identify structure vibrations, changes in structural stiffness, and cracks. Unfortunately, natural frequency methods require a high level of damage and may not be effective in detecting deterioration over time or more subtle failure identification. Fiber optic sensing systems can also be used to determine the health of a structure. Fiber optic sensing systems use characteristics of propagating light to measure properties such as strain, moisture, radiation, and motion. These systems can be either passive or active. One of the most promising methods for SHM is the integration of smart materials into the structures and utilization of these smart materials as sensors and actuators. For example, due to its chemical makeup, Lead-Zirconate-Titanate (PZT) can be used to both generate and sense signals. Because the electrical impedance of PZT sensor/actuator is directly related to the structure's mechanical impedance, this impedance-based method can use high frequency vibrations to monitor the structure's mechanical impedance in order to detect and locate the damage of a structure. In addition, lamb waves are a type of elastic perturbation that can propagate in and reveal certain characteristics about a solid. The speed of a lamb wave is dependent on the frequency of the solid and can be generated by an Electromagneticacoustic transducer (EMAT) or a smart material such as PZT transducers. The types of SHM systems focused on for this project typically consist of an external agent,

2 such as a base station or UAV, and one or more sensor nodes. Each sensor node is composed of many hardware components. The sensor node needs one or more processors, such as a microcontroller, DSP, or FPGA, to control the node, the data acquisition and processing, and transmittance to an external agent. The node needs memory, both RAM and ROM, to store the processor code as well as data. The node needs a sensor and an A to D converter. If it is active, it will also need an actuator and a D to A converter. The node must communicate with an external agent via a wire or, if it is wireless, a radio, such as Bluetooth or Zigbee. Last, the node will need a source of energy. This energy can be obtained through a wired power source or an energy efficient power source, such as the sun, and must be stored using a battery or a super capacitor. Some SHM systems only require nodes to actuate, sense, and transmit data, but for this project, the sensor node will also process the data. In order to effectively control the sensor node, acquire, process, and transmit the sampled data or results, the SHM node requires several software components. While an entire operating system can be used, such as TinyOS, only certain OS features are needed to adequately control the node. Software is needed to turn the node on and off, communicate with the external agent (via radio or the like), as well as monitor the power and current energy supply. In addition, software should be used to control the sensors and/or actuators to acquire the data (through sampling) and then process the data. Data can either be directly sent to the external agent or analyzed on the node itself. Analysis involves storing the data, transforming the data using a Fourier transform or the like, and then performing analysis to determine if damage exists in the structure. Some issues to consider when designing an SHM system include energy, maintenance, installation, cost, and reliability. While it is possible to create a wired SHM system, a wireless system is much more attractive due to the difficulties of installing these systems on structures. Wireless systems, however, are limited by power, and thus must conserve energy in every part of the system. Using batteries increases the maintenance requirements, and on a bridge, accessing sensor nodes may be dangerous and difficult. In addition, it is essential that an SHM system is reliable and accurate. Citizens depend on these systems to provide correct and constant results for the safety purposes. This project focuses on an area of current research here at UCSD. Shimmer, a wireless SHM system that uses solar power, super-capacitors, and on-node data processing, has been designed by several UCSD students. Shimmer monitors the structure, processes the results, and transmits to an Unmanned Aerial Vehicle (UAV). The Shimmer project employs the impedance-based technique and lamb waves technique mentioned above to perform the structure health monitoring. Both of these techniques are non-destructive evaluation methods that utilize PZTs to actuate and sense, and both techniques have advantages and disadvantages. Under observations, the lamb waves technique is more effective for thin plates, while the impedance-based technique is more suitable for detecting damage near structure joints and connections. Therefore, the Shimmer project combines these two techniques to provide a better structure health monitoring method. The diagram of the sensor node used by SHIMMER is shown below in Figure 1. The tasks for the node are 1) communicate with the UAV, 2) control the actuators and sensors to collect data, and 3) perform analysis on the collected data. The microcontroller is connected to a passive radio trigger circuit, which can wake up the microcontroller if the UAV sends the signal. The microcontroller (ATMega128L) controls the power of the rest of the functional units by a CMOS switch network. Once the microcontroller is woken up, it communicates with the UAV via the radio

3 transceiver (CC1100). Based on the instruction received from the UAV, the microcontroller then fetches the instructions for the DSP (TMS320C2811) that stored in the EEPROM (Microchip 25AA256) via the SPI interface. The DSP is interfaced to 1Mb of SRAM (CY7C1021), a DAC (DAC902), and two signal conditioning stages (actuation and sensing). As mentioned before, PZT piezoelectric transducers are the sensors and actuators. The DAC takes the signals from the DSP and generates the actuation waves to the PZTs. The SRAM stores the samples that generated by the ADC integrated in the DSP. Also, the DSP controls a multiplexer that selects different PZT as sensor or actuator from a group of 16 PZTs. Figure 1. SHiMmer Schematic In order to provide sufficient energy for the sensor node to perform and reduce the maintenance cost, the SHiMmer sensor node employs an energy harvesting circuit, which is collecting the solar power and store it into super-capacitors. Comparing to other energy harvest method, the solar power is the most efficient method so far. The super-capacitor provides a much higher durability (20 years) than other rechargeable batteries, and yet it also has slower performance degradation than other batteries. Currently, the SHiMmer sensor node is still under development and is facing significant challenges. The energy harvesting system of the node cannot collect enough energy to provide the node the ability to function properly during cloudy days. Because the solar panel collects energy based on the sun light density, it collects very little energy during cloudy days as compared to sunny days. If the node continues to perform tasks when the energy stored in the super-capacitor is low, the system will consume all the energy and eventually die. Currently, this energy problem is the most challenging part of the Shimmer sensor node platform. Furthermore, another challenge is how to install the sensor nodes properly. Many structures have different shapes. It is very challenged to place all the sensor nodes in a location that can absorb sunlight. When nodes are placed in shady areas, such as underneath a bridge, it is imperative that the node can absorb enough energy to stay alive. A final challenge is the implementation of the algorithms used to process the sampled data on the DSP. Because of the energy constraints highlighted above, the algorithms must be extremely efficient, using fixed-point arithmetic and minimal lines of code. Most recently, Joaquin Recas and Carlo Bergonzini, under the instruction of Dr. Tajana Rosing, have designed an energy prediction and management scheme for SHiMmer. Their design uses an energy prediction algorithm combined with an energy management unit to schedule tasks

