3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

Size: px
Start display at page:

Download "3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)"

Transcription

1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6503 POWER ELECTRONICS UNIT I- POWER SEMI-CONDUCTOR DEVICES PART - A 1. What is a SCR? A silicon-controlled rectifier (SCR) is a three terminal, three-junction semiconductor device that acts as a true electronic switch. It is a unidirectional device. It control the amount of power fed to the load. 2. Define break over voltage of SCR. Break over voltage is defined as the minimum forward voltage (gate being open) at which the SCR starts conducting heavily. 3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016) 4. List the applications of SCR. (i) It can be used as a speed controller in DC and AC motors (ii)it can be used as inverter. (iii) It can be used as converter. (iv)it is used in battery charges. (v) It is used for phase control and heater control. (vi)it is used in light dimming control circuits. 5. What is meant by latching current & holding current? (Nov-Dec 2012)(Jun 2014) (MAY 2016) Latching current is the minimum anode current required to maintain the thyristor in the on State immediately after a thyristor has been turned on and gate signal has been removed.holding current is the minimum anode current to maintain the thyristor in the on state.

2 6. Draw the VI characteristics of a SCR and mark important points. 7. What is meant by switching losses in devices.?(dec 2015) The losses that occur during turning on and turning off of the devices is known as switching losses 8. What is a TRIAC? Triac is a three terminal bi-directional semiconductor-switching device. It can conduct in both the directions for any desired period. In operation it is equivalent to two SCR s connected in ant parallel. Next to SCR it is the widely used device for power control. 9. Why Triac not popular compared to SCR?Justify. Commutation of Triac in inductive load is difficult when compared to SCR. Hence it is not popular. 10. What is power MOSFET? A power MOSFET is a voltage-controlled device and requires only a small input current. The switching speed is very high and the switching times are of the order of nanoseconds. 11.Explain the importance of threshold voltage in gate circuit When the voltage Vgs is increased beyond threshold voltage, the device starts to conduct and the current will be increased from zero. 12.Draw the volt-ampere characteristic of a Triac.(MAY 2015)

3 13.Distinguish between SCR and TRIAC.(Dec 2014) S.N SCR TRIAC o 1 It is unidirectional device It is a bidirectional device 2 It has fast turn off time It has comparatively longer turn off time 3 It can be used to switch AC It can be used to switch AC supply frequencies upto supply frequencies upto few KHz 40Hz only 4 It is triggered by positive voltage applied to the gate It is triggered by either positive or negative voltage applied to the gate. 14.Draw the construction, equivalent circuit and symbol of Triac. 15.What is the common method used for di / dt protection? The value of the di / dt can be maintained below acceptable limit by using a small inductor called di / dt inductor in series with the anode circuit. 16.What are the advantages of IGBTs? (Nov-Dec 2016) The main advantages of using the Insulated Gate Bipolar Transistor over other types of transistor devices are its high voltage capability, low ON-resistance, ease of drive, relatively fast switching speeds and combined with zero gate drive current makes it a good choice for moderate speed, high voltage applications

4 17. Define pinch off voltage of MOSFET (May-June 2012) Maximum drain source voltage beyond which the drain current becomes constant is called pinch-off voltage of MOSFET. 18.What are the drawbacks of GTO? (Nov-Dec 2012) *Mechanical Stress is high *On & off pulse required *very high switching frequency 19. Why are IGBT becoming popular in their application to controlled converters?(may-june 2012) (i)they have high input gate impedance. (ii).they have low conduction loss.(iii).they have fast switching characteristics.(iv).they have very high operating frequency. 20. What is the limitation of high frequency operation of a power electronic device?( June 2013) (i) More switching losses (ii) Electro magnetic interference 21. What is the use of snubber circuit? (June 2013) (Nov 2013)(DEC 2015) (Nov-Dec 2016) Snubber circuit is used to prevent failure due to dv/dt. Snubber uses a small resistor (R) in series with a small capacitor (C). This combination can be used to suppress the rapid rise in voltage across a thyristor, preventing the erroneous turnon of the thyristor. 22. List the various forced commutation techniques used to turn off SCR (Nov 2013) Self commutation (ii) Resonant pulse commutation (iii) Complementary commutation(iv)impulse commutation (v)external commutation (vi)load commutation (vii) Line commutation 23. What is meant by current commutation of SCR?(Dec 2014) To turn OFF a thyristor, the forward anode current should be brought to zero for sufficient time to allow the removal of charged carriers. In case of DC circuits the forward current should be forced to zero by means of some external circuits. This process is called as Current Commutation. 24. Compare MOSFET and BJT?(Jun 2014) S.No MOSFET BJT 1 Output current is controlled by input gate voltage Output current is controlled by input base current 2 More expensive Lower cost 3 Very high current gain and is nearly constant Lower current gain and is not constant 4 Input resistance is very high Input resistance is low.

