Power Electronics (Sample Questions) Module-1

Size: px
Start display at page:

Download "Power Electronics (Sample Questions) Module-1"

Transcription

1 Module-1 Short Questions (Previous Years BPUT Questions 1 to 18) 1. What are the conditions for a thyristor to conduct? di 2. What is the common method used for protection? dt 3. What is the importance of snubber circuit? 4. What is the difference between enhance type MOSFET and depletion type MOSFET? 5. What is a freewheeling diode, and what is its purpose? 6. Comparison between Power MOSFET and BJT. 7. List the name of the methods adopted for triggering a thyristor. 8. Thyristor A has rated gate current of 2A and thyristor B, a rated current of 100mA. Which one is SCR and which one is GTO? 9. Which device has negative resistance characteristics? Draw the characteristics and identify the negative resistance area. 10. Why R-C triggering method is preferred over resistance triggering? 11. Give the merits of GTO as compared to a conventional SCR. 12. What will happen if one SCR in a parallel connected SCR string turns on first? 13. What are the protections to be provided for an SCR? 14. What is the necessity of pulse transformer in firing scheme of SCR? 15. Why the MOSFETs do not required negative voltage during turn off? 16. Define latching current and holding currents as applicable to an SCR. 17. How many regions of operation are there for BJTs? Explain briefly. 18. For thyristors why pulse triggering is preferred to dc triggering? 19. What are the types of power diodes? Discuss the differences between p-n junction diodes and Schottky diodes. 20. What do you mean by ODF? 21. What is the significance of FBSOA and RBSOA? 22. What is a UJT? Define intrinsic stand-off ratio of UJT. 23. What are the base drive techniques for increasing switching speeds of BJTs? 24. What is a totem pole arrangement? 25. Draw the static V-I characteristic of thyristors. 26. Draw the gate characteristics of thyristor. 27. What is the function of varistor in a thyristor protection circuit? 28. Draw the static V-I characteristic of Triac. 29. The gate-cathode characteristic of an SCR has a straight line slope 0f 130. For trigger source voltage of 15V and allowable gate power dissipation of 0.5W, compute the gate-source resistance. 30. What is I 2 t rating? 31. A thyristor is triggered by a pulse train of 5 khz. The duty ratio of 0.4 if the allowable average power is 100W. What is the maximum allowable gate drive power? Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 1 of 7

2 Long Questions (Previous Years BPUT Questions 1 to 10) 1. Describe RC full wave triggering circuit for a single SCR. 2. Draw and discuss turn-on and turn-off characteristics of an SCR. 3. What do you mean by commutation of an SCR. Discuss about forced and line commutation briefly? 4. What are the protections to be provided for an SCR? 5. Draw and explain the transfer and output characteristics of an IGBT. 6. Enumerate the various mechanisms by which thyristors can be triggered into conduction. Discuss briefly the techniques which result in random turn-on. But the others leading to reliable turn-on thyristors should be discussed in detail. 7. Draw and explain the output characteristics of n-channel enhancement mode MOSFET. 8. Can a forward voltage be applied to a SCR after its anode current has fallen to zero value? Explain. 9. Justify the statement higher the gate current lower is the forward break over voltage. 10. How does a GTO differ from a conventional SCR? Give the circuit symbol and static V-I characteristics. 11. Describe the different modes of operation of a thyristor with the help of its static V-I characteristics. 12. Compare an UJT firing circuit with R and RC firing circuits. 13. Explain the working principle of an oscillator employing an UJT. Derive expressions for the frequency of triggering and firing angle delay in terms of eta, charging resistance etc. 14. Explain the V-I characteristics of UJT. 15. A relaxation oscillator using an UJT is to be designed for triggering an SCR. The UJT has the following data: 0.7, I P 0.5mA, V p 15V, V v 0.8V, I V 2mA, R BB 6k.Normal leakage current with emitter open is 3mA. The firing frequency is 1.5 khz. For C=0.05μF, compute the values of charging resistor and the external resistors connected in the base circuits. Take forward voltage drop of E-B 1 junction as zero. Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 2 of 7

