You analyzed graphs of functions. (Lesson 1-5)

Size: px
Start display at page:

Download "You analyzed graphs of functions. (Lesson 1-5)"

Transcription

1

2 You analyzed graphs of functions. (Lesson 1-5) LEQ: How do we graph transformations of the sine and cosine functions & use sinusoidal functions to solve problems?

3 sinusoid amplitude frequency phase shift vertical shift midline

4

5

6 Graph Vertical Dilations of Sinusoidal Functions Describe how the graphs of f(x) = sin x and g(x) = 2.5 sin x are related. Then find the amplitude of g(x), and sketch two periods of both functions on the same coordinate axes. The graph of g(x) is the graph of f(x) expanded vertically. The amplitude of g(x) is 2.5 or 2.5.

7 Graph Vertical Dilations of Sinusoidal Functions Create a table listing the coordinates of the x-intercepts and extrema for f(x) = sin x for one period on [0, 2π]. Then use the amplitude of g(x) to find corresponding points on its graph.

8 Graph Vertical Dilations of Sinusoidal Functions Sketch the curve through the indicated points for each function. Then repeat the pattern suggested by one period of each graph to complete a second period on [2π, 4π]. Extend each curve to the left and right to indicate that the curve continues in both directions.

9 Answer: Graph Vertical Dilations of Sinusoidal Functions The graph of g(x) is the graph of f(x) expanded vertically. The amplitude of g(x) is 2.5.

10 Describe how the graphs of f(x) = cos x and g(x) = 5 cos x are related. A. The graph of g(x) is the graph of f(x) compressed horizontally. B. The graph of g(x) is the graph of f(x) compressed vertically. C. The graph of g(x) is the graph of f(x) expanded horizontally. D. The graph of g(x) is the graph of f(x) expanded vertically.

11 Graph Reflections of Sinusoidal Functions Describe how the graphs of f(x) = cos x and g(x) = 2 cos x are related. Then find the amplitude of g(x), and sketch two periods of both functions on the same coordinate axes. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the x-axis. The amplitude of g(x) is 2 or 2.

12 Graph Reflections of Sinusoidal Functions Create a table listing the coordinates of key points of f(x) = cos x for one period on [0, 2π]. Use the amplitude of g(x) to find corresponding points on the graph of y = 2 cos x. Then reflect these points in the x-axis to find corresponding points on the graph of g(x).

13 Graph Reflections of Sinusoidal Functions Sketch the curve through the indicated points for each function. Then repeat the pattern suggested by one period of each graph to complete a second period on [2π, 4π]. Extend each curve to the left and right to indicate that the curve continues in both directions.

14 Graph Reflections of Sinusoidal Functions Answer: The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the x-axis. The amplitude of g(x) is 2.

15 Describe how the graphs of f(x) = cos x and g(x) = 6 cos x are related. A. The graph of g(x) is the graph of f(x) expanded horizontally and then reflected in the y-axis. B. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the x-axis. C. The graph of g(x) is the graph of f(x) expanded horizontally and then reflected in the x-axis. D. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the y-axis.

16

17 Graph Horizontal Dilations of Sinusoidal Functions Describe how the graphs of f(x) = cos x and g(x) = cos are related. Then find the period of g(x), and sketch at least one period of both functions on the same coordinate axes. Because cos = cos, the graph of g(x) is the graph of f(x) expanded horizontally. The period of g(x) is

18 Graph Horizontal Dilations of Sinusoidal Functions Because the period of g(x) is 16π, to find corresponding points on the graph of g(x), change the x-coordinates of those key points on f(x) so that they range from 0 to 16π, increasing by increments of

19 Graph Horizontal Dilations of Sinusoidal Functions Sketch the curve through the indicated points for each function, continuing the patterns to complete one full cycle of each.

20 Answer: Graph Horizontal Dilations of Sinusoidal Functions The graph of g(x) is the graph of f(x) expanded horizontally by a factor of 8. The period of g(x) is 16π.

21 Describe how the graphs of f(x) = sin x and g(x) = sin 4x are related. A. The graph of g(x) is the graph of f(x) expanded vertically. B. The graph of g(x) is the graph of f(x) expanded horizontally. C. The graph of g(x) is the graph of f(x) compressed vertically. D. The graph of g(x) is the graph of f(x) compressed horizontally.