5 PART-B 1. Explain the switching model, equivalent circuit and switching characteristics of power MOSFET.?(MAY 2015) (Nov-Dec 2016) BJT is a current controlled device and MOSFET is a Voltage controlled device Its flow depends upon Majority carriers only, MOSFET is a unipolar device Base current or control signal required in MOSFET is lesser than BJT This is because of high gate circuit impedance of MOSFET when compared to BJT. So we can directly connect MOSFET to microelectronic circuits Low power high frequency converter Types: n-channel enhancement MOSFET p-channel enhancement MOSFET n-channel enhancement MOSFET is more common because of higher mobility of electrons. Without a gate-to-source voltage applied, no current can flow between the source and drain regions.

6 Above a certain gate-to-source voltage (threshold voltage VT), a conducting layer of mobile electrons is formed at the Si surface beneath the oxide. These electrons can carry current between the source and drain.

7 Turn on process: Turn on time is defined as the sum of turn-on delay time and rise time of the device Turn on delay time Tdn :During turn-on delay time Tdn period the input capacitance charges to the gate threshold voltage Vgst and the drain current is zero Rise Time Tr :During rise time period, gate voltage rise to Vgsp-it is the gate source peak voltage, this voltage is sufficient to drive the MOSFET into On state, then drain current increases from 0 to full value of current Id.Thus the total turn on time is Ton = Tdn+ Tr.The turn on time can be reduced by using low impedance gate drive circuit Turn-off process : It is initiated by the removal of gate source voltage Vgs at time t1,because MOSFET is a majority carrier device. The Turn off time is the sum of Turn off delay time Tdf and fall timetf Turn off delay time Tdf::During this period, the input capacitance discharges from overdrive gate voltage v1<= V gsp but drain current Id does not change Fall time Tf : During this time period, the input capacitance discharges from Vgsp to threshold voltage Vgst, then the drain current fall from Id to zero, so when Vgs<=Vgst power MOSFET Turn off is completed.toff=tdf+tf 2. Explain the static and switching characteristics of IGBT and MOSFET?(DEC- 2012)(DEC 2014)(JUN 2014)

8

9 SWITCHING CHARACTERISTICS OF IGBT The switching characteristics of an IGBT are very much similar to that of a Power MOSFET. The major difference from Power MOSFET is that it has a tailing collector current due to the stored charge in the N--drift region. The tail current increases the turn-off loss and requires an increase in the dead time between the conduction of two devices in a half-bridge circuit. The Figure 8 shows a test circuit for switching characteristics and the Figure 9 shows the corresponding current and voltage turn-on and turn-off waveforms. IXYS IGBTs are tested with a gate voltage switched from +15V to 0V. To reduce switching losses, it is recommended to switch off the gate with a negative voltage (-15V).

10 The turn-off speed of an IGBT is limited by the lifetime of the stored charge or minority carriers in the N--drift region which is the base of the parasitic PNP transistor. The base is not accessible physically thus the external means can not be applied to sweep out the stored charge from the N--drift region to improve the switching time. The only way the stored charge can be removed is by recombination within the IGBT. Traditional lifetime killing techniques or an N+ buffer layer to collect the minority charges at turnoff are commonly used to speed-up recombination time. Switching characteristics of MOSFET Turn on process: Turn on time is defined as the sum of turn-on delay time and risetime of the device Turn on delay time Tdn :During turn-on delay time Tdn period the input capacitance charges to the gate threshold voltage Vgst and the drain current is zero Rise Time Tr :During rise time period, gate voltage rise to Vgsp-it is the gate soure peak voltage, this voltage is sufficient to drive the MOSFET into On state,then drain current increases from 0 to full value of current Id.Thus the total turn on time is Ton = Tdn+ Tr.The turn on time can be reduced by using low impedance gatedrive circuit Turn-off process : It is initiated by the removal of gate source voltage Vgs at time t1,because MOSFET is a majority carrier device.the Turn off time is the sum of Turn off delaytime Tdf and fall timetf Turn off delaytime Tdf::During this period, the input capacitance descharges from overdrive gate voltage v1<= Vgsp but drain current Id doesnot change