3 Module-2 Short Questions (Previous Years BPUT Questions 1 to 20) 1. Why the power factor of semi converter is better than that of full converter? 2. What are the advantages and disadvantages of AC voltage Controller? 3. What is the efficiency of 3-phase full wave rectifier? 4. What is the input displacement factor for a single phase semiconductor feeding a ripple free current of 10 A to R-L load and having a firing angle of 60? Hints: DF cos What is the power factor of a single phase full converter with highly inductive R-L Load for 45? 2 2 Hints: pf cos 6. What are the advantages of freewheeling diode connected in a controlled rectifier? 7. A single phase half wave circuit is supplied at 120V. Determine the average load voltage for firing angle 0, 30 assuming the load current to be continuous and level with constant 2.5V drop of the thyristor. 8. In a 3-phase semi-converter for firing angle to 120 and excitation angle equal to 110. What is the conduction period of the freewheeling diode? 9. What is peak inverse voltage of thyristor connected in the three phase, six pulse bridge circuit having input voltage of 415V and voltage safety factor of 2. Hints: PIV Voltage safety factor 2 rms input voltage 10. In a 3 phase full converter if the load current is I and ripple free, what will be the rms value of thyristor current? 11. What type of commutation used in step up cyclo-converter? 12. A single phase fully controlled bridge is supplied at 120V. Determine the average voltage drop for firing angle of 30, assuming each thyristor to have a voltage drop of 0.78V. 13. In a 3-phase semi converter the firing angle is 90 and for continuous conduction what is the conduction period of the freewheeling diode? 14. A single phase one pulse controlled rectifier has 400 sin 314t volts as the input voltage and resistor R as the load. For firing angle of 60 for the SCR, what is the average output voltage? 15. In a three phase semi converter for firing angle less than or equal to 60 what is the conduction angle for each diode and thyristor? 16. What is inversion mode of converters? 17. Does the input power factor of converters depend on the load power factor? 18. In a three phase full converter what is the firing interval of the three SCRs pertaining to one group? 19. Why the power factor of semi converters is better than full converters? 20. What are the applications of cyclo-converter? 21. What is extinction angle control of converters? Hints: Rashid: pg: What is the principle of phase control? 23. What are the effects of removing the free-wheeling diode in single phase semi-converter? 24. Does the input power factor of converters depend on the delay angle? Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 3 of 7

4 25. Define Modulation index? 26. What is the principle of burst firing and how it helps in AC voltage controller? 27. Which applications basically need cycloconverter? 28. What are the gate signal requirements of thyristors for voltage controllers with RL load? 29. What are the advantages and disadvantages of cyclo-converters? 30. What are three possible arrangements for a single phase full wave ac voltage controller? Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 4 of 7