4 such as data actuation and acquisition (Act./Acq.), data processing (Proc.), and radio communication (Comm.) according to their corresponding energy requirements. The relationship between the energy management unit and the energy prediction algorithm is shown in Figure 2, and the energy management scheme is shown in Figure 3. Recas has implemented these algorithms in MatLab and tested them using sample solar panel data. Figure 2. System Design Figure 3. Energy Management Unit Project Goal The goal of this project is to implement efficient energy management and task scheduling for the SHiMmer platform. The prediction algorithm and energy management unit will be implemented on the ATmega128L micro-controller of a wireless sensor node that relies on an irregular solarpower source. Additionally, power requirements for the different types of tasks will be measured to feed into the energy management unit. These measurements will require programming the DSP to sense and actuate, perform data processing, and transmit this data via Zigbee. Approach The project can be separated into three parts. The first part involves rewriting the current algorithms (implemented in MatLab) in C code to run on the micro-controller, while the second part involves creating an energy simulation model circuit and the full implementation of the energy management scheme on the micro-controller. A monitoring circuit will be set up to verify the energy management scheme. The third part is to implement the three types of tasks (data actuation and acquisition, data processing, and radio communication) and then measure the power requirements of each of these tasks. The first part of the project involves implementing the current MatLab algorithms and simulation in C and running them on the micro-controller. To do this, a basic operating system needs to be loaded onto the micro-controller. Because the ATmega128L uses the Atmel SDK with WinAVR compiler, Free RTOS, a simple open source operating system, can be ported to the microcontroller using the Atmel AVR (MegaAVR) / WinAVR Port [5]. After the OS is running on the micro-controller, the current algorithms need to be written in C and ran on the micro-controller. It is possible that some changes will need to be made to the current simulation design to adjust and optimize the algorithms. In order to compare the prediction algorithm to the actual energy data,a simulation circuit can be constructed to accurately model the behavior of the solar panel and the super capacitor (voltages, currents etc.). Before applying the simulation circuit to verify the prediction algorithm, we

5 have to make sure the simulation circuit can model the behaviors accurately. Once we connect the simulation circuit to the micro-controller, we can verify how reliable the prediction algorithm is. Lastly, a monitoring LED on the Atmel AVR STK500 development platform can be used to verify the energy management scheme. Based on the waveform that feeds into the microcontroller, and thus, the expected ordering of tasks, the LED lighting pattern can be used for hardware debugging purposes. The final part of this project involves implementing the three tasks of for the SHiMmer platform, shown below in Figure 4. First, the DSP will be programmed to actuate and sense using the PZTs, and the power of the actuation and sensing will be measured. Second, the microcontroller will be programmed to send and receive packets using Zigbee. Specifically, send and receive functions will be implemented to enable packet communication, and the power consumption of transmitting data via the radio will be measured. Third, three types of data processing will be implemented on the DSP, including finding the maximum voltage and variance, the maximum time, and the Fourier transform. The power required for the data processing will also be measured for various data sizes. Progress Figure 4. SHiMmer Platform So far, we have become familiar with the Atmel AVR STK500 developing platform (shown below in Figure 5). We ran a sample program on the platform, using AVR studio, and read parts of the developing platform manual and microcontroller data sheets. We also began to port Free RTOS to the microcontroller; however, Joaquin Recas finished it before us. We plan to continue to work on it ourselves, but depending on SHiMmer needs, we may just use the work he has done.

6 Figure 5. Atmel AVR STK500 with extension board In addition, we have implemented functions to calculate the maximum voltage, variance, and the time of the maximum voltage using fixed-point data representation and arithmetic to be used in the DSP implementation for data processing. We have also studied the FFT algorithm and began implementation, but are not finished yet. Following the simulation circuit in [4], we constructed a PSPICE model in order to find the parameters that can accurately simulate the solar panel behavior. In the paper, the authors mention that the estimation of the circuit s resistance through an approximated measured current-voltage relation curve fitting, which are not clearly explained. We tried to connect the authors, and hopefully will get some feedback later. Since our resistance value is not accurate, the circuit model is not working well. We will continue to tune the parameter to achieve a better result. Given the collected data of the open circuit voltage of a solar panel, we transferred the data into an excel.csv file and loaded it into the Agilent waveform editor. The open circuit voltage data was collected every 15 minutes over a 15-day period. Because the waveform is not regular, we need to use the arbitrary waveform function to generate it. We connected the computer to the Agilent 3320A waveform generator through a USB cable and adjusted the waveform s frequency and amplitude to adapt our simulation environment. This waveform will be used as input to the prediction algorithm inside microcontroller because the open circuit voltage is the indicator for sun light condition. Future Work First, we need to translate the power management algorithm from Matlab code to C code, and implement it into the Free RTOS on the microcontroller. We should understand how our power management algorithm can be adapted utilizing the OS s queuing function. Second, we will finalize the parameters for the simulation circuit for the solar panel and create a real circuit to setup the simulation environment for our energy prediction and power management scheme. Lastly, we will try to configure the Zigbee radio chip to communicate with other devices, combine the microcontroller with the DSP running our data processing algorithms, and program the DSP to measure the current and voltage along the actuation path. We believe these features will significantly improve the current version of SHiMmer platform.