11 Fall timetf : During this time period, the input capacitance discharges from Vgsp to threshold voltage Vgst, then the drain current fall from Id to zero, so when Vgs<=Vgst power MOSFET Turn off is completed.toff=tdf+tf 3. Describe about any one driver circuit and snubber circuit for MOSFET & IGBT.?(JUN 2012)(JUN 2014) (Nov-Dec 2016) To turn the MOSFET on the logic level input to the inverting buffer is set to high state so that transistor Q3 turns off and Q1 turns on. The top circuit of Fig 6.10 (b) shows the equivalent circuit during turn on. Note that, during turn on Q1 remains in the active region. The effective gate resistance is RG + R1 / (β1 + 1). Where, β1 is the dc current gain of Q1. To turn off the MOSFET the logic level input is set to low state. Q3 and Q2 turns on whole Q1 turns off. The corresponding equivalent circuit is given by the bottom circuit of Fig 6.10 (b). The switching time of the MOSFET can be adjusted by choosing a proper value of RG. Reducing RG will incase the switching speed of the MOSFET. However, caution should be exercised while increasing the switching speed of the MOSFET in order not to turn on the parasitic BJT in the MOSFET structure inadvertently. The drain-source capacitance (CDS) is actually connected to the base of the parasitic BJT at the p type body region. The body source short has some nonzero resistance. A very fast rising drain-source voltage will send sufficient displacement current through CDS and RB as shown in Fig 6.10 (c). The voltage drop across RB may become sufficient to turn on the parasitic BJT. This problem is

12 largely avoided in a modern MOSFET design by increasing the effectiveness of the body-source short. The devices are now capable of dvds/dt in excess to 10,000 V/μs. Of course, this problem can also be avoided by slowing down the MOSFET switching speed. Since MOSFET on state resistance has positive temperature coefficient they can be paralleled without taking any special precaution for equal current sharing. To parallel two MOSFETs the drain and source terminals are connected together as shown in Fig 6.10 (d). However, small resistances (R) are connected to individual gates before joining them together. This is because the gate inputs are highly capacitive with almost no losses. Some stray inductance of wiring may however be present. This stray inductance and the MOSFET capacitance can give rise to unwanted high frequency oscillation of the gate voltage that can result in puncture of the gate qxide layer due to voltage increase during oscillations. This is avoided by the damping resistance R.The logic level gate drive signal is first optoisolated and fed to a level shifting comparator. This stage converts the unipolar (usually positive) output voltage of the opto-isolator to a bipolar (±Vgg ) signal compatible to the IGBT gate drive levels. The output of the comparator feeds a totem pole output amplifier stage which drives the IGBT. 4. Explain why triac is rarely used in I quadrant with negative pulse and in III quadrant with positive pulse.(jun 2012) Four different possibilities of operation of triac exists. They are: 1. Terminal MT2 and gate are positive with respect to terminal MT1: When terminal MT2 is positive with respect to terminal MT1 current flows through path P1-N1-P2-N2. The two junctions P1-N1 and P2-N2 are forward biased whereas junction N1 P2 is blocked. The triac is now said to be positively biased. A positive gate with respect to terminal MT1 forward biases the junction P2-N2 and the breakdown occurs as in a normal SCR.

13 2. Terminal MT2 is positive but gate is negative with respect to terminal MT1: Though theflow path of current remains the same as in mode 1 but now junction P2- N3 is forward biased and current carriers injected into P2 turn on the triac. 3.Terminal MT2 and gate are negative with respect to terminal MT1: When terminal MT2isnegative with respect to terminal MT1, the current flow path is P2- N1-P1-N4. The two junctions P2-N1 and P1 - N4 are forward biased whereas junction N1-P1 is blocked. The triac is now said to be negatively biased. A negative gate with respect to terminal MT1 injects current carriers by forward biasing junction P2-N3 and thus initiates the conduction. 4. Terminal MT2 is negative but gate is positive with respect to terminal MT1: Though theflow path of current remains the same as in mode 3 but now junction P2- N2 is forward biased, current carriers are injected and therefore, the triac is turned on. Generally, trigger mode 4 should be avoided especially in circuits where high di/dt may occur. The sensitivity of triggering modes 2 and 3 is high and in case of marginal triggering capability negative gate pulses should be used. Though the triggering mode 1 is more sensitive compared to modes 2 and 3, it requires a positive gate trigger. However, for bidirectional control and uniform gate trigger modes 2 and 3 are preferred. 5. Describe the basic structure of IGBT and explain its working. Give its equivalent circuit and explain the turn ON and turn OFF process.(nov 2013)(MAY 2015) IGBT Fundamentals: The Insulated Gate Bipolar Transistor (IGBT) is a minoritycarrier device with high input impedance and large bipolar current-carrying capability. Many designers view IGBT as a device with MOS input characteristics and bipolar output characteristic that is a voltage-controlled bipolar device. To make use of the advantages of both Power MOSFET and BJT, the IGBT has been introduced. It s a functional integration of Power MOSFET and BJT devices in monolithic form. It combines the best attributes of both to achieve optimal device characteristics. The IGBT is suitable for many applications in power electronics, especially in Pulse Width Modulated (PWM) servo and three-phase drives requiring high dynamic range control and low noise. It also can be used in Uninterruptible Power Supplies (UPS), Switched-Mode Power Supplies (SMPS), and other power circuits requiring high switch epetition rates. IGBT improves dynamic performance

