Field Testing of Wireless Interactive Sensor Nodes

Size: px
Start display at page:

Download "Field Testing of Wireless Interactive Sensor Nodes"

Transcription

1 Field Testing of Wireless Interactive Sensor Nodes Judith Mitrani, Jan Goethals, Steven Glaser University of California, Berkeley

2 Introduction/Purpose This report describes the University of California at Berkeley s contribution to a PARI full-scale experiment using controlled blasting to induce lateral spreading. Our purpose in participating in this experiment at the Port of Tokachi was to utilize new wireless sensor nodes to measure ground accelerations and the accelerations of surcharge weights representing buildings. The sensors were placed in two zones of the experiment area: (1) the improved ground zone, including the boxes acting as surcharge weights, and (2) the liquefaction area behind the seismically resistant sheet pile wall (PARI study area). The sensor motes have been used extensively at UC Berkeley to measure accelerations on structures during induced earthquakes of varying magnitudes. Many of the tests have been carried out on a full-scale 3-story wood frame building mounted on the EERC (Earthquake Engineering Research Center) 6 m 2 shaking table capable of subjecting specimens weighing up to 50,000 kg to three translational components of dynamic excitation. In these experiments, the sensors have measured valuable data describing structural behavior during major dynamic events. Direct comparison with results from traditional Wilcoxen piezo-electric accelerometers digitized to 16-bits show that the Berkeley mote records exactly the same accelerations. Further analysis of the recorded data will indicate where local areas of damage occur. The wireless sensor modules have proven to be successful in controlled environments for full-scale experiments of structures. We seek to demonstrate that their use may be extended to numerous other engineering applications, such as this effort at the Port of Tokachi.

3 Background on Sensors/Accelerometers The motes are devices developed at the University of California Berkeley by a large interdisciplinary team lead by David Culler (Computer Science), Kristofer S. J. Pister (Electrical Engineering), and Steven Glaser (Civil Engineering). Crossbow Technology, Inc is currently putting the devices into commercial production. The Crossbow CN4000 Preliminary Series wireless sensor node, shown in Figure 1, was used in the experiment at the Port of Tokachi. The sensor s dimensions are 8 cm 6 cm 3.5 cm (L W D). The sensor platform consists of a two-board sandwich: the main board with the CPU and radio communication shown on the lefthand side of Figure 2, and the secondary sensor board shown on the right-hand side of Figure 2. The main board, or the motherboard consists of the ATMEL 4Mhz processor (8bit microcontroller unit), 512 bytes of RAM, 8K program flash memory, a RFM 900Mhz radio with up to 100-ft range, radio signal strength control and sensing, I 2 C EEPROM, three LED debugging indicators and a stackable expansion connector. The sensor board we used carries a dual-axis accelerometer chip, the ADXL202E. The chip is a low-powered, complete 2-axis accelerometer with digital and analog output, on a monolithic integrated circuit. We use the analog output to improve resolution. The accelerometer measures dynamic accelerations (vibrations) and static accelerations (tilt). The accelerometer has a range of +/- 2g and a typical precision of 2mg. The sensor nodes are quite versatile and can support various types of sensors (e.g. accelerometers, magnetometers, thermistors, strain, pressure) at once by stacking one on top of the other on the motherboard.

4 Motherboard Sensor Board Figure 1 Figure 2 The motes operate using an operating system (TinyOS) designed for use with embedded network sensors, developed by Professor Culler (EECS). This operating system allows the user of the sensor nodes to easily write software for a variety of custom applications, without worrying much about the low-level implementations. These devices have been developed to explore the uses of distributed computation, sensing, and communication modules. To further this goal of distributed computation the motes have been designed to generate a so-called ad-hoc network. The motes can determine optimal network configuration and message passing based solely on information sensed at run-time. The philosophy that has governed the developments of these devices is that the true power of a distributed network comes not from the individual capabilities of the nodes in the network, but rather from the intelligent integration of the networked sensors. The sensor modules shown and described above are programmed to communicate amongst themselves as well as with a base-station. In our implementation, the base-station that is

5 attached to a programming board (as shown in Figure 3) is connected with a serial cable to a laptop, which serves as the center for data acquisition. The wireless sensor nodes remain in communication with the base-station, which provides a time-stamp used to synchronize the network of sensors. The sensor nodes were programmed to sample accelerations at a rate of 64 samples per second. The base-station triggered the nodes to begin saving the values of the ground accelerations in the EEPROM. Once commanded to save data, the sensors re-transmit this command out to neighboring nodes in case the others do not have a direct line of communication with the base-station. Having the nodes re-transmit messages sent by the basestation allows for a larger radius of monitoring. The sensors store their data in the EEPROM until queried by the base-station to transmit the data wirelessly back to be saved on the laptop. The Crossbow software bundled with the CN4000 Series sensor node helps to manage the data acquisition process. Parallel Port for Programming Serial Port for Base- Station Mote Topography Figure 3 A total of twenty sensor motes were used in the two zones of the Port of Tokachi experiment area. Eight sensors were distributed in the improved ground zone. From these eight, four were placed immediately in front of the surcharge weights to measure ground accelerations. The other

6 four sensors were placed on the side of the actual surcharge weights (boxes) to measure their accelerations relative to the ground. The remaining twelve nodes were distributed on the liquefaction area behind the seismically resistant sheet pile wall (PARI study area) to measure ground accelerations. Some of these nodes were placed alongside PARI s sensors (for redundancy), as shown in Table 1. The entire topography of the wireless sensor nodes is shown in Figure 4. PARI Sensor UC Berkeley Sensor AA 3 13 AB 2 31 AB 3 33 AB 4 15 AB 6 17 AC 4 24 AC 6 19 AD 4 11 Table 1 Experiment Data Of the 20 experimental wireless sensor nodes used in this experiment, nine motes gave useful data. From these nine data streams, one was disrupted halfway through the experiment (sensor node #23) and one started to record about one-third of the way through the experiment (sensor node #22). The reasons for this phenomenon are addressed in the Results section of this report.