5 Long Questions (Previous Years BPUT Questions 1 to 4) 1. Derive expressions for the average and rms values of the output voltage of single phase full converter. 2. A single phase full bridge rectifier having a supply voltage of V m sin t has a purely resistive load of R. Determine the efficiency, the form factor, the ripple factor, the transformer utilization factor, the peak inverse voltage of a Diode, and the crest factor of the input current. 3. Describe the working of a single phase fully controlled bridge converter in the rectifying mode and inversion mode. Also sketch the following waveform for 45 and 120. i) Load voltage waveform ii) Load current waveform iii) Thyristor current and voltage waveforms iv) Supply voltage and current waveforms 4. A 3-ph fully controlled converter is employed to change a battery with an emf 95V and an internal resistance of 0.1. The supply rms voltage is 110V line-to-line and sufficient inductance is induced output circuit to maintain the current virtually constant at 20A.Determine the firing angle α, power factor of supply. 5. A single phase full wave converter is connected to a 120V, 60Hz supply. The load current I a is continuous and its ripple content is negligible. The turns ratio of the transformer is unity. Determine the HF of the input current, DF, and input PF. Calculate V dc, V n, V rms, HF, DF and pf. 6. A three phase half wave converter is operated from a three phase star connected 220V, 60Hz supply and the load resistance is R=10. If the average output voltage is 25% of the maximum possible average output voltage, calculate the delay angle, the rms and average output currents, the average and rms thyristor currents, the rectification efficiency, the transformer utilization factor, the input power factor. 7. A three phase full wave converter is operated from a three phase star connected 220V, 60Hz supply and the load resistance is R=10. If the average output voltage is 25% of the maximum possible average output voltage, calculate the delay angle, the rms and average output currents, the average and rms thyristor currents, the rectification efficiency, the transformer utilization factor, the input power factor. 8. Explain the principle of operation of Burst firing. 9. Explain the principle of operation of single phase bidirectional controller with RL load with the help of neat wave form and also write the expression for output voltages. 10. Explain the principle of operation step up cyclo converter with neat diagram. 11. Explain the principle of operation of three phase full wave converter with RL load with the help of relevant diagram at α=60, 90 and Repeat the Q.N.11 for three phase semi-converter. 13. Explain the principle of operation line commutated inverter. 14. A single phase full converter charges a battery which offers a constant value of E. A resistor R is inserted to limit the battery charging current. Derive the expression for the average charging current in terms of V m, E, R etc. on the assumption that each pair of SCRs if fired continuously in each half cycle. 15. Describe the working of a single phase converter in the rectifier mode with RLE load. Discuss how one pair of SCRs is commutated by an incoming pair of SCRs, Illustrate your answer with waveforms for source voltage, E, output voltage and current, source current, current through and voltage across one SCR. 16. Repeat Q.N.15 in inverter mode. Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 5 of 7

6 Module-3 Short Questions 1. What are the differences between half bridge and full bridge inverters? 2. Comparison between 120 and 180 conduction mode three phase inverter. 3. Comparison between ZVS and ZCS converters. 4. What is a switching mode regulator? 5. What are the four basic types of switching mode regulators? 6. What are the advantages and disadvantages of fly back, push-pull, forward converters? 7. What is the general arrangement of UPS systems? 8. What are the advantages of HVDC transmission over HVAC transmission system? 9. Comparison between buck-boost regulator and Cứk regulator. 10. What are the types of HVDC transmission systems? 11. What do you mean by duty cycle? Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 6 of 7

7 Long Questions 1. Explain the principle of operation of four-quadrant chopper or Type-E chopper. 2. Find the expression for minimum and maximum value of load current for a step down chopper with RLE load. 3. Show that the maximum value of ripple current is inversely proportional to chopping frequency and the circuit inductance in a step down chopper. 4. Describe M-type and L-type ZCS resonant converter with relevant circuits and waveforms. 5. Describe ZVS resonant converter with appropriate circuits and waveforms. 6. Explain 180 mode VSI with appropriate circuits and wave forms and also write the expression for line voltages and phase voltages. 7. Explain 120 mode VSI with appropriate circuits and wave forms and also write the expression for line voltages and phase voltages. 8. Explain buck regulator and boost regulator. 9. What is SMPS? Explain Push pull converter with neat circuit diagram and relevant waveforms. 10. Short notes (a)buck regulator, (b)boost regulator, (c)buck-boost regulator, (d)cứk regulator, (e) Forward Converter, (f) fly back converter, (g) Half-bridge and Full bridge Converter, (h) UPS, (i) HVDC system. 11. The buck regulator has an input voltage, V s =15V. The required average output voltage V a =5V and peak to peak output ripple voltage is 10mV. The switching frequency is 20KHz. The peak-to-peak ripple current of inductor is limited to 0.5A. Determine the duty cycle k, the filter inductance L, the filter capacitor C, and the critical value of L and C. 12. The boost regulator has an input voltage V s =6V. The average output voltage V a =15V and average load current is 0.5A. The switching frequency is 20 khz. If L=250μH and C=440μF, determine the duty cycle k, the ripple current of inductor, the peak current of inductor, the ripple voltage of filter capacitance and the critical values of L and C. 13. The step down converter has load resistance 0.2, input voltage 220V, and battery voltage of 10V. the average load current is 200A and the chopping frequency is 200Hz. Use the average output voltage to calculate the value of load inductance L, which would limit the maximum load current to 5% of load current. 14. Solve more problems on Step up chopper, step down chopper, buck regulator, boost regulator. ****ALL THE BEST**** Prepared by: Mr. Satish Choudhury (Asst. Professor, Dept. of. EICE, ITER, BBSR) Page 7 of 7