14 and efficiency and reduced the level of audible noise. It is equally suitable in resonant-mode converter circuits. Optimized IGBT is available for both low conduction loss and low switching loss. SWITCHING CHARACTERISTICS OF IGBT The switching characteristics of an IGBT are very much similar to that of a Power MOSFET. The major difference from Power MOSFET is that it has a tailing collector current due to the stored charge in the N--drift region. The tail current increases the turn-off loss and requires an increase in the dead time between the conduction of two devices in a half-bridge circuit. The Figure 8 shows a test circuit for switching characteristics and the Figure 9 shows the corresponding current and voltage turn-on and turn-off waveforms. IXYS IGBTs are tested with a gate voltage switched from +15V to 0V. To reduce switching losses, it is recommended to switch off the gate with a negative voltage (-15V).

15 6. Explain the operation of SCR using two transistor analogy?(jun 2014)(DEC 2015)(May 2016)

16 7. Explain the structure different modes of operation and characteristics of Triac. (May 2016)

17 Construction of a Triac As mentioned above, triac is a three terminal, four layer bilateral semiconductor device. It incorporates two SCRs connected in inverse parallel with a common gate terminal in a single chip device. The arrangement of the triac is shown in figure. As seen, it has six doped regions. The gate terminal G makes ohmic contacts with both the N and P materials. This permits trigger pulse of either polarity to start conduction. Electrical equivalent circuit and schematic symbol are shown in figure.b and figure.c respectively. Since the triac is a bilateral device, the term anode and cathode has no meaning, and therefore, terminals are designated as main terminal 1. (MT1), main terminal 2 (MT2) and gate G. To avoid confusion, it has become common practice to specify all voltages and currents using MT1 as the reference. Triac Basic Structure Four different possibilities of operation of triac exists. They are: 1. Terminal MT2 and gate are positive with respect to terminal MT1: When terminal MT2 is positive with respect to terminal MT1 current flows through path P1-N1-P2-N2. The two junctions P1-N1 and P2-N2 are forward biased whereas junction N1 P2 is blocked. The triac is now said to be positively biased. A positive gate with respect to terminal MT1 forward biases the junction P2-N2 and the breakdown occurs as in a normal SCR. 2. Terminal MT2 is positive but gate is negative with respect to terminal MT1: Though theflow path of current remains the same as in mode 1 but now junction P2- N3 is forward biased and current carriers injected into P2 turn on the triac. 3.Terminal MT2 and gate are negative with respect to terminal MT1: When terminal MT2isnegative with respect to terminal MT1, the current flow path is P2- N1-P1-N4. The two junctions P2-N1 and P1 - N4 are forward biased whereas junction N1-P1 is blocked. The triac is now said to be negatively biased. A negative

18 gate with respect to terminal MT1 injects current carriers by forward biasing junction P2-N3 and thus initiates the conduction. 4. Terminal MT2 is negative but gate is positive with respect to terminal MT1: Though theflow path of current remains the same as in mode 3 but now junction P2- N2 is forward biased, current carriers are injected and therefore, the triac is turned on. Generally, trigger mode 4 should be avoided especially in circuits where high di/dt may occur. The sensitivity of triggering modes 2 and 3 is high and in case of marginal triggering capability negative gate pulses should be used. Though the triggering mode 1 is more sensitive compared to modes 2 and 3, it requires a positive gate trigger. However, for bidirectional control and uniform gate trigger modes 2 and 3 are preferred.

2 Marks - Question Bank. Unit 1- INTRODUCTION

2 Marks - Question Bank. Unit 1- INTRODUCTION Two marks 1. What is power electronics? EE6503 POWER ELECTRONICS 2 Marks - Question Bank Unit 1- INTRODUCTION Power electronics is a subject that concerns the applications electronics principles into situations

More information

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics UNIVERSITY QUESTIONS Unit-1 Introduction to Power Electronics 1. Give the symbol and characteristic features of the following devices. (i) SCR (ii) GTO (iii) TRIAC (iv) IGBT (v) SIT (June 2012) 2. What

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Power Diode EE2301 POWER ELECTRONICS UNIT I POWER SEMICONDUCTOR DEVICES PART A 1. What is meant by fast recovery