7 References [1] SHiMer Overview, [2] D. Musiani, K. Lin, T. Simunic Rosing, An active sensing platform for structural health monitoring, IPSN-SPOTS 07. [3] SHM Article, [4] Dondi, D.; Brunelli, D.; Benini, L.; Pavan, P.; Bertacchini, A.; Larcher, L., "Photovoltaic cell modeling for solar energy powered sensor networks," Advances in Sensors and Interface, IWASI nd International Workshop on, vol., no., pp.1-6, June [5] Free RTOS Atmel AVR Port instructions,

Validation of a Lamb Wave-Based Structural Health Monitoring System for Aircraft Applications

Validation of a Lamb Wave-Based Structural Health Monitoring System for Aircraft Applications Validation of a Lamb Wave-Based Structural Health Monitoring System for Aircraft Applications Seth S. Kessler, Ph.D. Dong Jin Shim, Ph.D. SPIE 222 2005Third Street Cambridge, MA 02142 617.661.5616 http://www.metisdesign.com

More information

A Solar-Powered Wireless Data Acquisition Network

A Solar-Powered Wireless Data Acquisition Network A Solar-Powered Wireless Data Acquisition Network E90: Senior Design Project Proposal Authors: Brian Park Simeon Realov Advisor: Prof. Erik Cheever Abstract We are proposing to design and implement a solar-powered

More information

Energy autonomous wireless sensors: InterSync Project. FIMA Autumn Conference 2011, Nov 23 rd, 2011, Tampere Vesa Pentikäinen VTT

Energy autonomous wireless sensors: InterSync Project. FIMA Autumn Conference 2011, Nov 23 rd, 2011, Tampere Vesa Pentikäinen VTT Energy autonomous wireless sensors: InterSync Project FIMA Autumn Conference 2011, Nov 23 rd, 2011, Tampere Vesa Pentikäinen VTT 2 Contents Introduction to the InterSync project, facts & figures Design

More information

PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS

PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS Seth S. Kessler Metis Design Corporation S. Mark Spearing Massachusetts Institute of Technology Technology Laboratory for Advanced Composites National

More information

Design of a Piezoelectric-based Structural Health Monitoring System for Damage Detection in Composite Materials

Design of a Piezoelectric-based Structural Health Monitoring System for Damage Detection in Composite Materials Design of a Piezoelectric-based Structural Health Monitoring System for Damage Detection in Composite Materials Seth S. Kessler S. Mark Spearing Technology Laboratory for Advanced Composites Department

More information

Sensor Network Platforms and Tools

Sensor Network Platforms and Tools Sensor Network Platforms and Tools 1 AN OVERVIEW OF SENSOR NODES AND THEIR COMPONENTS References 2 Sensor Node Architecture 3 1 Main components of a sensor node 4 A controller Communication device(s) Sensor(s)/actuator(s)

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Node energy consumption The batteries are limited and usually they can t support long term tasks

More information

WIRELESS DATA ACQUISITION SYSTEM FOR PHARMACEUTICAL AND CHEMICAL INDUSTRIES USING LOAD-CELL

WIRELESS DATA ACQUISITION SYSTEM FOR PHARMACEUTICAL AND CHEMICAL INDUSTRIES USING LOAD-CELL International Journal of Computer Networking, Wireless and Mobile Communications (JCNWMC) ISSN 2250-1568 Vol.3, Issue 1, Mar 2013, 111-116 TJPRC Pvt. Ltd. WIRELESS DATA ACQUISITION SYSTEM FOR PHARMACEUTICAL

More information

DEVELOPING AN AUTONOMOUS ON-ORBIT IMPEDANCE-BASED SHM SYSTEM FOR THERMAL PROTECTION SYSTEMS

DEVELOPING AN AUTONOMOUS ON-ORBIT IMPEDANCE-BASED SHM SYSTEM FOR THERMAL PROTECTION SYSTEMS DEVELOPING AN AUTONOMOUS ON-ORBIT IMPEDANCE-BASED SHM SYSTEM FOR THERMAL PROTECTION SYSTEMS Benjamin L. Grisso and Daniel J. Inman Center for Intelligent Material Systems and Structures Virginia Polytechnic

More information

Wireless Data Acquisition System. Hasan Ozer and Mat Kotowsky. An Application to Crossbow s Smart Dust Challenge Contest

Wireless Data Acquisition System. Hasan Ozer and Mat Kotowsky. An Application to Crossbow s Smart Dust Challenge Contest Wireless Data Acquisition System Hasan Ozer and Mat Kotowsky An Application to Crossbow s Smart Dust Challenge Contest December, 2004 1 Project Description... 3 2 Origin of Idea... 3 3 Objective...4 4

More information

A multi-mode structural health monitoring system for wind turbine blades and components