7 Two axes of acceleration were collected from each node. These accelerations, in g s, of both axes are simultaneously plotted with respect to time in Figures Figures 5-13 (a and b) are plots of the individual axes with respect to time. Please refer to the map, Figure 4, for spatial reference of the sensor nodes on the experiment site. The results of the sensor nodes that collected useful data are summarized in Table 2 shown below. Mote ID Packet Loss Spikes Location Notes 16 No No Box 1 Antenna in vertical position. 14 No No Box 2 Antenna in vertical position. 23 Yes Yes Box 2 Ground Antenna in vertical position; sensor stopped recording data midway, possibly due to a strong shake or coming undone inside the box. 22 Yes Yes Box 3 Antenna in vertical position; roughly 38% of data at the beginning of the experiment is lost for an unknown reason; could have started saving in eeprom mid-way or could have saved data over its original good data. 29 No No Box 4 Antenna in vertical position. 21 Yes Yes 18 Yes Yes 24 Yes Yes 33 Yes Yes Box 4 Ground PARI Ground PARI Ground PARI Ground Antenna in vertical position; this mote was submerged in water about 4 inches, after the explosion. This mote was used as a message hopper; its antenna was in a vertical position; was not redundant with PARI's sensors. Antenna in horizontal position and a redundant sensor, with one of PARI's sensors. Antenna in horizontal position and a redundant sensor, with one of PARI's sensors. Table 2

8

9 From Top to Bottom: Figure 5, Figure 5a, Figure 5b

10 From Top to Bottom: Figure 6, Figure 6a, Figure 6b

11 From Top to Bottom: Figure 7, Figure 7a, Figure 7b

12 From Top to Bottom: Figure 8, Figure 8a, Figure 8b

13 From Top to Bottom: Figure 9, Figure 9a, Figure 9b

14 From Top to Bottom: Figure 10, Figure 10a, Figure 10b

15 From Top to Bottom: Figure 11, Figure 11a, Figure 11b

16 From Top to Bottom: Figure 12, Figure 12a, Figure 12b

17 From Top to Bottom: Figure 13, Figure 13a, Figure 13b

18 PARI Sensors vs. UCB Sensors Two UC Berkeley sensors (#24, #33), redundant in position with PARI s sensors (#AC4, #AB3), were compared using basic signal processing methods (provided by the Matlab Signal Processing Toolbox). Both UCB s and PARI s sensors were resampled at 40 samples per second. They were resampled using a lowpass filter to the input sequence to prevent aliasing during resampling. Then, the cross-correlation sequence was evaluated to find the correlation lag (time lag) between the UCB and PARI signals. The cross-correlation was calculated with an efficient FFT (Fast Fourier Transform)-based algorithm, to measure the similarities between the two different sets of data. The correlation coefficient of the two signals is 0.78 in both cases (UCB sensor #24 vs. PARI sensor AC4, and UCB sensor 33 compared vs. PARI sensor AB3). The comparison of the signals is plotted in Figures Also, a window of zoomed-in data is presented in Figures (a), to better demonstrate the similarities in the signals. The power spectral density, PSD, of the two signals was computed for the cases described above. This generated three indistinguishable plots, one of which is shown in Figure 17. The PSD describes how the power (or variance) of a time series is distributed with frequency. Mathematically, it is defined as the Fourier Transform of the autocorrelation sequence of the time series. The PSD was estimated using the modified covariance method. This method fits an autoregressive (AR) model to the signal by minimizing the forward and backward prediction errors in the least-squares sense. It is clear from the plots presented in Figures and from the calculated cross-correlation coefficient that the signals are very similar, despite differences in mounting methods and differences in the type of accelerometers used.

19 From Top to Bottom: Figure 14, Figure 14a

20 From Top to Bottom: Figure 15, Figure 15a

21 From Top to Bottom: Figure 16, Figure 16a

22 PARI UC Berkeley Figure 17 Results The experimental motes worked well, considering they were not specifically designed for use in an extreme environment, such as a controlled blasting experiment. This experiment provided much insight into the inadequacies of the motes. Both the motherboard and the secondary sensor board are dependent on a consistent power source. It is known that battery operation is temperature dependent; the cold, wet weather of the Port of Tokachi may have played a role in the motes behaving inconsistently. Also, these experimental motes are still susceptible to corruption due to frequencies of similar bandwidth to that of the mote s radio. From this and