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-000 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name : POWER ELECTRONICS Course Code : AEE0

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Power Diode EE2301 POWER ELECTRONICS UNIT I POWER SEMICONDUCTOR DEVICES PART A 1. What is meant by fast recovery

More information

11. Define the term pinch off voltage of MOSFET. (May/June 2012)

11. Define the term pinch off voltage of MOSFET. (May/June 2012) Subject Code : EE6503 Branch : EEE Subject Name : Power Electronics Year/Sem. : III /V Unit - I PART-A 1. State the advantages of IGBT over MOSFET. (Nov/Dec 2008) 2. What is the function of snubber circuit?

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER EE6503 - POWER ELECTRONICS Regulation 2013

More information

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics UNIVERSITY QUESTIONS Unit-1 Introduction to Power Electronics 1. Give the symbol and characteristic features of the following devices. (i) SCR (ii) GTO (iii) TRIAC (iv) IGBT (v) SIT (June 2012) 2. What

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION Sem / Branch : V /EIE Subject code /Title: EI2301/Industrial Electronics UNIT-1 POWER DEVICES 1. What are the different methods

More information

Power Electronics (BEG335EC )

Power Electronics (BEG335EC ) 1 Power Electronics (BEG335EC ) 2 PURWANCHAL UNIVERSITY V SEMESTER FINAL EXAMINATION - 2003 The figures in margin indicate full marks. Attempt any FIVE questions. Q. [1] [a] A single phase full converter

More information

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16]

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16] Code No: 07A50204 R07 Set No. 2 1. A single phase fully controlled bridge converter is operated from 230 v, 50 Hz source. The load consists of 10Ω and a large inductance so as to reach the load current

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

Name of chapter & details

Name of chapter & details Course Title Course Code Power Electronics-I EL509 Lecture : 03 / 03 Course Credit / Hours Practical : 01 / 02 Tutorial : 00 / 00 Course Learning Outcomes Total : 04 / 05 At the end of the session student

More information

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG3336: Power Electronics Systems Objective To Realize and Design arious Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K. POWER ELECTRONICS S.C. Tripathy Alpha Science International Ltd. Oxford, U.K. Contents Preface vii 1. SEMICONDUCTOR DIODE THEORY 1.1 1.1 Introduction 1.1 1.2 Charge Densities in a Doped Semiconductor 1.1

More information

POWER ELECTRONICS TWO MARK QUESTIONS & ANSWERS Class : V SEM EEE UNIT I 1. What is power electronics? Power electronics is a subject that concerns the applications electronics principles into situations

More information

The typical ratio of latching current to holding current in a 20 A thyristor is (A) 5.0 (B) 2.0 (C) 1.0 (D) 0.5

The typical ratio of latching current to holding current in a 20 A thyristor is (A) 5.0 (B) 2.0 (C) 1.0 (D) 0.5 CHAPTER 9 POWER ELECTRONICS YEAR 0 ONE MARK MCQ 9. MCQ 9. A half-controlled single-phase bridge rectifier is supplying an R-L load. It is operated at a firing angle α and the load current is continuous.