22

23 Use Frequency to Write a Sinusoidal Function MUSIC A bass tuba can hit a note with a frequency of 50 cycles per second (50 hertz) and an amplitude of Write an equation for a cosine function that can be used to model the initial behavior of the sound wave associated with the note. The general form of the equation will be y = a cos bt, where t is the time in seconds. Because the amplitude is 0.75, a = This means that a = ±0.75. The period is the reciprocal of the frequency or. Use this value to find b.

24 Use Frequency to Write a Sinusoidal Function Period formula period = b = 2π(50) or 100π Solve for b. Solve for b. By arbitrarily choosing the positive values of a and b, one cosine function that models the initial behavior is y = 0.75 cos 100πt. Answer: Sample answer: y = 0.75 cos 100πt

25 MUSIC In the equal tempered scale, F sharp has a frequency of 740 hertz. Write an equation for a sine function that can be used to model the initial behavior of the sound wave associated with F sharp having an amplitude of 0.2. A. y = 0.2 sin 1480πt B. y = 0.2 sin 740πt C. y = 0.4 sin 370πt D. y = 0.1 sin 74πt

26

27 Amplitude: a = 2 or 2 Graph Horizontal Translations of Sinusoidal Functions State the amplitude, period, frequency, and phase shift of of the function.. Then graph two periods In this function, a = 2, b = 5, and c =. Frequency: Period:

28 Graph Horizontal Translations of Sinusoidal Functions Phase shift: To graph, consider the graph of y = 2 sin 5x. The period of this function is. Create a table listing the coordinates of key points of y = 2 sin 5x on the interval. To account for a phase shift of, subtract from the x-values of each of the key points for the graph of y = 2 sin 5x.

29 Graph Horizontal Translations of Sinusoidal Functions Sketch the graph of y = 2 sin through these points, continuing the pattern to complete two cycles.

30 Graph Horizontal Translations of Sinusoidal Functions Answer: amplitude = 2; period = ; frequency = ; phase shift =

31 State the amplitude, period, frequency, and phase shift of y = 4 cos A. amplitude: 4, period:, frequency:,phase shift: B. amplitude:, period: 3, frequency:, phase shift: C. amplitude: 4, period: 6π, frequency:, phase shift: D. amplitude: 4, period:, frequency:, phase shift:

32 Graph Vertical Translations of Sinusoidal Functions State the amplitude, period, frequency, phase shift, and vertical shift of y = sin (x + π) + 1. Then graph two periods of the function. In this function, a = 1, b = 1, c = π, and d = 1. Amplitude: a = 1 or 1 Period: Frequency: Phase shift: Vertical shift: d or 1 Midline: y = d or y = 1

33 Graph Vertical Translations of Sinusoidal Functions Answer: amplitude = 1; period = 2π; frequency = ; phase shift = π; vertical shift = 1

34 State the amplitude, period, frequency, phase shift, and vertical shift of. A. amplitude: 3, period:, frequency:, phase shift:, vertical shift: 2 B. amplitude: 3, period:, frequency:, phase shift:, vertical shift: 2 C. amplitude: 3, period:, frequency:, phase shift:, vertical shift: 2 D. amplitude: 3, period:, frequency:, phase shift:, vertical shift: 2

35

36 Modeling Data Using a Sinusoidal Function METEOROLOGY The tides in the Bay of Fundy, in New Brunswick, Canada, have extreme highs and lows everyday. The table shows the high tides for one lunar month. Write a trigonometric function that models the height of the tides as a function of time x, where x = 1 represents the first day of the month.

37 Step 1 Modeling Data Using a Sinusoidal Function Make a scatter plot of the data and choose a model. The graph appears wave-like, so you can use a sinusoidal function of the form y = a sin (bx + c) + d or y = a cos (bx + c) + d to model the data. We will choose to use y = a cos (bx + c) + d to model the data.

38 Step 2 Modeling Data Using a Sinusoidal Function Find the maximum M and minimum m values of the data, and use these values to find a, b, c, and d. The maximum and minimum heights are 28.0 and 23.3, respectively. The amplitude a is half of the distance between the extrema. a = The vertical shift d is the average of the maximum and minimum data values.