23 subsequent experiments at UC Berkeley, we conclude that the motes behavior worsens while their antennas are parallel to the ground (horizontal position). This explains the relative success of motes in the improved ground zone, where all antennas were in a vertical position, to the ones in PARI s study area. Conclusion The motes behavior can be drastically improved with small packaging and hardware changes. A new model of these versatile sensing platforms, known as the micha, will be available shortly. The micha s will have more memory, a better processor, a much-improved radio, and a voltage regulator, which will decrease erratic behavior. Simple packaging changes, such as a tougher exterior for experiments where harsh conditions are expected, can drastically improve the utility of these devices. Also, having all antennas in a vertical position and above the ground will increase communication amongst the motes. These sensors have proven to measure data as accurately as conventional wired sensors and with further development, will provide versatile and robust wireless networked sensors for many engineering applications. References 1. htttp://tinyos.millennium.berkeley.edu

Deformation Monitoring Based on Wireless Sensor Networks

Deformation Monitoring Based on Wireless Sensor Networks Deformation Monitoring Based on Wireless Sensor Networks Zhou Jianguo tinyos@whu.edu.cn 2 3 4 Data Acquisition Vibration Data Processing Summary 2 3 4 Data Acquisition Vibration Data Processing Summary

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 121 REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS Hung-Chi Chung 1, Tomoyuki

More information

Wireless crack measurement for control of construction vibrations

Wireless crack measurement for control of construction vibrations Wireless crack measurement for control of construction vibrations Charles H. Dowding 1, Hasan Ozer 2, Mathew Kotowsky 3 1 Professor, Northwestern University, Department of Civil and Environmental Eng.,

More information

Wireless Sensor Network for Substation Monitoring

Wireless Sensor Network for Substation Monitoring Wireless Sensor Network for Substation Monitoring by Siddharth Kamath March 03, 2010 Need for Substation Monitoring Monitoring health of Electrical equipments Detecting faults in critical equipments. Example:

More information

Wireless Sensor Network based Shooter Localization

Wireless Sensor Network based Shooter Localization Wireless Sensor Network based Shooter Localization Miklos Maroti, Akos Ledeczi, Gyula Simon, Gyorgy Balogh, Branislav Kusy, Andras Nadas, Gabor Pap, Janos Sallai ISIS - Vanderbilt University Overview CONOPS

More information

A Dissertation Presented for the Doctor of Philosophy Degree. The University of Memphis

A Dissertation Presented for the Doctor of Philosophy Degree. The University of Memphis A NEW PROCEDURE FOR ESTIMATION OF SHEAR WAVE VELOCITY PROFILES USING MULTI STATION SPECTRAL ANALYSIS OF SURFACE WAVES, REGRESSION LINE SLOPE, AND GENETIC ALGORITHM METHODS A Dissertation Presented for

More information

WIRELESS SENSOR NETWORKS TO MONITOR CRACK GROWTH ON BRIDGES

WIRELESS SENSOR NETWORKS TO MONITOR CRACK GROWTH ON BRIDGES WIRELESS SENSOR NETWORKS TO MONITOR CRACK GROWTH ON BRIDGES MATHEW KOTOWSKY, CHARLES DOWDING, KEN FULLER Infrastructure Technology Institute Northwestern University, Evanston, Illinois {kotowsky, c-dowding}@northwestern.edu,

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

Issues in Wireless Structural Damage Monitoring Technologies

Issues in Wireless Structural Damage Monitoring Technologies SOURCE: Proceedings of the 3rd World Conference on Structural Control (WCSC), Como, Italy, April 7-12, 22. Issues in Wireless Structural Damage Monitoring Technologies Jerome Peter Lynch 1, Anne S. Kiremidjian

More information

FTSP Power Characterization

FTSP Power Characterization 1. Introduction FTSP Power Characterization Chris Trezzo Tyler Netherland Over the last few decades, advancements in technology have allowed for small lowpowered devices that can accomplish a multitude

More information

Validation case studies of wireless monitoring systems in civil structures

Validation case studies of wireless monitoring systems in civil structures Validation case studies of wireless monitoring systems in civil structures J. P. Lynch, K. J. Loh, T. C. Hou Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan,

More information

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

More information

Self Localization Using A Modulated Acoustic Chirp

Self Localization Using A Modulated Acoustic Chirp Self Localization Using A Modulated Acoustic Chirp Brian P. Flanagan The MITRE Corporation, 7515 Colshire Dr., McLean, VA 2212, USA; bflan@mitre.org ABSTRACT This paper describes a robust self localization

More information

Design of Wireless Sensor Units with Embedded Statistical Time-Series Damage Detection Algorithms for Structural Health Monitoring

Design of Wireless Sensor Units with Embedded Statistical Time-Series Damage Detection Algorithms for Structural Health Monitoring Design of Wireless Sensor Units with Embedded Statistical Time-Series Damage Detection Algorithms for Structural Health Monitoring Jerome P. Lynch, Arvind Sundararajan,, Anne S. Kiremidjian, Ed Carryer

More information

Machinery Health Monitoring and Power Scavenging. Prepared for WMEA. Presented by Lewis Watt November 15 th, 2007

Machinery Health Monitoring and Power Scavenging. Prepared for WMEA. Presented by Lewis Watt November 15 th, 2007 Machinery Health Monitoring and Power Scavenging Prepared for WMEA Presented by Lewis Watt November 15 th, 2007 RLW, Inc. 2007 All Rights Reserved An Open Platform for Condition Monitoring Any Transducer