More information

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTU,Kakinada) Jonnada (Village), Denkada (Mandal), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241112 E-Mail: lendi_2008@yahoo.com

More information

2 Marks - Question Bank. Unit 1- INTRODUCTION

2 Marks - Question Bank. Unit 1- INTRODUCTION Two marks 1. What is power electronics? EE6503 POWER ELECTRONICS 2 Marks - Question Bank Unit 1- INTRODUCTION Power electronics is a subject that concerns the applications electronics principles into situations

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

DC Chopper. Prof. Dr. Fahmy El-khouly

DC Chopper. Prof. Dr. Fahmy El-khouly DC Chopper Prof. Dr. Fahmy El-khouly Definitions: The power electronic circuit which converts directly from dc to dc is called dc-to-dc converter or dc-chopper. Chopper is a dc to dc transformer: The input

More information

Power Electronics. Electrical Engineering. for

Power Electronics. Electrical Engineering.   for Power Electronics for Electrical Engineering By www.thegateacademy.com Syllabus Syllabus for Power Electronics Characteristics of Semiconductor Power Devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT;

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

POWER ELECTRONICS LAB

POWER ELECTRONICS LAB MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY Banjara Hills Road No 3, Hyderabad 34 www.mjcollege.ac.in DEPARTMENT OF ELECTRICAL ENGINEERING LABORATORY MANUAL POWER ELECTRONICS LAB For B.E. III/IV

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR- 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT I PN JUNCTION DEVICES 1. Define Semiconductor.

More information

Switching and Semiconductor Switches

Switching and Semiconductor Switches 1 Switching and Semiconductor Switches 1.1 POWER FLOW CONTROL BY SWITCHES The flow of electrical energy between a fixed voltage supply and a load is often controlled by interposing a controller, as shown

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١ POWER ELECTRONICS POST GRADUATE 2010 AC Chopper Prepared by: Dr. Gamal SOwilam 11 December 2016 ١ 1. Introduction AC Chopper is An AC to AC Converter employs to vary the rms voltage across the load at

More information

DE71/DE110 POWER ELECTRONICS DEC 2015

DE71/DE110 POWER ELECTRONICS DEC 2015 Q.2 a. What is power loss in an ideal switch? Explain the conduction losses in a bipolar junction transistor with the help of circuit diagram. (8) Answer: IETE 1 b. Explain, how the power diode must be

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture -1 Introduction to DC-DC converter Good day to all of you, we

More information

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6503 POWER ELECTRONICS UNIT I- POWER SEMI-CONDUCTOR DEVICES PART - A 1. What is a SCR? A silicon-controlled rectifier

More information

Principle Of Step-up Chopper

Principle Of Step-up Chopper Principle Of Step-up Chopper L + D + V Chopper C L O A D V O 1 Step-up chopper is used to obtain a load voltage higher than the input voltage V. The values of L and C are chosen depending upon the requirement

More information

Unit-3-A. AC to AC Voltage Converters

Unit-3-A. AC to AC Voltage Converters Unit-3-A AC to AC Voltage Converters AC to AC Voltage Converters This lesson provides the reader the following: AC-AC power conversion topologies at fixed frequency Power converter options available for

More information

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

Power Electronics Power semiconductor devices. Dr. Firas Obeidat Power Electronics Power semiconductor devices Dr. Firas Obeidat 1 Table of contents 1 Introduction 2 Classifications of Power Switches 3 Power Diodes 4 Thyristors (SCRs) 5 The Triac 6 The Gate Turn-Off

More information

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Electrical Engineering EE / EEE Postal Correspondence Course Power Electronics GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 2 C O N T

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I Commutation of Thyristor-Based Circuits Part-I ١ This lesson provides the reader the following: (i) (ii) (iii) (iv) Requirements to be satisfied for the successful turn-off of a SCR The turn-off groups

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

8/4/2011. Electric Machines & Drives. Chapter 21 Example of gating pulses on SCR condition

8/4/2011. Electric Machines & Drives. Chapter 21 Example of gating pulses on SCR condition Welcome to Electric Machines & Drives thomasblairpe.com/emd Session 10 Fundamental Elements of Power Electronics (Part 2) USF Polytechnic Engineering tom@thomasblairpe.com Session 10: Power Electronics

More information

POWER ELECTRONICS LAB MANUAL

POWER ELECTRONICS LAB MANUAL JIS College of Engineering (An Autonomous Institution) Department of Electrical Engineering POWER ELECTRONICS LAB MANUAL Exp-1. Study of characteristics of an SCR AIM: To obtain the V-I characteristics