A multi-mode structural health monitoring system for wind turbine blades and components A multi-mode structural health monitoring system for wind turbine blades and components Robert B. Owen 1, Daniel J. Inman 2, and Dong S. Ha 2 1 Extreme Diagnostics, Inc., Boulder, CO, 80302, USA rowen@extremediagnostics.com

More information

An On-Line Wireless Impact Monitoring System for Large Scale Composite Structures

An On-Line Wireless Impact Monitoring System for Large Scale Composite Structures An On-Line Wireless Monitoring System for Large Scale Composite Structures Hanfei Mei, Shenfang Yuan, Lei Qiu, Yuanqiang Ren To cite this version: Hanfei Mei, Shenfang Yuan, Lei Qiu, Yuanqiang Ren. An

More information

A Survey of Sensor Technologies for Prognostics and Health Management of Electronic Systems

A Survey of Sensor Technologies for Prognostics and Health Management of Electronic Systems Applied Mechanics and Materials Submitted: 2014-06-06 ISSN: 1662-7482, Vols. 602-605, pp 2229-2232 Accepted: 2014-06-11 doi:10.4028/www.scientific.net/amm.602-605.2229 Online: 2014-08-11 2014 Trans Tech

More information

Wireless Sensor Networks for Aerospace Applications

Wireless Sensor Networks for Aerospace Applications SAE 2017 Aerospace Standards Summit th 25-26 April 2017, Cologne, Germany Wireless Sensor Networks for Aerospace Applications Dr. Bahareh Zaghari University of Southampton, UK June 9, 2017 In 1961, the

More information

In-Situ Damage Detection of Composites Structures using Lamb Wave Methods

In-Situ Damage Detection of Composites Structures using Lamb Wave Methods In-Situ Damage Detection of Composites Structures using Lamb Wave Methods Seth S. Kessler S. Mark Spearing Mauro J. Atalla Technology Laboratory for Advanced Composites Department of Aeronautics and Astronautics

More information

T Seminar on Embedded Systems. Internet of Things Ambient energy harvesting Mikko Lampi

T Seminar on Embedded Systems. Internet of Things Ambient energy harvesting Mikko Lampi T-106.5840 Seminar on Embedded Systems Internet of Things Ambient energy harvesting Mikko Lampi 1 Internet of Things Early precursors from -90 by IBM and Motorola Nebulous term, many interpretations As

More information

Research Article Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers

Research Article Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers Distributed Sensor Networks Volume 213, Article ID 58325, 6 pages http://dx.doi.org/1.1155/213/58325 Research Article Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers

More information

Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates

Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates Authors (names are for example only): Chul Min Yeum Hoon Sohn Jeong Beom Ihn Hyung Jin Lim ABSTRACT This

More information

Field Testing of Wireless Interactive Sensor Nodes

Field Testing of Wireless Interactive Sensor Nodes Field Testing of Wireless Interactive Sensor Nodes Judith Mitrani, Jan Goethals, Steven Glaser University of California, Berkeley Introduction/Purpose This report describes the University of California

More information

White Paper: Zero Power Wireless Sensors

White Paper: Zero Power Wireless Sensors Sensor Networks Overview Sensors networks are in widespread use in factories, industrial complexes, commercial and residential buildings, agricultural settings, and urban areas, serving to improve manufacturing

More information

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 121 REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS Hung-Chi Chung 1, Tomoyuki

More information

E. A. MENDOZA, J. PROHASKA, C. KEMPEN, S. SUN and Y. ESTERKIN

E. A. MENDOZA, J. PROHASKA, C. KEMPEN, S. SUN and Y. ESTERKIN Fully Integrated Miniature Multi-Point Fiber Bragg Grating Sensor Interrogator (FBG-Transceiver TM ) System for Applications where Size, Weight, and Power are Critical for Operation E. A. MENDOZA, J. PROHASKA,

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Master Op-Doc/Test Plan

Master Op-Doc/Test Plan Power Supply Master Op-Doc/Test Plan Define Engineering Specs Establish battery life Establish battery technology Establish battery size Establish number of batteries Establish weight of batteries Establish

More information

Structural Health Monitoring Ultrasound System

Structural Health Monitoring Ultrasound System 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 2016, Spain, Bilbao www.ndt.net/app.ewshm2016 Structural Health Monitoring Ultrasound System More info about this article: http://www.ndt.net/?id=19945

More information

Robust Self-Powered Wireless Hydrogen Sensor

Robust Self-Powered Wireless Hydrogen Sensor Robust Self-Powered Wireless Hydrogen Sensor PI: Jenshan Lin Collaborators: D. P. Norton, S. J. Pearton, Materials Sci. Engr. F. Ren, Chemical Engr. T. Nishida, K. Ngo, Electrical and Comp. Engr. University

More information

Robot Rangers. Low Level Design Document. Ben Andersen Jennifer Berry Graham Boechler Andrew Setter

Robot Rangers. Low Level Design Document. Ben Andersen Jennifer Berry Graham Boechler Andrew Setter Robot Rangers Low Level Design Document Ben Andersen Jennifer Berry Graham Boechler Andrew Setter 2/17/2011 1 Table of Contents Introduction 3 Problem Statement and Proposed Solution 3 System Description

More information

WIRELESS SENSOR NETWORK BASED CONVEYOR SURVEILLANCE SYSTEM

WIRELESS SENSOR NETWORK BASED CONVEYOR SURVEILLANCE SYSTEM ALS Advanced Logistic Systems WIRELESS SENSOR NETWORK BASED CONVEYOR SURVEILLANCE SYSTEM Attila Trohák, Máté Kolozsi-Tóth, Péter Rádi University of Miskolc, Hungary Abstract: In the paper we will introduce

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System Instantaneous Baseline Damage Detection using a Low Power Guided Waves System can produce significant changes in the measured responses, masking potential signal changes due to structure defects [2]. To

More information

Co-Located Triangulation for Damage Position

Co-Located Triangulation for Damage Position Co-Located Triangulation for Damage Position Identification from a Single SHM Node Seth S. Kessler, Ph.D. President, Metis Design Corporation Ajay Raghavan, Ph.D. Lead Algorithm Engineer, Metis Design

More information

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites SINCE2013 Singapore International NDT Conference & Exhibition 2013, 19-20 July 2013 A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites Wei LIN, Lay Siong GOH, B.