More information

Sensor network: storage and query. Overview. TAG Introduction. Overview. Device Capabilities

Sensor network: storage and query. Overview. TAG Introduction. Overview. Device Capabilities Sensor network: storage and query TAG: A Tiny Aggregation Service for Ad- Hoc Sensor Networks Samuel Madden UC Berkeley with Michael Franklin, Joseph Hellerstein, and Wei Hong Z. Morley Mao, Winter Slides

More information

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU Seunghak Lee (HY-SDR Research Center, Hanyang Univ., Seoul, South Korea; invincible@dsplab.hanyang.ac.kr); Chiyoung Ahn (HY-SDR

More information

GENESIS TECH PROJECT

GENESIS TECH PROJECT PROJECT! Director Albert Byun! Assistant Director Amar Bhayani! Consultant Engineer Abdul Kalash! Microcontroller Engineer Hirenkumar Patel! Sensor Engineer Shih-Yang Yen Introduction! Problem Statement!

More information

Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested

Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested EXPERIMENTAL SETUP AND PROCEDURES Dynamic testing was performed in two phases. The first phase took place

More information

FEASIBILITY OF WIRELESS SENSORS FOR HEALTH MONITORING IN SMALL INDUCTION MOTORS

FEASIBILITY OF WIRELESS SENSORS FOR HEALTH MONITORING IN SMALL INDUCTION MOTORS FEASIBILITY OF WIRELESS SENSORS FOR HEALTH MONITORING IN SMALL INDUCTION MOTORS Xin Xue, V. Sundararajan Department of Mechanical Engineering, University of California, Riverside Abstract: Wireless sensors

More information

Jamming Wireless Networks: Attack and Defense Strategies

Jamming Wireless Networks: Attack and Defense Strategies Jamming Wireless Networks: Attack and Defense Strategies Wenyuan Xu, Ke Ma, Wade Trappe, Yanyong Zhang, WINLAB, Rutgers University IAB, Dec. 6 th, 2005 Roadmap Introduction and Motivation Jammer Models

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

POST-SEISMIC DAMAGE ASSESSMENT OF STEEL STRUCTURES INSTRUMENTED WITH SELF-INTERROGATING WIRELESS SENSORS ABSTRACT

POST-SEISMIC DAMAGE ASSESSMENT OF STEEL STRUCTURES INSTRUMENTED WITH SELF-INTERROGATING WIRELESS SENSORS ABSTRACT Source: Proceedings of the 8th National Conference on Earthquake Engineering (8NCEE, San Francisco, CA, April 18-21, 26. POST-SEISMIC DAMAGE ASSESSMENT OF STEEL STRUCTURES INSTRUMENTED WITH SELF-INTERROGATING

More information

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements 15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements Simas Joneliunas 1, Darius Gailius 2, Stasys Vygantas Augutis 3, Pranas Kuzas 4 Kaunas University of Technology, Department

More information

Capacitive MEMS accelerometer for condition monitoring

Capacitive MEMS accelerometer for condition monitoring Capacitive MEMS accelerometer for condition monitoring Alessandra Di Pietro, Giuseppe Rotondo, Alessandro Faulisi. STMicroelectronics 1. Introduction Predictive maintenance (PdM) is a key component of

More information

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.2 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

Developer Techniques Sessions

Developer Techniques Sessions 1 Developer Techniques Sessions Physical Measurements and Signal Processing Control Systems Logging and Networking 2 Abstract This session covers the technologies and configuration of a physical measurement

More information

#$%## & ##$ Large Medium Small Tiny. Resources Computation/memory Communication/range Power Sensors

#$%## & ##$ Large Medium Small Tiny. Resources Computation/memory Communication/range Power Sensors Important trend in embedded computing Connecting the physical world to the world of information Sensing (e.g., sensors Actuation (e.g., robotics Wireless sensor networks are enabled by three trends: Cheaper

More information

Case Study : Yokohama-Bay Bridge

Case Study : Yokohama-Bay Bridge Case Study : Yokohama-Bay Bridge D3-X,D3-Y,D3-Z D6-YL,D6-ZL D8-YL,D8-ZL D1-X,D1-Y,D1-Z D7-X,D7-Y,D7-Z D9-X,D9-Y,D9-Z D5-X,D5-Y,D5-Z D2-Y,D2-Z D4-Y,D4-Z D6-YR,D6-ZR D8-YR,D8-ZR 200 m 460 m 200 m T4-X, T4-Y

More information

Engineering Project Proposals

Engineering Project Proposals Engineering Project Proposals (Wireless sensor networks) Group members Hamdi Roumani Douglas Stamp Patrick Tayao Tyson J Hamilton (cs233017) (cs233199) (cs232039) (cs231144) Contact Information Email:

More information

MEASUREMENT of physical conditions in buildings

MEASUREMENT of physical conditions in buildings INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 2, PP. 117 122 Manuscript received August 29, 2011; revised May, 2012. DOI: 10.2478/v10177-012-0016-4 Digital Vibration Sensor Constructed

More information

CP7 ORBITAL PARTICLE DAMPER EVALUATION

CP7 ORBITAL PARTICLE DAMPER EVALUATION CP7 ORBITAL PARTICLE DAMPER EVALUATION Presenters John Abel CP7 Project Lead & Head Electrical Engineer Daniel Walker CP7 Head Software Engineer John Brown CP7 Head Mechanical Engineer 2010 Cubesat Developers

More information

Brian Hanna Meteor IP 2007 Microcontroller

Brian Hanna Meteor IP 2007 Microcontroller MSP430 Overview: The purpose of the microcontroller is to execute a series of commands in a loop while waiting for commands from ground control to do otherwise. While it has not received a command it populates

More information

Initial Project and Group Identification Document September 15, Sense Glove. Now you really do have the power in your hands!