More information

UNIT I POWER SEMI-CONDUCTOR DEVICES

UNIT I POWER SEMI-CONDUCTOR DEVICES UNIT I POWER SEMI-CONDUCTOR DEVICES SUBJECT CODE SUBJECT NAME STAFF NAME : EE6503 : Power Electronics : Ms.M.Uma Maheswari 1 SEMICONDUCTOR DEVICES POWER DIODE POWER TRANSISTORS POWER BJT POWER MOSFET IGBT

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

Power Electronics Power semiconductor devices. Dr. Firas Obeidat Power Electronics Power semiconductor devices Dr. Firas Obeidat 1 Table of contents 1 Introduction 2 Classifications of Power Switches 3 Power Diodes 4 Thyristors (SCRs) 5 The Triac 6 The Gate Turn-Off

More information

Learn about the use, operation and limitations of thyristors, particularly triacs, in power control

Learn about the use, operation and limitations of thyristors, particularly triacs, in power control Exotic Triacs: The Gate to Power Control Learn about the use, operation and limitations of thyristors, particularly triacs, in power control D. Mohan Kumar Modern power control systems use electronic devices

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

Other Electronic Devices

Other Electronic Devices Other Electronic Devices 1 Contents Field-Effect Transistors(FETs) - JFETs - MOSFETs Insulate Gate Bipolar Transistors(IGBTs) H-bridge driver and PWM Silicon-Controlled Rectifiers(SCRs) TRIACs Device Selection

More information

Switching and Semiconductor Switches

Switching and Semiconductor Switches 1 Switching and Semiconductor Switches 1.1 POWER FLOW CONTROL BY SWITCHES The flow of electrical energy between a fixed voltage supply and a load is often controlled by interposing a controller, as shown

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/2012-1 ATLCE - F2-2011 DDC Lesson F2:

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K. POWER ELECTRONICS S.C. Tripathy Alpha Science International Ltd. Oxford, U.K. Contents Preface vii 1. SEMICONDUCTOR DIODE THEORY 1.1 1.1 Introduction 1.1 1.2 Charge Densities in a Doped Semiconductor 1.1

More information

11. Define the term pinch off voltage of MOSFET. (May/June 2012)

11. Define the term pinch off voltage of MOSFET. (May/June 2012) Subject Code : EE6503 Branch : EEE Subject Name : Power Electronics Year/Sem. : III /V Unit - I PART-A 1. State the advantages of IGBT over MOSFET. (Nov/Dec 2008) 2. What is the function of snubber circuit?

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

Power Electronics. P. T. Krein

Power Electronics. P. T. Krein Power Electronics Day 10 Power Semiconductor Devices P. T. Krein Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 2011 Philip T. Krein. All rights reserved.

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION Sem / Branch : V /EIE Subject code /Title: EI2301/Industrial Electronics UNIT-1 POWER DEVICES 1. What are the different methods

More information

Power Electronics (Sample Questions) Module-1

Power Electronics (Sample Questions) Module-1 Module-1 Short Questions (Previous Years BPUT Questions 1 to 18) 1. What are the conditions for a thyristor to conduct? di 2. What is the common method used for protection? dt 3. What is the importance

More information

Battery Charger Circuit Using SCR

Battery Charger Circuit Using SCR Battery Charger Circuit Using SCR Introduction to SCR: SCR is abbreviation for Silicon Controlled Rectifier. SCR has three pins anode, cathode and gate as shown in the below figure. It is made up of there

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS

INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS Alvis Sokolovs, Iļja Galkins Riga Technical University, Department of Power and Electrical Engineering Kronvalda blvd.

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Power Electronics (BEG335EC )

Power Electronics (BEG335EC ) 1 Power Electronics (BEG335EC ) 2 PURWANCHAL UNIVERSITY V SEMESTER FINAL EXAMINATION - 2003 The figures in margin indicate full marks. Attempt any FIVE questions. Q. [1] [a] A single phase full converter

More information

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware).

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware). (Scheme-2013) List of Experiments 1. Steady state characteristics of SCR, IGBT and MOSFET 2. nalog and digital firing methods for SCR (Single phase half wave rectifier). (Simulation and hardware). 3. Full

More information

Lecture 23 Review of Emerging and Traditional Solid State Switches

Lecture 23 Review of Emerging and Traditional Solid State Switches Lecture 23 Review of Emerging and Traditional Solid State Switches 1 A. Solid State Switches 1. Circuit conditions and circuit controlled switches A. Silicon Diode B. Silicon Carbide Diodes 2. Control

More information

Prof. Steven S. Saliterman Introductory Medical Device Prototyping

Prof. Steven S. Saliterman Introductory Medical Device Prototyping Introductory Medical Device Prototyping Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Solid state power switching: Silicon controlled rectifiers (SCR or Thyristor).