More information

Development of Laser-powered Wireless Sensing System for Aircraft Structures

Development of Laser-powered Wireless Sensing System for Aircraft Structures Development of Laser-powered Wireless Sensing System for Aircraft Structures Mijin Choi 1), Jason Bossert 2), *Jung-Ryul Lee 3) and *Chan-Yik Park 4) 1) LANL-CBNU Engineering Institute- Korea, Chonbuk

More information

ON THE CONCEPT OF DISTRIBUTED DIGITAL SIGNAL PROCESSING IN WIRELESS SENSOR NETWORKS

ON THE CONCEPT OF DISTRIBUTED DIGITAL SIGNAL PROCESSING IN WIRELESS SENSOR NETWORKS ON THE CONCEPT OF DISTRIBUTED DIGITAL SIGNAL PROCESSING IN WIRELESS SENSOR NETWORKS Carla F. Chiasserini Dipartimento di Elettronica, Politecnico di Torino Torino, Italy Ramesh R. Rao California Institute

More information

Research on Embedded Systems

Research on Embedded Systems Research on Embedded Systems Chenyang Lu Department of Computer Science and Engineering Embedded Systems Any device that includes a computer (but you don t think of it as a computer) iphone. Digital camera.

More information

Piezoelectric-Based In-Situ Damage Detection in Composite Materials for Structural Health Monitoring Systems

Piezoelectric-Based In-Situ Damage Detection in Composite Materials for Structural Health Monitoring Systems Piezoelectric-Based In-Situ Damage Detection in Composite Materials for Structural Health Monitoring Systems Dr. Seth S. Kessler President,Metis Design Corp. Research Affiliate, MIT Aero/Astro Technology

More information

Capacitive MEMS accelerometer for condition monitoring

Capacitive MEMS accelerometer for condition monitoring Capacitive MEMS accelerometer for condition monitoring Alessandra Di Pietro, Giuseppe Rotondo, Alessandro Faulisi. STMicroelectronics 1. Introduction Predictive maintenance (PdM) is a key component of

More information

Monitoring Network for SHM in Avionic Applications

Monitoring Network for SHM in Avionic Applications ECNDT 2006 - Th.1.7.3 Monitoring Network for SHM in Avionic Applications Bernd FRANKENSTEIN, Dieter HENTSCHEL, Frank SCHUBERT Fraunhofer Institute for Non-Destructive Testing, Dresden Branch, Dresden,

More information

Hardware in the Loop Simulation for Unmanned Aerial Vehicles

Hardware in the Loop Simulation for Unmanned Aerial Vehicles NATIONAL 1 AEROSPACE LABORATORIES BANGALORE-560 017 INDIA CSIR-NAL Hardware in the Loop Simulation for Unmanned Aerial Vehicles Shikha Jain Kamali C Scientist, Flight Mechanics and Control Division National

More information

Intelligent and passive RFID tag for Identification and Sensing

Intelligent and passive RFID tag for Identification and Sensing Zürich University Of Applied Sciences Institute of Embedded Systems InES Intelligent and passive RFID tag for Identification and Sensing (Presented at Embedded World, Nürnberg, 3 rd March 2009) Dipl. Ing.

More information

EMBEDDED FBG SENSORS AND AWG-BASED WAVELENGTH INTERROGATOR FOR HEALTH MONITORING OF COMPOSITE MATERIALS

EMBEDDED FBG SENSORS AND AWG-BASED WAVELENGTH INTERROGATOR FOR HEALTH MONITORING OF COMPOSITE MATERIALS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EMBEDDED FBG SENSORS AND AWG-BASED WAVELENGTH INTERROGATOR FOR HEALTH MONITORING OF COMPOSITE MATERIALS Shinji Komatsuzaki*, Seiji Kojima*, Akihito

More information

DC Motor and Servo motor Control with ARM and Arduino. Created by:

DC Motor and Servo motor Control with ARM and Arduino. Created by: DC Motor and Servo motor Control with ARM and Arduino Created by: Andrew Kaler (39345) Tucker Boyd (46434) Mohammed Chowdhury (860822) Tazwar Muttaqi (901700) Mark Murdock (98071) May 4th, 2017 Objective

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

A wireless positioning measurement system based on Active Sonar and Zigbee wireless nodes CE University of Utah.