Initial Project and Group Identification Document September 15, Sense Glove. Now you really do have the power in your hands! Initial Project and Group Identification Document September 15, 2015 Sense Glove Now you really do have the power in your hands! Department of Electrical Engineering and Computer Science University of

More information

Application of Wireless MEMS Based Sensors to Structural Analysis

Application of Wireless MEMS Based Sensors to Structural Analysis Application of Wireless MEMS Based Sensors to Structural Analysis Peter Nardini and Keaton Botelho Department of Civil and Environmental Engineering Northeastern University Professor Mehrdad Sasani April

More information

PERFORMANCE ANALYSIS OF WIRELESS SENSOR NETWORKS IN GEOPHYSICAL SENSING APPLICATIONS

PERFORMANCE ANALYSIS OF WIRELESS SENSOR NETWORKS IN GEOPHYSICAL SENSING APPLICATIONS PERFORMANCE ANALYSIS OF WIRELESS SENSOR NETWORKS IN GEOPHYSICAL SENSING APPLICATIONS by Adithya Uligere Narasimhamurthy c Copyright by Adithya Uligere Narasimhamurthy, 2016 All Rights Reserved A thesis

More information

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.1 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

A Wireless Mesh IoT sensor system FEATURES DESCRIPTION. Vicotee Njord series Nodes

A Wireless Mesh IoT sensor system FEATURES DESCRIPTION. Vicotee Njord series Nodes A Wireless Mesh IoT sensor system Vicotee Njord series Nodes FEATURES A SmartMesh IP network consists of a highly scalable self-forming multi-hop mesh of wireless nodes, known as motes, which collect and

More information

Let`s get SIRIUS! SIRIUS Overview. SIRIUS from Dewesoft. SIRIUS Overview. The new hardware generation makes your measurement more precise!

Let`s get SIRIUS! SIRIUS Overview. SIRIUS from Dewesoft. SIRIUS Overview. The new hardware generation makes your measurement more precise! SIRIUS Overview NEW dual ADC SIRIUS Overview Let`s get SIRIUS! The new hardware generation makes your measurement more precise! Dual core Input SIRIUS from Dewesoft This new technology solves the often

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

A Solar-Powered Wireless Data Acquisition Network

A Solar-Powered Wireless Data Acquisition Network A Solar-Powered Wireless Data Acquisition Network E90: Senior Design Project Proposal Authors: Brian Park Simeon Realov Advisor: Prof. Erik Cheever Abstract We are proposing to design and implement a solar-powered

More information

ESA400 Electrochemical Signal Analyzer

ESA400 Electrochemical Signal Analyzer ESA4 Electrochemical Signal Analyzer Electrochemical noise, the current and voltage signals arising from freely corroding electrochemical systems, has been studied for over years. Despite this experience,

More information

An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service

An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service Engineering, Technology & Applied Science Research Vol. 8, No. 4, 2018, 3238-3242 3238 An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service Saima Zafar Emerging Sciences,

More information

CR 33 SENSOR NETWORK INTEGRATION OF GPS

CR 33 SENSOR NETWORK INTEGRATION OF GPS CR 33 SENSOR NETWORK INTEGRATION OF GPS Presented by : Zay Yar Tun 3786 Ong Kong Huei 31891 Our Supervisor : Professor Chris Rizos Our Assessor : INTRODUCTION As the technology advances, different applications

More information

4GHz / 6GHz Radiation Measurement System

4GHz / 6GHz Radiation Measurement System 4GHz / 6GHz Radiation Measurement System The MegiQ Radiation Measurement System (RMS) is a compact test system that performs 3-axis radiation pattern measurement in non-anechoic spaces. With a frequency

More information

AN310 Energy optimization of a battery-powered device

AN310 Energy optimization of a battery-powered device Energy optimization of a battery-powered device AN 310, May 2018, V 1.0 feedback@keil.com Abstract Optimizing embedded applications for overall efficiency should be an integral part of the development

More information

VIBRATIONAL TESTING OF A FULL-SCALE PILE GROUP IN SOFT CLAY

VIBRATIONAL TESTING OF A FULL-SCALE PILE GROUP IN SOFT CLAY VIBRATIONAL TESTING OF A FULL-SCALE PILE GROUP IN SOFT CLAY Marvin W HALLING 1, Kevin C WOMACK 2, Ikhsan MUHAMMAD 3 And Kyle M ROLLINS 4 SUMMARY A 3 x 3 pile group and pile cap were constructed in a soft

More information

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse 2 Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.1 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse 2 Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.1 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

SAE Formula Car Data Acquisition & Display System. Joseph Groe, Michelle Ohlson, & Miles Homler Advisor: Professor Gutschlag