More information

Analysis on IGBT Developments

Analysis on IGBT Developments Analysis on IGBT Developments Mahato G.C., Niranjan and Waquar Aarif Abu RVS College of Engineering and Technology, Jamshedpur India Abstract Silicon based high power devices continue to play an important

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

UNIT II JFET, MOSFET, SCR & UJT

UNIT II JFET, MOSFET, SCR & UJT UNIT II JFET, MOSFET, SCR & UJT JFET JFET as an Amplifier and its Output Characteristics JFET Applications MOSFET Working Principles, SCR Equivalent Circuit and V-I Characteristics. SCR as a Half wave

More information

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1 Module 1 Power Semiconductor evices Version 2 EE IIT, Kharagpur 1 Lesson 6 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Version 2 EE IIT, Kharagpur 2 Constructional Features, operating principle

More information

EC 307 Power Electronics & Instrumentation

EC 307 Power Electronics & Instrumentation EC 307 Power Electronics & Instrumentation MODULE I Difference Between Linear Electronics and Power Electronics Electronics has now become the core component in the development of the technology. The fast

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

http://www.electronics-tutorials.ws/power/triac.html Triac Tutorial and Basic Principles In the previous tutorial we looked at the construction and operation of the Silicon Controlled Rectifier more commonly

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER EE6503 - POWER ELECTRONICS Regulation 2013

More information

Teccor brand Thyristors AN1001

Teccor brand Thyristors AN1001 A1001 Introduction The Thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and DIACs.

More information

EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview

EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview Objectives of Lecture Switch realizations Objective is to focus on terminal characteristics Blocking capability

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-000 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name : POWER ELECTRONICS Course Code : AEE0

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

UNIT I POWER SEMICONDUCTOR DEVICES. Ref signal Control Digital Power Load Circuit Circuit Electronic circuit. Feedback Signal

UNIT I POWER SEMICONDUCTOR DEVICES. Ref signal Control Digital Power Load Circuit Circuit Electronic circuit. Feedback Signal UNIT I POWER SEMICONDUCTOR DEICES The control of electric motor drives requires control of electric power. Power electronics have eased the concept of power control. Power electronics signifies the word

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Electrical Engineering EE / EEE Postal Correspondence Course Power Electronics GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 2 C O N T

More information

Chapter 1 Power Electronic Devices

Chapter 1 Power Electronic Devices Chapter 1 Power Electronic Devices Outline 1.1 An introductory overview of power electronic devices 1.2 Uncontrolled device power diode 1.3 Half- controlled device thyristor 1.4 Typical fully- controlled

More information

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF TECHNOLOGY UNIVERSITY OF TECHNOLOGY Third Year DEPARTMENT OF ELECTRICAL ENGINEERING Electronics Engineering Section AC Machine and Power Electronics 2016-2017 Module-II: Power Electronics: Power electronics devices

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Power Electronics. Lecture No - 8

Power Electronics. Lecture No - 8 Power Electronics Prof. B.G. Fernandes Department of Electrical Engineeringg Indian Institute of Technology, Bombay Lecture No - 8 Hello, in my last class we discussed the operation of bipolar junctionn

More information

BREAKDOWN DEVICES. Learning Objectives

BREAKDOWN DEVICES. Learning Objectives C H A P T E R64 Learning Objectives What are Breakdown Devices? Unijunction Transistor UJT Relaxation Oscillator Programmable UJT(PUT) Silicon Controlled Rectifier Comparison between Transistors and Thyristors

More information

SCR- SILICON CONTROLLED RECTIFIER

SCR- SILICON CONTROLLED RECTIFIER SCR- SILICON CONTROLLED RECTIFIER Definition: When a pn junction is added to a junction transistor, the resulting three pn junction device is called a silicon controlled rectifier. SCR can change alternating

More information

SiC-JFET in half-bridge configuration parasitic turn-on at

SiC-JFET in half-bridge configuration parasitic turn-on at SiC-JFET in half-bridge configuration parasitic turn-on at current commutation Daniel Heer, Infineon Technologies AG, Germany, Daniel.Heer@Infineon.com Dr. Reinhold Bayerer, Infineon Technologies AG, Germany,

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

Insulated Gate Bipolar Transistor (IGBT)

Insulated Gate Bipolar Transistor (IGBT) nsulated Gate Bipolar Transistor (GBT) Comparison between BJT and MOS power devices: BJT MOS pros cons pros cons low V O thermal instability thermal stability high R O at V MAX > 400 V high C current complex