A wireless positioning measurement system based on Active Sonar and Zigbee wireless nodes CE University of Utah. A wireless positioning measurement system based on Active Sonar and Zigbee wireless nodes CE 3992 University of Utah 25 April 2007 Christopher Jones ketthrove@msn.com Spencer Graff Matthew Fisher matthew.fisher@utah.edu

More information

Study on monitoring technology of aircraft engine based on vibration and oil

Study on monitoring technology of aircraft engine based on vibration and oil Study on monitoring technology of aircraft engine based on vibration and oil More info about this article: http://www.ndt.net/?id=21987 Junming LIN 1, Libo CHEN 2 1 Eddysun(Xiamen)Electronic Co., Ltd,

More information

Energy Harvester Produces Power from Local Environment, Eliminating Batteries in Wireless Sensors Michael Whitaker

Energy Harvester Produces Power from Local Environment, Eliminating Batteries in Wireless Sensors Michael Whitaker April 1 Volume Number 1 I N T H I S I S S U E our new look dual output step-down regulator with DCR sensing in a 5mm 5mm QFN 9 accurate battery gas gauges with I C interface 1 dual buck regulator operates

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

Mechatronics System Design - Sensors

Mechatronics System Design - Sensors Mechatronics System Design - Sensors Aim of this class 1. The functional role of the sensor? 2. Displacement, velocity and visual sensors? 3. An integrated example-smart car with visual and displacement

More information

Wireless Sensor Network for Intra-Venous Fluid Level Indicator Application

Wireless Sensor Network for Intra-Venous Fluid Level Indicator Application Wireless Sensor Network for Intra-Venous Fluid Level Indicator Application Abstract Wireless sensor networks use small, low-cost embedded devices for a wide range of applications such as industrial data

More information

RFID sensor systems embedded in concrete systematical investigation of the transmission characteristics

RFID sensor systems embedded in concrete systematical investigation of the transmission characteristics RFID sensor systems embedded in concrete systematical investigation of the transmission characteristics More info about this article: http://www.ndt.net/?id=19850 M. Bartholmai, S. Johann, M. Kammermeier,

More information

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Alvaro Pinto, Zhe Zhang, Xin Dong, Senem Velipasalar, M. Can Vuran, M. Cenk Gursoy Electrical Engineering Department, University

More information

SHAPING THE FUTURE OF IOT: PLATFORMS FOR CO-CREATION, RAPID PROTOTYPING AND SUCCESSFUL INDUSTRIALIZATION

SHAPING THE FUTURE OF IOT: PLATFORMS FOR CO-CREATION, RAPID PROTOTYPING AND SUCCESSFUL INDUSTRIALIZATION SHAPING THE FUTURE OF IOT: PLATFORMS FOR CO-CREATION, RAPID PROTOTYPING AND SUCCESSFUL INDUSTRIALIZATION Dr. Julian Bartholomeyczik Head of Software Development Bosch Connected Devices and Solutions GmbH

More information

White Paper Kilopass X2Bit bitcell: OTP Dynamic Power Cut by Factor of 10

White Paper Kilopass X2Bit bitcell: OTP Dynamic Power Cut by Factor of 10 White Paper Kilopass X2Bit bitcell: OTP Dynamic Power Cut by Factor of 10 November 2015 Of the challenges being addressed by Internet of Things (IoT) designers around the globe, none is more pressing than

More information

Piezoelectric Generator for Powering Remote Sensing Networks

Piezoelectric Generator for Powering Remote Sensing Networks Piezoelectric Generator for Powering Remote Sensing Networks Moncef Benjamin. Tayahi and Bruce Johnson moncef@ee.unr.edu Contact Details of Author: Moncef Benjamin. Tayahi Phone: 775-784-6103 Fax: 775-784-6627

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale UNIT III Data Acquisition & Microcontroller System Mr. Manoj Rajale Syllabus Interfacing of Sensors / Actuators to DAQ system, Bit width, Sampling theorem, Sampling Frequency, Aliasing, Sample and hold

More information

Spectrum Detector for Cognitive Radios. Andrew Tolboe

Spectrum Detector for Cognitive Radios. Andrew Tolboe Spectrum Detector for Cognitive Radios Andrew Tolboe Motivation Currently in the United States the entire radio spectrum has already been reserved for various applications by the FCC. Therefore, if someone

More information

Motion Capture for Runners

Motion Capture for Runners Motion Capture for Runners Design Team 8 - Spring 2013 Members: Blake Frantz, Zhichao Lu, Alex Mazzoni, Nori Wilkins, Chenli Yuan, Dan Zilinskas Sponsor: Air Force Research Laboratory Dr. Eric T. Vinande

More information

Senior Design and Graduate Projects Using Software Defined Radio (SDR)

Senior Design and Graduate Projects Using Software Defined Radio (SDR) Senior Design and Graduate Projects Using Software Defined Radio (SDR) 1 PROF. SHARLENE KATZ PROF. JAMES FLYNN PROF. DAVID SCHWARTZ Overview What is a Communications System? Traditional hardware radio

More information

Aerial Photographic System Using an Unmanned Aerial Vehicle

Aerial Photographic System Using an Unmanned Aerial Vehicle Aerial Photographic System Using an Unmanned Aerial Vehicle Second Prize Aerial Photographic System Using an Unmanned Aerial Vehicle Institution: Participants: Instructor: Chungbuk National University

More information

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES 1 Guntha Karthik, 2 Prof.Singam Jayanthu, 3 Bhushan N Patil, and 4 R.Prashanth

More information

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements 15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements Simas Joneliunas 1, Darius Gailius 2, Stasys Vygantas Augutis 3, Pranas Kuzas 4 Kaunas University of Technology, Department

More information

Analysis of the propagation of ultrasonic waves along isotropic and anisotropic materials using PAMELA portable SHM system

Analysis of the propagation of ultrasonic waves along isotropic and anisotropic materials using PAMELA portable SHM system 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 2016, Spain, Bilbao www.ndt.net/app.ewshm2016 Analysis of the propagation of ultrasonic waves along isotropic and anisotropic

More information

GENESIS TECH PROJECT

GENESIS TECH PROJECT PROJECT! Director Albert Byun! Assistant Director Amar Bhayani! Consultant Engineer Abdul Kalash! Microcontroller Engineer Hirenkumar Patel! Sensor Engineer Shih-Yang Yen Introduction! Problem Statement!