SAE Formula Car Data Acquisition & Display System. Joseph Groe, Michelle Ohlson, & Miles Homler Advisor: Professor Gutschlag SAE Formula Car Data Acquisition & Display System Joseph Groe, Michelle Ohlson, & Miles Homler Advisor: Professor Gutschlag Agenda Problem Background Problem Statement System Diagram Project Functional

More information

The Design of a Wireless Sensing Unit for Structural Health Monitoring

The Design of a Wireless Sensing Unit for Structural Health Monitoring Source: Proceedings of the 3 rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 12-14, 2001. The Design of a Wireless Sensing Unit for Structural Health Monitoring

More information

CSE237d: Embedded System Design Junjie Su May 8, 2008

CSE237d: Embedded System Design Junjie Su May 8, 2008 Jamie Steck CSE237d: Embedded System Design Junjie Su May 8, 2008 Project Progress Report: Efficient Energy Management and Task Scheduling of a Solar-Powered System Background Every two years, a team of

More information

A Wireless Sensor Network Approach to Signalized Left Turn Assist at Intersections

A Wireless Sensor Network Approach to Signalized Left Turn Assist at Intersections A Wireless Sensor Network Approach to Signalized Left Turn Assist at Intersections Fabien Chraim, Thomas Watteyne, Ali Ganji,KrisPister BSAC, University of California, Berkeley, USA {chraim,watteyne,pister}@eecs.berkeley.edu

More information

Let`s get SIRIUS! SIRIUS Overview. SIRIUS from Dewesoft. SIRIUS Overview. The new hardware generation makes your measurement more precise!

Let`s get SIRIUS! SIRIUS Overview. SIRIUS from Dewesoft. SIRIUS Overview. The new hardware generation makes your measurement more precise! Overview NEW dual ADC Overview Let`s get! The new hardware generation makes your measurement more precise! Dual core Input from Dewesoft This new technology solves the often faced problem that the signal

More information

Sensor Network Platforms and Tools

Sensor Network Platforms and Tools Sensor Network Platforms and Tools 1 AN OVERVIEW OF SENSOR NODES AND THEIR COMPONENTS References 2 Sensor Node Architecture 3 1 Main components of a sensor node 4 A controller Communication device(s) Sensor(s)/actuator(s)

More information

(Gibbons and Ringdal 2006, Anstey 1964), but the method has yet to be explored in the context of acoustic damage detection of civil structures.

(Gibbons and Ringdal 2006, Anstey 1964), but the method has yet to be explored in the context of acoustic damage detection of civil structures. ABSTRACT There has been recent interest in using acoustic techniques to detect damage in instrumented civil structures. An automated damage detection method that analyzes recorded data has application

More information

Fast and efficient randomized flooding on lattice sensor networks

Fast and efficient randomized flooding on lattice sensor networks Fast and efficient randomized flooding on lattice sensor networks Ananth Kini, Vilas Veeraraghavan, Steven Weber Department of Electrical and Computer Engineering Drexel University November 19, 2004 presentation

More information

Data Dissemination in Wireless Sensor Networks

Data Dissemination in Wireless Sensor Networks Data Dissemination in Wireless Sensor Networks Philip Levis UC Berkeley Intel Research Berkeley Neil Patel UC Berkeley David Culler UC Berkeley Scott Shenker UC Berkeley ICSI Sensor Networks Sensor networks

More information

EEL5666C IMDL Spring 2006 Student: Andrew Joseph. *Alarm-o-bot*

EEL5666C IMDL Spring 2006 Student: Andrew Joseph. *Alarm-o-bot* EEL5666C IMDL Spring 2006 Student: Andrew Joseph *Alarm-o-bot* TAs: Adam Barnett, Sara Keen Instructor: A.A. Arroyo Final Report April 25, 2006 Table of Contents Abstract 3 Executive Summary 3 Introduction

More information

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES 1 Guntha Karthik, 2 Prof.Singam Jayanthu, 3 Bhushan N Patil, and 4 R.Prashanth

More information

A People Locating Chip. For the mining industry

A People Locating Chip. For the mining industry A People Locating Chip For the mining industry Development at the University of Rostock The Institute of Electronic Appliances and Circuits, headed by Prof. Dr. Beikirch at the University of Rostock, has

More information

AN4392 Application note

AN4392 Application note Application note Using the BlueNRG family transceivers under ARIB STD-T66 in the 2400 2483.5 MHz band Introduction BlueNRG family devices are very low power Bluetooth low energy (BLE) devices compliant

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

Picture 1 PC & USB Connection

Picture 1 PC & USB Connection USB Ethernet HART Profi-bus DeviceNet EtherCAT CANopen CAN RS Zigbee Analog Switch Vibration-wire PWM SSI CDMA GPRS Wi-Fi USB Inclinometer Features - Reference with USB2.0 protocol - P2P and compatible

More information

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Alvaro Pinto, Zhe Zhang, Xin Dong, Senem Velipasalar, M. Can Vuran, M. Cenk Gursoy Electrical Engineering Department, University

More information

Modal Parameter Identification of A Continuous Beam Bridge by Using Grouped Response Measurements