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

Other Electronic Devices

Other Electronic Devices Other Electronic Devices 1 Contents Field-Effect Transistors(FETs) - JFETs - MOSFETs Insulate Gate Bipolar Transistors(IGBTs) H-bridge driver and PWM Silicon-Controlled Rectifiers(SCRs) TRIACs Device Selection

More information

INDUSTRIAL AUTOMATION

INDUSTRIAL AUTOMATION Department of Technical Education DIPLOMA COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING 1 SL.No 1 INDUSTRIAL AUTOMATION Subject Title : INDUSTRIAL AUTOMATION Subject Code : EC Hours Per Week : 04

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware).

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware). (Scheme-2013) List of Experiments 1. Steady state characteristics of SCR, IGBT and MOSFET 2. nalog and digital firing methods for SCR (Single phase half wave rectifier). (Simulation and hardware). 3. Full

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

Introduction to Rectifiers and their Performance Parameters

Introduction to Rectifiers and their Performance Parameters Electrical Engineering Division Page 1 of 10 Rectification is the process of conversion of alternating input voltage to direct output voltage. Rectifier is a circuit that convert AC voltage to a DC voltage

More information

COURSE OBJECTIVES. Academic Year : Name of the Faculty: G SWAPNA

COURSE OBJECTIVES. Academic Year : Name of the Faculty: G SWAPNA Academic Year : 2013-2014 COURSE OBJECTIVES YearII Section: B On completion of this Subject/Course the student shall be able to: S.No 1 2 Objectives To provide the students a deep insight in to the working

More information

Power Electronics. P. T. Krein

Power Electronics. P. T. Krein Power Electronics Day 10 Power Semiconductor Devices P. T. Krein Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 2011 Philip T. Krein. All rights reserved.

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version EE IIT, Kharagpur 1 Lesson 9 Introduction to Cycloconverters Version EE IIT, Kharagpur Instructional Objectives Study of the following: The cyclo-converter

More information

SCR Triggering Techniques Scientech 2703

SCR Triggering Techniques Scientech 2703 SCR Triggering Techniques Scientech 2703 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100,

More information

Battery Charger Circuit Using SCR

Battery Charger Circuit Using SCR Battery Charger Circuit Using SCR Introduction to SCR: SCR is abbreviation for Silicon Controlled Rectifier. SCR has three pins anode, cathode and gate as shown in the below figure. It is made up of there

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Lecture Note. Uncontrolled and Controlled Rectifiers

Lecture Note. Uncontrolled and Controlled Rectifiers Lecture Note 7 Uncontrolled and Controlled Rectifiers Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR single-phase diode and SCR rectifiers

More information

ELEC387 Power electronics

ELEC387 Power electronics ELEC387 Power electronics Jonathan Goldwasser 1 Power electronics systems pp.3 15 Main task: process and control flow of electric energy by supplying voltage and current in a form that is optimally suited

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK : ELECTRICAL AND ELECTRONICS ENGINEERING : A40203

More information

Literature Review. Chapter 2

Literature Review. Chapter 2 Chapter 2 Literature Review Research has been carried out in two ways one is on the track of an AC-AC converter and other is on track of an AC-DC converter. Researchers have worked in AC-AC conversion

More information

UNIT - II CONTROLLED RECTIFIERS (Line Commutated AC to DC converters) Line Commutated Converter

UNIT - II CONTROLLED RECTIFIERS (Line Commutated AC to DC converters) Line Commutated Converter UNIT - II CONTROLLED RECTIFIERS (Line Coutated AC to DC converters) INTRODUCTION TO CONTROLLED RECTIFIERS Controlled rectifiers are line coutated ac to power converters which are used to convert a fixed

More information

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form JOHANN MINIBÖCK power electronics consultant Purgstall 5 A-3752 Walkenstein AUSTRIA Phone: +43-2913-411

More information

Subject Code: Model Answer Page No: / N

Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Unijunction Transistor. T.Y.B.Sc - Eletronics POWER ELETRONICS