39 Modeling Data Using a Sinusoidal Function A sinusoid completes half of a period in the time it takes to go from its maximum to its minimum value. One period is twice this time. Period = 2(x max x min ) = 2(17 10) or 14 x max = day 17 and x min = day 10 Because the period equals, you can write b = Therefore, b =

40 Modeling Data Using a Sinusoidal Function The maximum data value occurs when x = 17. Since y = cos x attains its first maximum when x = 0, we must apply a phase shift of 17 0 or 17 units. Use this value to find c. Phase shift formula Phase shift = 17 and b = Solve for c.

41 Step 3 Modeling Data Using a Sinusoidal Function Write the function using the values for a, b, c, and d. Use b =. y = 2.35 cos model for the height of the tides. is one Answer:

42 TEMPERATURES The table shows the average monthly high temperatures for Chicago. Write a function that models the high temperatures using x = 1 to represent January. A. B. C. D.

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs Chapter 5: Trigonometric Functions and Graphs 1 Chapter 5 5.1 Graphing Sine and Cosine Functions Pages 222 237 Complete the following table using your calculator. Round answers to the nearest tenth. 2

More information

4-4 Graphing Sine and Cosine Functions

4-4 Graphing Sine and Cosine Functions Describe how the graphs of f (x) and g(x) are related. Then find the amplitude of g(x), and sketch two periods of both functions on the same coordinate axes. 1. f (x) = sin x; g(x) = sin x The graph of

More information

Graphing Sine and Cosine

Graphing Sine and Cosine The problem with average monthly temperatures on the preview worksheet is an example of a periodic function. Periodic functions are defined on p.254 Periodic functions repeat themselves each period. The

More information

The Sine Function. Precalculus: Graphs of Sine and Cosine

The Sine Function. Precalculus: Graphs of Sine and Cosine Concepts: Graphs of Sine, Cosine, Sinusoids, Terminology (amplitude, period, phase shift, frequency). The Sine Function Domain: x R Range: y [ 1, 1] Continuity: continuous for all x Increasing-decreasing

More information

Chapter #2 test sinusoidal function

Chapter #2 test sinusoidal function Chapter #2 test sinusoidal function Sunday, October 07, 2012 11:23 AM Multiple Choice [ /10] Identify the choice that best completes the statement or answers the question. 1. For the function y = sin x,

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions A Periodic Function and Its Period Section 5.2 Graphs of the Sine and Cosine Functions A nonconstant function f is said to be periodic if there is a number p > 0 such that f(x + p) = f(x) for all x in

More information

Section 8.4: The Equations of Sinusoidal Functions

Section 8.4: The Equations of Sinusoidal Functions Section 8.4: The Equations of Sinusoidal Functions In this section, we will examine transformations of the sine and cosine function and learn how to read various properties from the equation. Transformed

More information

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Pre- Calculus Mathematics 12 5.1 Trigonometric Functions Goal: 1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Measuring Angles: Angles in Standard

More information

5.3 Trigonometric Graphs. Copyright Cengage Learning. All rights reserved.

5.3 Trigonometric Graphs. Copyright Cengage Learning. All rights reserved. 5.3 Trigonometric Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphs of Sine and Cosine Graphs of Transformations of Sine and Cosine Using Graphing Devices to Graph Trigonometric

More information

Amplitude, Reflection, and Period

Amplitude, Reflection, and Period SECTION 4.2 Amplitude, Reflection, and Period Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the amplitude of a sine or cosine function. Find the period of a sine or

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions Section 5.2 Graphs of the Sine and Cosine Functions We know from previously studying the periodicity of the trigonometric functions that the sine and cosine functions repeat themselves after 2 radians.

More information

5.3-The Graphs of the Sine and Cosine Functions

5.3-The Graphs of the Sine and Cosine Functions 5.3-The Graphs of the Sine and Cosine Functions Objectives: 1. Graph the sine and cosine functions. 2. Determine the amplitude, period and phase shift of the sine and cosine functions. 3. Find equations

More information

Graphs of sin x and cos x

Graphs of sin x and cos x Graphs of sin x and cos x One cycle of the graph of sin x, for values of x between 0 and 60, is given below. 1 0 90 180 270 60 1 It is this same shape that one gets between 60 and below). 720 and between

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

Section 8.4 Equations of Sinusoidal Functions soln.notebook. May 17, Section 8.4: The Equations of Sinusoidal Functions.