More information

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate Tuncay Kamas a) Victor Giurgiutiu b), Bin Lin c) a) Mechanical Engineering University of South Carolina 3 Main Str. 2928 Columbia SC b) Mechanical

More information

DASL 120 Introduction to Microcontrollers

DASL 120 Introduction to Microcontrollers DASL 120 Introduction to Microcontrollers Lecture 2 Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to Atmel Atmega328

More information

Design and Implementation of ZigBee based Vibration Monitoring and Analysis for Electrical Machines

Design and Implementation of ZigBee based Vibration Monitoring and Analysis for Electrical Machines Design and Implementation of ZigBee based Vibration Monitoring and Analysis for Electrical Machines Suratsavadee K. Korkua 1 Wei-Jen Lee 1 Chiman Kwan 2 Student Member, IEEE Fellow, IEEE Member, IEEE 1.

More information

Introduction. Theory of Operation

Introduction. Theory of Operation Mohan Rokkam Page 1 12/15/2004 Introduction The goal of our project is to design and build an automated shopping cart that follows a shopper around. Ultrasonic waves are used due to the slower speed of

More information

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS GPS System Design and Control Modeling Chua Shyan Jin, Ronald Assoc. Prof Gerard Leng Aeronautical Engineering Group, NUS Abstract A GPS system for the autonomous navigation and surveillance of an airship

More information

Index Terms IR communication; MSP430; TFDU4101; Pre setter

Index Terms IR communication; MSP430; TFDU4101; Pre setter Design and Development of Contactless Communication Module for Pre setter of Underwater Vehicles J.Lavanyambhika, **D.Madhavi *Digital Systems and Signal Processing in Electronics and Communication Engineering,

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Modeling, optimization, and experimental validation of a resonant piezo-optical ring sensor for enhanced active and passive structural health monitoring Erik Frankforter, Jingjing Bao, Bin Lin, Victor

More information

Structural Health Monitoring: Alarming System

Structural Health Monitoring: Alarming System Wireless Sensor Network, 2013, 5, 105-115 http://dx.doi.org/10.4236/wsn.2013.55013 Published Online May 2013 (http://www.scirp.org/journal/wsn) Structural Health Monitoring: Alarming System Adel ElSafty,

More information

The Cricket Indoor Location System

The Cricket Indoor Location System The Cricket Indoor Location System Hari Balakrishnan Cricket Project MIT Computer Science and Artificial Intelligence Lab http://nms.csail.mit.edu/~hari http://cricket.csail.mit.edu Joint work with Bodhi

More information

Digital Control of Permanent Magnet Synchronous Motor

Digital Control of Permanent Magnet Synchronous Motor Digital Control of Permanent Magnet Synchronous Motor Jayasri R. Nair 1 Assistant Professor, Dept. of EEE, Rajagiri School Of Engineering and Technology, Kochi, Kerala, India 1 ABSTRACT: The principle

More information

Wireless communication for Smart Buildings

Wireless communication for Smart Buildings Wireless communication for Smart Buildings Table of contents 1. The Smart Buildings...2 2. Smart Buildings and Wireless technologies...3 3. The link budget...5 3.1. Principles...5 3.2. Maximum link budget...6

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

Ultrasonic sensors in subsea oil & gas production current use and opportunities

Ultrasonic sensors in subsea oil & gas production current use and opportunities Ultrasonic sensors in subsea oil & gas production current use and opportunities By Bjørn Stevning Hole Senior Product Engineer, TechnipFMC 5/31/2018 Page footer text 1 What is ultrasound and how can ultrasound

More information

A Novel Water Quality Monitoring System Based on Solar Power Supply & Wireless Sensor Network

A Novel Water Quality Monitoring System Based on Solar Power Supply & Wireless Sensor Network Available online at www.sciencedirect.com Procedia Environmental Sciences 12 (2012 ) 265 272 2011 International Conference on Environmental Science and Engineering (ICESE 2011) A vel Water Quality Monitoring

More information

Online Monitoring for Automotive Sub-systems Using

Online Monitoring for Automotive Sub-systems Using Online Monitoring for Automotive Sub-systems Using 1149.4 C. Jeffrey, A. Lechner & A. Richardson Centre for Microsystems Engineering, Lancaster University, Lancaster, LA1 4YR, UK 1 Abstract This paper

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS 1 FEDORA LIA DIAS, 2 JAGADANAND G 1,2 Department of Electrical Engineering, National Institute of Technology, Calicut, India

More information

II. BLOCK

II. BLOCK Information Transmission System Through Fluorescent Light Using Pulse Width Modulation Technique. Mr. Sagar A.Zalte 1, Prof.A.A.Hatkar 2 1,2 E&TC, SVIT COE Chincholi Abstract- Light reaches nearly universally

More information

Keywords: Guided wave, structural health monitoring, HCSS, disbond, damage index. More Info at Open Access Database