More information

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16]

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16] Code No: 07A50204 R07 Set No. 2 1. A single phase fully controlled bridge converter is operated from 230 v, 50 Hz source. The load consists of 10Ω and a large inductance so as to reach the load current

More information

Power semiconductors. José M. Cámara V 1.0

Power semiconductors. José M. Cámara V 1.0 Power semiconductors José M. Cámara V 1.0 Introduction Here we are going to study semiconductor devices used in power electronics. They work under medium and high currents and voltages. Some of them only

More information

SYED AMMAL ENGINEERING COLLEGE

SYED AMMAL ENGINEERING COLLEGE SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I Commutation of Thyristor-Based Circuits Part-I ١ This lesson provides the reader the following: (i) (ii) (iii) (iv) Requirements to be satisfied for the successful turn-off of a SCR The turn-off groups

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics Calhoon MEBA Engineering School Study Guide for Proficiency Testing Industrial Electronics January 0. Which factors affect the end-to-end resistance of a metallic conductor?. A waveform shows three complete

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

TRANSISTOR TRANSISTOR

TRANSISTOR TRANSISTOR It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

AN1001. Fundamental Characteristics of Thyristors. Introduction. Basic Operation of a Triac. Basic Operation of an SCR. Basic Operation of a Diac

AN1001. Fundamental Characteristics of Thyristors. Introduction. Basic Operation of a Triac. Basic Operation of an SCR. Basic Operation of a Diac A1001 Fundamental Characteristics of Thyristors 14 Introduction The thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled

More information

Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 39 Silicon Controlled Rectifier (SCR) (Construction, characteristics (Dc & Ac), Applications,

More information

Today s subject MOSFET and IGBT

Today s subject MOSFET and IGBT Today s subject MOSFET and IGBT 2018-05-22 MOSFET metal oxide semiconductor field effect transistor Drain Gate n-channel Source p-channel The MOSFET - Source Gate G D n + p p n + S body body n - drift

More information

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F3 - Actuator driving» Driving BJT switches» Driving MOS-FET» SOA and protection» Smart switches 29/06/2011-1 ATLCE - F3-2011

More information

PCB layout guidelines. From the IGBT team at IR September 2012

PCB layout guidelines. From the IGBT team at IR September 2012 PCB layout guidelines From the IGBT team at IR September 2012 1 PCB layout and parasitics Parasitics (unwanted L, R, C) have much influence on switching waveforms and losses. The IGBT itself has its own

More information

Solid State Devices (2)

Solid State Devices (2) Solid State Devices (2) Daniel Kohn University of Memphis Department of Engineering Technology TECH 3821 Industrial Electronics Fall 2015 Opto Isolators An optoisolator (also known as optical coupler,

More information

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture Note on Switches Marc T. Thompson, 2003 Revised 2007 Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture note on switches_tan_thompsonpage 1 of 21 1. DEVICES OVERVIEW... 4 1.1.

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE: POWER ELECTRONICS BRANCH: EEE CLASS: VI Sem. YEAR: 2014-15 By Harikesh Rawat INDEX S. NO. CONTENT PAGE NO. 1 UNIT I: POWER SEMICONDUCTOR 3-32

More information

7 Driving Transistors and Thyristors

7 Driving Transistors and Thyristors 7 Driving Transistors and Thyristors The thyristor, being a multiple bipolar junction device, is essentially a currentcontrolled device. As illustrated in figure 7.la, a current must be supplied between

More information

AN1491 APPLICATION NOTE

AN1491 APPLICATION NOTE AN1491 APPLICATION NOTE IGBT BASICS M. Aleo (mario.aleo@st.com) 1. INTRODUCTION. IGBTs (Insulated Gate Bipolar Transistors) combine the simplicity of drive and the excellent fast switching capability of

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

DC Link. Charge Controller/ DC-DC Converter. Gate Driver. Battery Cells. System Controller

DC Link. Charge Controller/ DC-DC Converter. Gate Driver. Battery Cells. System Controller Integrate Protection with Isolation In Home Renewable Energy Systems Whitepaper Home energy systems based on renewable sources such as solar and wind power are becoming more popular among consumers and

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

8/4/2011. Electric Machines & Drives. Chapter 21 Example of gating pulses on SCR condition

8/4/2011. Electric Machines & Drives. Chapter 21 Example of gating pulses on SCR condition Welcome to Electric Machines & Drives thomasblairpe.com/emd Session 10 Fundamental Elements of Power Electronics (Part 2) USF Polytechnic Engineering tom@thomasblairpe.com Session 10: Power Electronics