Section 8.4 Equations of Sinusoidal Functions soln.notebook. May 17, Section 8.4: The Equations of Sinusoidal Functions. Section 8.4: The Equations of Sinusoidal Functions Stop Sine 1 In this section, we will examine transformations of the sine and cosine function and learn how to read various properties from the equation.

More information

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing.

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing. WARM UP Monday, December 8, 2014 1. Expand the expression (x 2 + 3) 2 2. Factor the expression x 2 2x 8 3. Find the roots of 4x 2 x + 1 by graphing. 1 2 3 4 5 6 7 8 9 10 Objectives Distinguish between

More information

2.5 Amplitude, Period and Frequency

2.5 Amplitude, Period and Frequency 2.5 Amplitude, Period and Frequency Learning Objectives Calculate the amplitude and period of a sine or cosine curve. Calculate the frequency of a sine or cosine wave. Graph transformations of sine and

More information

Trigonometric Equations

Trigonometric Equations Chapter Three Trigonometric Equations Solving Simple Trigonometric Equations Algebraically Solving Complicated Trigonometric Equations Algebraically Graphs of Sine and Cosine Functions Solving Trigonometric

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

2.4 Translating Sine and Cosine Functions

2.4 Translating Sine and Cosine Functions www.ck1.org Chapter. Graphing Trigonometric Functions.4 Translating Sine and Cosine Functions Learning Objectives Translate sine and cosine functions vertically and horizontally. Identify the vertical

More information

3. Use your unit circle and fill in the exact values of the cosine function for each of the following angles (measured in radians).

3. Use your unit circle and fill in the exact values of the cosine function for each of the following angles (measured in radians). Graphing Sine and Cosine Functions Desmos Activity 1. Use your unit circle and fill in the exact values of the sine function for each of the following angles (measured in radians). sin 0 sin π 2 sin π

More information

Graph of the Sine Function

Graph of the Sine Function 1 of 6 8/6/2004 6.3 GRAPHS OF THE SINE AND COSINE 6.3 GRAPHS OF THE SINE AND COSINE Periodic Functions Graph of the Sine Function Graph of the Cosine Function Graphing Techniques, Amplitude, and Period

More information

Algebra and Trig. I. The graph of

Algebra and Trig. I. The graph of Algebra and Trig. I 4.5 Graphs of Sine and Cosine Functions The graph of The graph of. The trigonometric functions can be graphed in a rectangular coordinate system by plotting points whose coordinates

More information

http://www.math.utah.edu/~palais/sine.html http://www.ies.co.jp/math/java/trig/index.html http://www.analyzemath.com/function/periodic.html http://math.usask.ca/maclean/sincosslider/sincosslider.html http://www.analyzemath.com/unitcircle/unitcircle.html

More information

Sect 4.5 Inequalities Involving Quadratic Function

Sect 4.5 Inequalities Involving Quadratic Function 71 Sect 4. Inequalities Involving Quadratic Function Objective #0: Solving Inequalities using a graph Use the graph to the right to find the following: Ex. 1 a) Find the intervals where f(x) > 0. b) Find

More information

4.4 Graphs of Sine and Cosine: Sinusoids

4.4 Graphs of Sine and Cosine: Sinusoids 350 CHAPTER 4 Trigonometric Functions What you ll learn about The Basic Waves Revisited Sinusoids and Transformations Modeling Periodic Behavior with Sinusoids... and why Sine and cosine gain added significance

More information

Extra Practice for Section I: Chapter 4

Extra Practice for Section I: Chapter 4 Haberman MTH 112 Extra Practice for Section I: Chapter You should complete all of these problems without a calculator in order to prepare for the Midterm which is a no-calculator exam. 1. Find two different

More information

the input values of a function. These are the angle values for trig functions

the input values of a function. These are the angle values for trig functions SESSION 8: TRIGONOMETRIC FUNCTIONS KEY CONCEPTS: Graphs of Trigonometric Functions y = sin θ y = cos θ y = tan θ Properties of Graphs Shape Intercepts Domain and Range Minimum and maximum values Period

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 CHAPTER

More information

Please grab the warm up off of the chair in the front of the room and begin working!