Keywords: Guided wave, structural health monitoring, HCSS, disbond, damage index. More Info at Open Access Database More Info at Open Access Database www.ndt.net/?id=15090 Detection of Disbond in a Honeycomb Composite Sandwich Structure Using Ultrasonic Guided Waves and Bonded PZT Sensors Shirsendu Sikdar 1, a, Sauvik

More information

ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING

ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING Qi Wu 1, 2, Yoji

More information

Mapping device with wireless communication

Mapping device with wireless communication University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 12-2011 Mapping device with wireless communication Xiangyu Liu University

More information

Aerospace Structure Health Monitoring using Wireless Sensors Network

Aerospace Structure Health Monitoring using Wireless Sensors Network Aerospace Structure Health Monitoring using Wireless Sensors Network Daniela DRAGOMIRESCU, INSA Toulouse 1 Toulouse Aerospace City 2 Outline Objectives and specifications for greener and safer aircrafts

More information

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright E90 Project Proposal 6 December 2006 Paul Azunre Thomas Murray David Wright Table of Contents Abstract 3 Introduction..4 Technical Discussion...4 Tracking Input..4 Haptic Feedack.6 Project Implementation....7

More information

SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES

SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES 1,2 Seth. S. Kessler and 1 S. Mark Spearing 1 Technology Laboratory for Advanced Composites Department of Aeronautics and

More information

PRODUCTS AND ACCESSORIES

PRODUCTS AND ACCESSORIES 75-0011 MODEL: GS-101 : THE GS-101 LONG RANGE PASSIVE INFRARED SENSOR (PIRS) IS AN INTRUSION DETECTOR WHICH RESPONDS TO INFRARED ENERGY RADIATED BY PEDESTRIANS OR VEHICLES WITHIN ITS FIELD OF VIEW. USEFUL

More information

ON THE DEVELOPMENT OF METHODS AND TECHNIQUES FOR AIRCRAFT STRUCTURAL HEALTH MONITORING

ON THE DEVELOPMENT OF METHODS AND TECHNIQUES FOR AIRCRAFT STRUCTURAL HEALTH MONITORING 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES ON THE DEVELOPMENT OF METHODS AND TECHNIQUES FOR AIRCRAFT STRUCTURAL HEALTH MONITORING B. Rocha*, A. Fonseca**, A. Suleman* *** * IDMEC/IST and

More information

Paper Title: FIELD MONITORING OF FATIGUE CRACK ON HIGHWAY STEEL I- GIRDER BRIDGE

Paper Title: FIELD MONITORING OF FATIGUE CRACK ON HIGHWAY STEEL I- GIRDER BRIDGE Zhang, Zhou, Fu and Zhou Paper Title: FIELD MONITORING OF FATIGUE CRACK ON HIGHWAY STEEL I- GIRDER BRIDGE Author: Author: Author: Author: Call Title: Yunfeng Zhang, Ph.D. Associate Professor Department

More information

A Numerical study on proper mode and frequency selection for riveted lap joints inspection using Lamb waves.

A Numerical study on proper mode and frequency selection for riveted lap joints inspection using Lamb waves. More Info at Open Access Database www.ndt.net/?id=18676 A Numerical study on proper mode and frequency selection for riveted lap joints inspection using Lamb waves. Mohammad. (. SOORGEE Nondestructive

More information

Master of Comm. Systems Engineering (Structure C)

Master of Comm. Systems Engineering (Structure C) ENGINEERING Master of Comm. DURATION 1.5 YEARS 3 YEARS (Full time) 2.5 YEARS 4 YEARS (Part time) P R O G R A M I N F O Master of Communication System Engineering is a quarter research program where candidates

More information

From Single to Formation Flying CubeSats: An Update of the Delfi Programme

From Single to Formation Flying CubeSats: An Update of the Delfi Programme From Single to Formation Flying CubeSats: An Update of the Delfi Programme Jian Guo, Jasper Bouwmeester & Eberhard Gill 1 Outline Introduction Delfi-C 3 Mission Delfi-n3Xt Mission Lessons Learned DelFFi

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Cerebot Reference Manual Revision: February 9, 2009 Note: This document applies to REV B-E of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The

More information

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab The purpose of this lab is to learn about sensors and use the ADC module to digitize the sensor signals. You will use the digitized signals

More information

Wireless Sensor Network for Substation Monitoring

Wireless Sensor Network for Substation Monitoring Wireless Sensor Network for Substation Monitoring by Siddharth Kamath March 03, 2010 Need for Substation Monitoring Monitoring health of Electrical equipments Detecting faults in critical equipments. Example:

More information

IOT Based Intelligent Traffic Signal and Vehicle Tracking System

IOT Based Intelligent Traffic Signal and Vehicle Tracking System IOT Based Intelligent Traffic Signal and Vehicle Tracking System Srinuvasa Manikanta Adabala M.Tech (Embedded Systems), Department of ECE, Aditya College of Engineering(JNTUK), Surampalem, A.P -533437.

More information

Li-Fi ( Light Fidelity)

Li-Fi ( Light Fidelity) Initial Project Document Li-Fi ( Light Fidelity) An alternative to the wireless transmission with RF spectrums through visible light communication. University of Central Florida Department of Electrical

More information

Smart Car: Collision Avoidance. Ajeena Kurian Mike Krause George Kachouh

Smart Car: Collision Avoidance. Ajeena Kurian Mike Krause George Kachouh Smart Car: Collision Avoidance Ajeena Kurian Mike Krause George Kachouh Overview Purpose Schedule Group Work Divided Research Parts List / Individual Parts Overall Block Diagram and Schematic Cost Analysis

More information