Unijunction Transistor. T.Y.B.Sc - Eletronics POWER ELETRONICS Unijunction Transistor T.Y.B.Sc - Eletronics POWER ELETRONICS Unijunction Transistor Symbol and Construction The Unijunction Transistor is solid state three terminal device that can be used in gate pulse,

More information

Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

More information

UNIT V - RECTIFIERS AND POWER SUPPLIES

UNIT V - RECTIFIERS AND POWER SUPPLIES UNIT V - RECTIFIERS AND POWER SUPPLIES OBJECTIVE On the completion of this unit the student will understand CLASSIFICATION OF POWER SUPPLY HALF WAVE, FULL WAVE, BRIDGE RECTIFER AND ITS RIPPLE FACTOR C,

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

Fig.1. A Block Diagram of dc-dc Converter System

Fig.1. A Block Diagram of dc-dc Converter System ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR G. C. Diyoke Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture, Umudike Umuahia, Abia State

More information

Tagore Engineering College Rathanamangalam, Melkottaiyur ( Post ), Vandular via Chennai 127

Tagore Engineering College Rathanamangalam, Melkottaiyur ( Post ), Vandular via Chennai 127 Tagore Engineering College Rathanamangalam, Melkottaiyur ( Post ), Vandular via Chennai 127 Department of Electrical and Electronics Engineering M.E - Power Electronics and Drives PX 7103 Analysis and

More information

Single-Phase Half-Wave Rectifiers

Single-Phase Half-Wave Rectifiers ectifiers Single-Phase Half-Wave ectifiers A rectifier is a circuit that converts an ac signal into a unidirectional signal. A single-phase half-way rectifier is the simplest type. Although it is not widely

More information

Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 39 Silicon Controlled Rectifier (SCR) (Construction, characteristics (Dc & Ac), Applications,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Inclusion of Switching Loss in the Averaged Equivalent Circuit Model The methods of Chapter 3 can

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

Power Electronics. Contents

Power Electronics. Contents Power Electronics Overview Contents Electronic Devices Power, Electric, Magnetic circuits Rectifiers (1-ph, 3-ph) Converters, controlled rectifiers Inverters (1-ph, 3-ph) Power system harmonics Choppers

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 SCR Triggering Techniques ST2703 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Learn about the use, operation and limitations of thyristors, particularly triacs, in power control

Learn about the use, operation and limitations of thyristors, particularly triacs, in power control Exotic Triacs: The Gate to Power Control Learn about the use, operation and limitations of thyristors, particularly triacs, in power control D. Mohan Kumar Modern power control systems use electronic devices

More information

EE POWER ELECTRONICS

EE POWER ELECTRONICS EE6503 - POWER ELECTRONICS UNIT III - DC TO DC CONVERTER PART A 1.What is meant by time ratio or PWM control (duty cycle) of a DC chopper? (M/J16) The ratio of a period to the total time period is known

More information

PAPER-II (Subjective)

PAPER-II (Subjective) PAPER-II (Subjective) 1.(A) Choose and write the correct answer from among the four options given in each case for (a) to (j) below: (a) Improved commutation in d.c machines cannot be achieved by (i) Use

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS)

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Name Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad -500 043 CIVIL ENGINEERING TUTORIAL QUESTION BANK : ELECTRICAL AND ELECTRONICS ENGINEERING : A30203 : II B.

More information

Analysis of Correction of Power Factor by Single Inductor Three-Level Bridgeless Boost Converter

Analysis of Correction of Power Factor by Single Inductor Three-Level Bridgeless Boost Converter Analysis of Correction of Power Factor by Single Inductor Three-Level Bridgeless Boost Converter Ajay Kumar 1, Sandeep Goyal 2 1 Postgraduate scholar,department of Electrical Engineering, Manav institute

More information

15EE301J- POWER ELECTRONICS LAB

15EE301J- POWER ELECTRONICS LAB 15EE301J- POWER ELECTRONICS LAB RECORD NOTEBOOK SEMESTER V DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SRM UNIVERSITY KATTANKULATHUR-603203 POWER ELECTRONICS LABORATORY L T P C 15EE301J Total

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

BEST BMET CBET STUDY GUIDE MODULE ONE

BEST BMET CBET STUDY GUIDE MODULE ONE BEST BMET CBET STUDY GUIDE MODULE ONE 1 OCTOBER, 2008 1. The phase relation for pure capacitance is a. current leads voltage by 90 degrees b. current leads voltage by 180 degrees c. current lags voltage

More information

Lecture 10. Effect of source inductance on phase controlled AC-DC converters.