Please grab the warm up off of the chair in the front of the room and begin working! Please grab the warm up off of the chair in the front of the room and begin working! add the x! #2 Fix to y = 5cos (2πx 2) + 9 Have your homework out on your desk to be checked. (Pre requisite for graphing

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions 4 Section 7. Graphs of the Sine and Cosine Functions In this section, we will look at the graphs of the sine and cosine function. The input values will be the angle in radians so we will be using x is

More information

Graphs of other Trigonometric Functions

Graphs of other Trigonometric Functions Graphs of other Trigonometric Functions Now we will look at other types of graphs: secant. tan x, cot x, csc x, sec x. We will start with the cosecant and y csc x In order to draw this graph we will first

More information

Lesson 8.3: The Graphs of Sinusoidal Functions, page 536

Lesson 8.3: The Graphs of Sinusoidal Functions, page 536 . The graph of sin x repeats itself after it passes through 360 or π. 3. e.g. The graph is symmetrical along the x-axis, with the axis of symmetry being at 90 and 70, respectively. The graph is rotationally

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle. We noticed how the x and y

More information

Section 2.4 General Sinusoidal Graphs

Section 2.4 General Sinusoidal Graphs Section. General Graphs Objective: any one of the following sets of information about a sinusoid, find the other two: ) the equation ) the graph 3) the amplitude, period or frequency, phase displacement,

More information

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2. MAT 115 Spring 2015 Practice Test 3 (longer than the actual test will be) Part I: No Calculators. Show work. 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.) a.

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Radian and Degree Measure Trigonometric Functions: The Unit Circle Right Triangle Trigonometry

More information

Precalculus ~ Review Sheet

Precalculus ~ Review Sheet Period: Date: Precalculus ~ Review Sheet 4.4-4.5 Multiple Choice 1. The screen below shows the graph of a sound recorded on an oscilloscope. What is the period and the amplitude? (Each unit on the t-axis

More information

Unit 3 Unit Circle and Trigonometry + Graphs

Unit 3 Unit Circle and Trigonometry + Graphs HARTFIELD PRECALCULUS UNIT 3 NOTES PAGE 1 Unit 3 Unit Circle and Trigonometry + Graphs (2) The Unit Circle (3) Displacement and Terminal Points (5) Significant t-values Coterminal Values of t (7) Reference

More information

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function.

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function. Math 160 www.timetodare.com Periods of trigonometric functions Definition A function y f ( t) f ( t p) f ( t) 6.4 & 6.5 Graphing Trigonometric Functions = is periodic if there is a positive number p such

More information

Pre-Calculus Notes: Chapter 6 Graphs of Trigonometric Functions

Pre-Calculus Notes: Chapter 6 Graphs of Trigonometric Functions Name: Pre-Calculus Notes: Chapter Graphs of Trigonometric Functions Section 1 Angles and Radian Measure Angles can be measured in both degrees and radians. Radian measure is based on the circumference

More information

Unit 5 Investigating Trigonometry Graphs

Unit 5 Investigating Trigonometry Graphs Mathematics IV Frameworks Student Edition Unit 5 Investigating Trigonometry Graphs 1 st Edition Table of Contents INTRODUCTION:... 3 What s Your Temperature? Learning Task... Error! Bookmark not defined.

More information

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS CHAPTER 4 ALTERNATING VOLTAGES AND CURRENTS Exercise 77, Page 28. Determine the periodic time for the following frequencies: (a) 2.5 Hz (b) 00 Hz (c) 40 khz (a) Periodic time, T = = 0.4 s f 2.5 (b) Periodic

More information

Name: Which equation is represented in the graph? Which equation is represented by the graph? 1. y = 2 sin 2x 2. y = sin x. 1.

Name: Which equation is represented in the graph? Which equation is represented by the graph? 1. y = 2 sin 2x 2. y = sin x. 1. Name: Print Close Which equation is represented in the graph? Which equation is represented by the graph? y = 2 sin 2x y = sin x y = 2 sin x 4. y = sin 2x Which equation is represented in the graph? 4.

More information

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine 14A Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine Find these vocabulary words in Lesson 14-1 and the Multilingual Glossary. Vocabulary periodic function cycle period amplitude frequency

More information

In this section, you will learn how to use a graph or a list of properties of the desired function to write a corresponding equation.