Modal Parameter Identification of A Continuous Beam Bridge by Using Grouped Response Measurements Modal Parameter Identification of A Continuous Beam Bridge by Using Grouped Response Measurements Hasan CEYLAN and Gürsoy TURAN 2 Research and Teaching Assistant, Izmir Institute of Technology, Izmir,

More information

Location Estimation in Ad-Hoc Networks with Directional Antennas

Location Estimation in Ad-Hoc Networks with Directional Antennas Location Estimation in Ad-Hoc Networks with Directional Antennas Nipoon Malhotra, Mark Krasniewski, Chin-Lung Yang, Saurabh Bagchi, William Chappell School of Electrical and Computer Engineering Purdue

More information

EITF40 Digital and Analogue Projects - GNSS Tracker 2.4

EITF40 Digital and Analogue Projects - GNSS Tracker 2.4 EITF40 Digital and Analogue Projects - GNSS Tracker 2.4 Magnus Wasting 26 February 2018 Abstract In this report a mobile global navigation satellite system with SMS and alarm functionality is constructed.

More information

Lab 1 Navigation using a 2-axis accelerometer

Lab 1 Navigation using a 2-axis accelerometer Measurement Technology and Uncertainty Analysis E7021E Torbjörn Löfquist EISLAB Luleå University of Technology (Revised: July 22, 2009, by Johan Carlson) Lab 1 Navigation using a 2-axis accelerometer Goal:

More information

Calibration Guide for Wireless Sensors. Shinae Jang Jennifer Rice

Calibration Guide for Wireless Sensors. Shinae Jang Jennifer Rice Calibration Guide for Wireless Sensors Shinae Jang Jennifer Rice November, 2009 Contents Introduction... 3 1 Static Method for Sensor Board Calibration... 4 2 Dynamic Method for Sensor Board Calibration...

More information

Earthquake Monitoring System Using Ranger Seismometer Sensor

Earthquake Monitoring System Using Ranger Seismometer Sensor INTERNATIONAL JOURNAL OF GEOLOGY Issue, Volume, Earthquake Monitoring System Using Ranger Seismometer Sensor Iyad Aldasouqi and Adnan Shaout Abstract--As cities become larger and larger worldwide, earthquakes

More information

GPRS Inclinometer. Zigbee. CDMA Vibration-wire. SSI PWM Switch Analog. Features. Descriptions

GPRS Inclinometer. Zigbee. CDMA Vibration-wire. SSI PWM Switch Analog. Features. Descriptions GPRS Inclinometer Features - Industry GPRS interface - Quad-Band 850/ 900/ 1800/ 1900 MHz Transmission - worldwide - Support PBCCH, CSD up to 14.4 kbps - Support single/multi-center modes - Support domain

More information

DEEJAM: Defeating Energy-Efficient Jamming in IEEE based Wireless Networks

DEEJAM: Defeating Energy-Efficient Jamming in IEEE based Wireless Networks DEEJAM: Defeating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks Anthony D. Wood, John A. Stankovic, Gang Zhou Department of Computer Science University of Virginia Wireless Sensor Networks

More information

Wireless Sensor Networks

Wireless Sensor Networks DEEJAM: Defeating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks Anthony D. Wood, John A. Stankovic, Gang Zhou Department of Computer Science University of Virginia June 19, 2007 Wireless

More information

An Ultrasonic Sensor Based Low-Power Acoustic Modem for Underwater Communication in Underwater Wireless Sensor Networks

An Ultrasonic Sensor Based Low-Power Acoustic Modem for Underwater Communication in Underwater Wireless Sensor Networks An Ultrasonic Sensor Based Low-Power Acoustic Modem for Underwater Communication in Underwater Wireless Sensor Networks Heungwoo Nam and Sunshin An Computer Network Lab., Dept. of Electronics Engineering,

More information

MINIMUS MINIMUS+ SMART SEISMIC DIGITISER WITH ADVANCED DATA-PROCESSING CAPABILITY AND SOFTWARE COMMUNICATIONS

MINIMUS MINIMUS+ SMART SEISMIC DIGITISER WITH ADVANCED DATA-PROCESSING CAPABILITY AND SOFTWARE COMMUNICATIONS MINIMUS MINIMUS+ SMART SEISMIC DIGITISER WITH ADVANCED DATA-PROCESSING CAPABILITY AND SOFTWARE COMMUNICATIONS KEY FEATURES > > Advanced software communications for quick and easy instrument and data management

More information

VMS-4000 Digital Seismograph System - Reference Manual

VMS-4000 Digital Seismograph System - Reference Manual VMS-4000 Digital Seismograph System - Reference Manual This equipment should be installed, maintained and operated by technically qualified personnel. Any errors or omissions in data or it s interpretations,

More information

Mechatronics Project Presentation

Mechatronics Project Presentation Mechatronics Project Presentation An Inexpensive Electronic Method for Measuring Takeoff Distances BY: KARL ABDELNOUR ROBERT ECKHARDT SAUMIL PARIKH 1 OUTLINE OF PRESENTATION INTRODUCTION HARDWARE EXPERIMENTAL

More information

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics:

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: Links between Digital and Analogue Serial vs Parallel links Flow control