Lecture 10. Effect of source inductance on phase controlled AC-DC converters. Lecture 10. Effect of source inductance on phase controlled AC-DC converters. 10.1 Overlap in single-phase, CT fully-controlled converter L s i 1 T 1 i L v s V max sint v i R L L s T 2 i 2 Figure 10.1

More information

SCR- SILICON CONTROLLED RECTIFIER

SCR- SILICON CONTROLLED RECTIFIER SCR- SILICON CONTROLLED RECTIFIER Definition: When a pn junction is added to a junction transistor, the resulting three pn junction device is called a silicon controlled rectifier. SCR can change alternating

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder pn junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where

More information

Power Converters. Neil Marks. STFC ASTeC/ Cockcroft Institute/ U. of Liverpool, Daresbury Laboratory, Warrington WA4 4AD, U.K.

Power Converters. Neil Marks. STFC ASTeC/ Cockcroft Institute/ U. of Liverpool, Daresbury Laboratory, Warrington WA4 4AD, U.K. Power Converters Neil Marks STFC ASTeC/ Cockcroft Institute/ U. of Liverpool, Daresbury Laboratory, Warrington WA4 4AD, U.K. n.marks@dl.ac.uk Contents 1. Requirements. 2. Basic elements of power supplies.

More information

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments Electrical Machine / Power Electronics PE-5000 Power Electronics Training System The PE-5000 Power Electronics Training System consists of 28 experimental modules, a three-phase squirrel cage motor, load,

More information

AC VOLTAGE CONTROLLER (RMS VOLTAGE CONTROLLERS)

AC VOLTAGE CONTROLLER (RMS VOLTAGE CONTROLLERS) AC VOLTAGE CONTROLLER (RMS VOLTAGE CONTROLLERS) INTRODUCTION AC voltage controllers (AC line voltage controllers): are employed to vary the RMS value of the alternating voltage applied to a load circuit

More information

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF TECHNOLOGY UNIVERSITY OF TECHNOLOGY Third Year DEPARTMENT OF ELECTRICAL ENGINEERING Electronics Engineering Section AC Machine and Power Electronics 2016-2017 Module-II: Power Electronics: Power electronics devices

More information

EPC2201 Power Electronic Devices Tutorial Sheet

EPC2201 Power Electronic Devices Tutorial Sheet EPC2201 Power Electronic Devices Tutorial heet 1. The ON state forward voltage drop of the controlled static switch in Figure 1 is 2V. Its forward leakage current in the state is 2mA. It is operated with

More information

MODELING AND SIMULATION OF Z- SOURCE INVERTER

MODELING AND SIMULATION OF Z- SOURCE INVERTER From the SelectedWorks of suresh L 212 MODELING AND SIMULATION OF Z- SOURCE INVERTER suresh L Available at: https://works.bepress.com/suresh_l/1/ MODELING AND SIMULATION OF Z-SOURCE INVERTER 1 SURESH L.,

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version 2 EE IIT, Kharagpur 1 Lesson 31 Three-ase to Threease Cyclo-converters Version 2 EE IIT, Kharagpur 2 Instructional Objectives Study of the following: The three-ase

More information

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1 Module 3 DC to DC Converters Version 2 EE IIT, Kharagpur 1 Lesson 2 Commutation of Thyristor-Based Circuits Part-II Version 2 EE IIT, Kharagpur 2 This lesson provides the reader the following: (i) (ii)

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK IMPLEMENTATION OF VOLTAGE DOUBLERS RECTIFIED BOOST- INTEGRATED HALF BRIDGE (VDRBHB)

More information