In this section, you will learn how to use a graph or a list of properties of the desired function to write a corresponding equation. 5.4 Graphing and Modelling With = a sin [k(x d)] + c and = a cos [k(x d)] + c In order to model a real-world situation using a sine or a cosine function, ou must analse the situation and then transform

More information

Vocabulary. A Graph of the Cosine Function. Lesson 10-6 The Cosine and Sine Functions. Mental Math

Vocabulary. A Graph of the Cosine Function. Lesson 10-6 The Cosine and Sine Functions. Mental Math Lesson 10-6 The Cosine and Sine Functions Vocabular periodic function, period sine wave sinusoidal BIG IDEA The graphs of the cosine and sine functions are sine waves with period 2π. Remember that when

More information

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions Name: Period: Date: Math Lab: Explore Transformations of Trig Functions EXPLORE VERTICAL DISPLACEMENT 1] Graph 2] Explain what happens to the parent graph when a constant is added to the sine function.

More information

Unit 5 Graphing Trigonmetric Functions

Unit 5 Graphing Trigonmetric Functions HARTFIELD PRECALCULUS UNIT 5 NOTES PAGE 1 Unit 5 Graphing Trigonmetric Functions This is a BASIC CALCULATORS ONLY unit. (2) Periodic Functions (3) Graph of the Sine Function (4) Graph of the Cosine Function

More information

Trigonometric Transformations TEACHER NOTES MATH NSPIRED

Trigonometric Transformations TEACHER NOTES MATH NSPIRED Math Objectives Students will determine the type of function modeled by the height of a capsule on the London Eye observation wheel. Students will translate observational information to use as the parameters

More information

Find all the remaining sides, angles and area of the following triangles

Find all the remaining sides, angles and area of the following triangles Trigonometry Angles of Elevation and depression 1) If the angle of elevation of the top of a vertical 30m high aerial is 32, how is it to the aerial? 2) From the top of a vertical cliff 80m high the angles

More information

Chapter 7 Repetitive Change: Cyclic Functions

Chapter 7 Repetitive Change: Cyclic Functions Chapter 7 Repetitive Change: Cyclic Functions 7.1 Cycles and Sine Functions Data that is periodic may often be modeled by trigonometric functions. This chapter will help you use Excel to deal with periodic

More information

2.3 BUILDING THE PERFECT SQUARE

2.3 BUILDING THE PERFECT SQUARE 16 2.3 BUILDING THE PERFECT SQUARE A Develop Understanding Task Quadratic)Quilts Optimahasaquiltshopwhereshesellsmanycolorfulquiltblocksforpeoplewhowant tomaketheirownquilts.shehasquiltdesignsthataremadesothattheycanbesized

More information

Write Trigonometric Functions and Models

Write Trigonometric Functions and Models .5 a.5, a.6, A..B; P..B TEKS Write Trigonometric Functions and Models Before You graphed sine and cosine functions. Now You will model data using sine and cosine functions. Why? So you can model the number

More information

1 Graphs of Sine and Cosine

1 Graphs of Sine and Cosine 1 Graphs of Sine and Cosine Exercise 1 Sketch a graph of y = cos(t). Label the multiples of π 2 and π 4 on your plot, as well as the amplitude and the period of the function. (Feel free to sketch the unit

More information

Secondary Math Amplitude, Midline, and Period of Waves

Secondary Math Amplitude, Midline, and Period of Waves Secondary Math 3 7-6 Amplitude, Midline, and Period of Waves Warm UP Complete the unit circle from memory the best you can: 1. Fill in the degrees 2. Fill in the radians 3. Fill in the coordinates in the

More information

6.6. Investigating Models of Sinusoidal Functions. LEARN ABOUT the Math. Sasha s Solution Investigating Models of Sinusoidal Functions

6.6. Investigating Models of Sinusoidal Functions. LEARN ABOUT the Math. Sasha s Solution Investigating Models of Sinusoidal Functions 6.6 Investigating Models of Sinusoidal Functions GOAL Determine the equation of a sinusoidal function from a graph or a table of values. LEARN ABOUT the Math A nail located on the circumference of a water

More information

4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved.

4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved. 4.4 Slope and Graphs of Linear Equations Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Determine the slope of a line through two points Write linear equations in slope-intercept

More information

Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions In this section, we will look at the graphs of the other four trigonometric functions. We will start by examining the tangent

More information

Graphing Trig Functions. Objectives: Students will be able to graph sine, cosine and tangent functions and translations of these functions.