More information

CMPS11 - Tilt Compensated Compass Module

CMPS11 - Tilt Compensated Compass Module CMPS11 - Tilt Compensated Compass Module Introduction The CMPS11 is our 3rd generation tilt compensated compass. Employing a 3-axis magnetometer, a 3-axis gyro and a 3-axis accelerometer. A Kalman filter

More information

NEMO - NIXIE Enhanced Modular Option Surface Ship Torpedo Defense (SSTD) Program Update Test Results

NEMO - NIXIE Enhanced Modular Option Surface Ship Torpedo Defense (SSTD) Program Update Test Results NEMO - NIXIE Enhanced Modular Option Surface Ship Torpedo Defense (SSTD) Program Update Test Results John P. Fumo, CTO ArgonST, Inc 12701 Fair Lakes Circle, Fairfax, VA 22033 Abstract NIXIE Enhanced Modular

More information

RF Based Pick and Place Robot

RF Based Pick and Place Robot IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. I (May.-Jun. 2017), PP 34-38 www.iosrjournals.org RF Based Pick and Place

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

Wireless Monitoring Techniques for Structural Health Monitoring

Wireless Monitoring Techniques for Structural Health Monitoring SOURCE: Proceedings of the International Symposium of Applied Electromagnetics & Mechanics, Lansing, MI, September 9-, 7. Monitoring Techniques for Structural Health Monitoring Kenneth J Loh and Andrew

More information

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS 1 FEDORA LIA DIAS, 2 JAGADANAND G 1,2 Department of Electrical Engineering, National Institute of Technology, Calicut, India

More information

Wireless Vibration Exploration

Wireless Vibration Exploration Wireless Vibration Exploration By Jean Louis Rouvet M.C.E. Commercialise Mécaptélec ABSTRACT : For in-situ experiment, what kind of wireless transmission may be used successfully to transmit wireless wise

More information

Wireless Sensor Monitoring Test Documentation for UCSD Shake Tests

Wireless Sensor Monitoring Test Documentation for UCSD Shake Tests Wireless Sensor Monitoring Test Documentation for UCSD Shake Tests Yizheng Liao, Anela Bajric Department of Civil and Environmental Engineering Stanford University December 17, 2014 1 Overview This report

More information

Intelligent and passive RFID tag for Identification and Sensing

Intelligent and passive RFID tag for Identification and Sensing Zürich University Of Applied Sciences Institute of Embedded Systems InES Intelligent and passive RFID tag for Identification and Sensing (Presented at Embedded World, Nürnberg, 3 rd March 2009) Dipl. Ing.

More information

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Frequency Agile Wireless Sensor Networks

Frequency Agile Wireless Sensor Networks Frequency Agile Wireless Sensor Networks S.W. Arms *, C.P. Townsend, D.L. Churchill, M.J. Hamel, J.H. Galbreath, S.W. Mundell MicroStrain, Inc., 310 Hurricane Lane, Unit 4, Williston, Vermont 05495 USA

More information

Motion Capture for Runners

Motion Capture for Runners Motion Capture for Runners Design Team 8 - Spring 2013 Members: Blake Frantz, Zhichao Lu, Alex Mazzoni, Nori Wilkins, Chenli Yuan, Dan Zilinskas Sponsor: Air Force Research Laboratory Dr. Eric T. Vinande

More information

BW-IMU200 Serials. Low-cost Inertial Measurement Unit. Technical Manual

BW-IMU200 Serials. Low-cost Inertial Measurement Unit. Technical Manual Serials Low-cost Inertial Measurement Unit Technical Manual Introduction As a low-cost inertial measurement sensor, the BW-IMU200 measures the attitude parameters of the motion carrier (roll angle, pitch

More information

THE CONNECTED INFRASTRUCTURE SOLUTION MONITORING HOW STRUCTURES EVOLVE

THE CONNECTED INFRASTRUCTURE SOLUTION MONITORING HOW STRUCTURES EVOLVE THE CONNECTED INFRASTRUCTURE SOLUTION MONITORING HOW STRUCTURES EVOLVE Loadsensing is a data acquisition and monitoring system which combines state-of-the-art wireless monitoring and advanced software

More information

Object Motion MITes. Emmanuel Munguia Tapia Changing Places/House_n Massachusetts Institute of Technology

Object Motion MITes. Emmanuel Munguia Tapia Changing Places/House_n Massachusetts Institute of Technology Object Motion MITes Emmanuel Munguia Tapia Changing Places/House_n Massachusetts Institute of Technology Object motion MITes GOAL: Measure people s interaction with objects in the environment We consider

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

Signal Processing and Display of LFMCW Radar on a Chip

Signal Processing and Display of LFMCW Radar on a Chip Signal Processing and Display of LFMCW Radar on a Chip Abstract The tremendous progress in embedded systems helped in the design and implementation of complex compact equipment. This progress may help

More information

Wireless Neural Loggers

Wireless Neural Loggers Deuteron Technologies Ltd. Electronics for Neuroscience Wireless Neural Loggers On-animal neural recording Deuteron Technologies provides a family of animal-borne neural data loggers for recording 8, 16,

More information

The Cricket Indoor Location System

The Cricket Indoor Location System The Cricket Indoor Location System Hari Balakrishnan Cricket Project MIT Computer Science and Artificial Intelligence Lab http://nms.csail.mit.edu/~hari http://cricket.csail.mit.edu Joint work with Bodhi

More information