More information

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati ELECTRONIC DEVICES AND CIRCUITS LABORATORY MANUAL Subject Code : 17CA04305 Regulations : R17 Class : III Semester (ECE) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta

More information

1 Basics V GG. V GS(th) V GE(th) , i C. i D I L. v DS. , v CE V DD V CC. V DS(on) VCE(sat) (IGBT) I t MOSFET MOSFET.

1 Basics V GG. V GS(th) V GE(th) , i C. i D I L. v DS. , v CE V DD V CC. V DS(on) VCE(sat) (IGBT) I t MOSFET MOSFET. Reverse operation During reverse operation (Figure 1.10, III rd quadrant) the IGBT collector pn-junction is poled in reverse direction and there is no inverse conductivity, other than with MOSFETs. Although,

More information

EE 330 Lecture 27. Bipolar Processes. Special Bipolar Processes. Comparison of MOS and Bipolar Proces JFET. Thyristors SCR TRIAC

EE 330 Lecture 27. Bipolar Processes. Special Bipolar Processes. Comparison of MOS and Bipolar Proces JFET. Thyristors SCR TRIAC EE 330 Lecture 27 Bipolar Processes Comparison of MOS and Bipolar Proces JFET Special Bipolar Processes Thyristors SCR TRIAC Review from a Previous Lecture B C E E C vertical npn B A-A Section B C E C

More information

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1 Module 1 Power Semiconductor Devices Version EE IIT, Kharagpur 1 Lesson 8 Hard and Soft Switching of Power Semiconductors Version EE IIT, Kharagpur This lesson provides the reader the following (i) (ii)

More information

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER 1 PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER Prasanna kumar N. & Dileep sagar N. prasukumar@gmail.com & dileepsagar.n@gmail.com RGMCET, NANDYAL CONTENTS I. ABSTRACT -03- II. INTRODUCTION

More information

EC6202- ELECTRONIC DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT- 1 PN JUNCTION DEVICES

EC6202- ELECTRONIC DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT- 1 PN JUNCTION DEVICES EC6202- ELECTRONIC DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT- 1 PN JUNCTION DEVICES 1. What is an ideal diode? An ideal diode is one which offers zero resistance when forward biased and

More information

Unijunction Transistor. T.Y.B.Sc - Eletronics POWER ELETRONICS

Unijunction Transistor. T.Y.B.Sc - Eletronics POWER ELETRONICS Unijunction Transistor T.Y.B.Sc - Eletronics POWER ELETRONICS Unijunction Transistor Symbol and Construction The Unijunction Transistor is solid state three terminal device that can be used in gate pulse,

More information

Lecture - 18 Transistors

Lecture - 18 Transistors Electronic Materials, Devices and Fabrication Dr. S. Prarasuraman Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Lecture - 18 Transistors Last couple of classes

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION High performance semiconductor devices with better voltage and current handling capability are required in different fields like power electronics, computer and automation. Since

More information

1. Introduction Device structure and operation Structure Operation...

1. Introduction Device structure and operation Structure Operation... Application Note 96 February, 2 IGBT Basics by K.S. Oh CONTENTS. Introduction... 2. Device structure and operation... 2-. Structure... 2-2. Operation... 3. Basic Characteristics... 3-. Advantages, Disadvantages

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTU,Kakinada) Jonnada (Village), Denkada (Mandal), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241112 E-Mail: lendi_2008@yahoo.com

More information

Power Electronics. Contents

Power Electronics. Contents Power Electronics Overview Contents Electronic Devices Power, Electric, Magnetic circuits Rectifiers (1-ph, 3-ph) Converters, controlled rectifiers Inverters (1-ph, 3-ph) Power system harmonics Choppers

More information

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p.

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p. Preface p. vii Careers in Electronics p. xii Using a Calculator p. xvi Safety Precautions p. xix Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p. 4 A Closer Look at

More information

Z Source Inverter for Fuel Cells

Z Source Inverter for Fuel Cells Z Source Inverter for Fuel Cells Basharat Nizam K L University, Guntur District 1. ABSTRACT This paper presents a Z-source converter also known as impedance-source (or impedance-fed) power converter and

More information

Electrostatic Discharge and Latch-Up

Electrostatic Discharge and Latch-Up Connexions module: m1031 1 Electrostatic Discharge and Latch-Up Version 2.10: Jul 3, 2003 12:00 am GMT-5 Bill Wilson This work is produced by The Connexions Project and licensed under the Creative Commons

More information

NZQA unit standard version 2 Page 1 of 6. Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians

NZQA unit standard version 2 Page 1 of 6. Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians Page 1 of 6 Title Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians Level 3 Credits 12 Purpose This unit standard covers an introduction to digital and

More information