Graphing Trig Functions. Objectives: Students will be able to graph sine, cosine and tangent functions and translations of these functions. Graphing Trig Functions Name: Objectives: Students will be able to graph sine, cosine and tangent functions and translations of these functions. y = sinx (0,) x 0 sinx (,0) (0, ) (,0) /2 3/2 /2 3/2 2 x

More information

of the whole circumference.

of the whole circumference. TRIGONOMETRY WEEK 13 ARC LENGTH AND AREAS OF SECTORS If the complete circumference of a circle can be calculated using C = 2πr then the length of an arc, (a portion of the circumference) can be found by

More information

Math 3 Trigonometry Part 2 Waves & Laws

Math 3 Trigonometry Part 2 Waves & Laws Math 3 Trigonometry Part 2 Waves & Laws GRAPHING SINE AND COSINE Graph of sine function: Plotting every angle and its corresponding sine value, which is the y-coordinate, for different angles on the unit

More information

Logarithmic Functions

Logarithmic Functions C H A P T ER Logarithmic Functions The human ear is capable of hearing sounds across a wide dynamic range. The softest noise the average human can hear is 0 decibels (db), which is equivalent to a mosquito

More information

6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions 6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

More information

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Chapter 9 Linear equations/graphing 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Rectangular Coordinate System Quadrant II (-,+) y-axis Quadrant

More information

VOCABULARY WORDS. quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant

VOCABULARY WORDS. quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant VOCABULARY WORDS quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant 1. Each water fountain jet creates a parabolic stream of water. You can represent

More information

5.4 Graphs of the Sine & Cosine Functions Objectives

5.4 Graphs of the Sine & Cosine Functions Objectives Objectives 1. Graph Functions of the Form y = A sin(wx) Using Transformations. 2. Graph Functions of the Form y = A cos(wx) Using Transformations. 3. Determine the Amplitude & Period of Sinusoidal Functions.

More information

M.I. Transformations of Functions

M.I. Transformations of Functions M.I. Transformations of Functions Do Now: A parabola with equation y = (x 3) 2 + 8 is translated. The image of the parabola after the translation has an equation of y = (x + 5) 2 4. Describe the movement.

More information

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line.

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line. MATH 11009: Linear Functions Section 1.3 Linear Function: A linear function is a function that can be written in the form f(x) = ax + b or y = ax + b where a and b are constants. The graph of a linear

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

Alternating voltages and currents

Alternating voltages and currents Alternating voltages and currents Introduction - Electricity is produced by generators at power stations and then distributed by a vast network of transmission lines (called the National Grid system) to

More information

Introduction to Trigonometry. Algebra 2

Introduction to Trigonometry. Algebra 2 Introduction to Trigonometry Algebra 2 Angle Rotation Angle formed by the starting and ending positions of a ray that rotates about its endpoint Use θ to represent the angle measure Greek letter theta

More information

Chapter 14 Trig Graphs and Reciprocal Functions Algebra II Common Core

Chapter 14 Trig Graphs and Reciprocal Functions Algebra II Common Core Chapter 14 Trig Graphs and Reciprocal Functions Algebra II Common Core LESSON 1: BASIC GRAPHS OF SINE AND COSINE LESSON : VERTICAL SHIFTING OF SINUSOIDAL GRAPHS LESSON 3 : THE FREQUENCY AND PERIOD OF A

More information

Unit 6 Test REVIEW Algebra 2 Honors

Unit 6 Test REVIEW Algebra 2 Honors Unit Test REVIEW Algebra 2 Honors Multiple Choice Portion SHOW ALL WORK! 1. How many radians are in 1800? 10 10π Name: Per: 180 180π 2. On the unit circle shown, which radian measure is located at ( 2,

More information

Name: Date: Group: Learning Target: I can determine amplitude, period, frequency, and phase shift, given a graph or equation of a periodic function.

Name: Date: Group: Learning Target: I can determine amplitude, period, frequency, and phase shift, given a graph or equation of a periodic function. Pre-Lesson Assessment Unit 2: Trigonometric Functions Periodic Functions Diagnostic Exam: Page 1 Name: Date: Group: Learning Target: I can determine amplitude, period, frequency, and phase shift, given

More information

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period Name Date Class 14-1 Practice A Graphs of Sine and Cosine Identify whether each function is periodic. If the function is periodic, give the period. 1.. Use f(x) = sinx or g(x) = cosx as a guide. Identify

More information

What is a Sine Function Graph? U4 L2 Relate Circle to Sine Activity.pdf

What is a Sine Function Graph? U4 L2 Relate Circle to Sine Activity.pdf Math 3 Unit 6, Trigonometry L04: Amplitude and Period of Sine and Cosine AND Translations of Sine and Cosine Functions WIMD: What I must do: I will find the amplitude and period from a graph of the sine

More information

- go over homework #2 on applications - Finish Applications Day #3 - more applications... tide problems, start project

- go over homework #2 on applications - Finish Applications Day #3 - more applications... tide problems, start project 10/20/15 ALICATIONS DAY #3 HOMEWORK TC2 WARM U! Agenda Homework - go over homework #2 on applications - Finish Applications Day #3 - more applications... tide problems, start project UCOMING: OW #6 Quiz

More information

Use smooth curves to complete the graph between and beyond the vertical asymptotes.

Use smooth curves to complete the graph between and beyond the vertical asymptotes. 5.3 Graphs of Rational Functions Guidelines for Graphing Rational Functions 1. Find and plot the x-intercepts. (Set numerator = 0 and solve for x) 2. Find and plot the y-intercepts. (Let x = 0 and solve

More information

Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither

Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither Assignment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 1) A)

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

SM3 Lesson 2-3 (Intercept Form Quadratic Equation)

SM3 Lesson 2-3 (Intercept Form Quadratic Equation) SM3 Lesson 2-3 (Intercept Form Quadratic Equation) Factor the following quadratic expressions: x 2 + 11x + 30 x 2 10x 24 x 2 8x + 15 Standard Form Quadratic Equation (x + 5)(x + 6) (x 12)(x + 2) (x 5)(x

More information

Section 8.1 Radians and Arc Length

Section 8.1 Radians and Arc Length Section 8. Radians and Arc Length Definition. An angle of radian is defined to be the angle, in the counterclockwise direction, at the center of a unit circle which spans an arc of length. Conversion Factors:

More information

E. Slope-Intercept Form and Direct Variation (pp )

E. Slope-Intercept Form and Direct Variation (pp ) and Direct Variation (pp. 32 35) For any two points, there is one and only one line that contains both points. This fact can help you graph a linear equation. Many times, it will be convenient to use the

More information

Block: Date: Name: REVIEW Linear Equations. 7.What is the equation of the line that passes through the point (5, -3) and has a slope of -3?

Block: Date: Name: REVIEW Linear Equations. 7.What is the equation of the line that passes through the point (5, -3) and has a slope of -3? Name: REVIEW Linear Equations 1. What is the slope of the line y = -2x + 3? 2. Write the equation in slope-intercept form. Block: Date: 7.What is the equation of the line that passes through the point

More information

5.1N Key Features of Rational Functions

5.1N Key Features of Rational Functions 5.1N Key Features of Rational Functions A. Vocabulary Review Domain: Range: x-intercept: y-intercept: Increasing: Decreasing: Constant: Positive: Negative: Maximum: Minimum: Symmetry: End Behavior/Limits:

More information

7.1 Solving Quadratic Equations by Graphing

7.1 Solving Quadratic Equations by Graphing Math 2201 Date: 7.1 Solving Quadratic Equations by Graphing In Mathematics 1201, students factored difference of squares, perfect square trinomials and polynomials of the form x 2 + bx + c and ax 2 + bx

More information

Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor

Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor As we studied last section points may be described in polar form or rectangular form. Likewise an equation may be written using either

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

Investigating the Sine Function

Investigating the Sine Function Grade level: 9-12 Investigating the Sine Function by Marco A. Gonzalez Activity overview In this activity, students will use their Nspire handhelds to discover the different attributes of the graph of

More information

The period is the time required for one complete oscillation of the function.

The period is the time required for one complete oscillation of the function. Trigonometric Curves with Sines & Cosines + Envelopes Terminology: AMPLITUDE the maximum height of the curve For any periodic function, the amplitude is defined as M m /2 where M is the maximum value and

More information

Trig/AP Calc A. Created by James Feng. Semester 1 Version fengerprints.weebly.com

Trig/AP Calc A. Created by James Feng. Semester 1 Version fengerprints.weebly.com Trig/AP Calc A Semester Version 0.. Created by James Feng fengerprints.weebly.com Trig/AP Calc A - Semester Handy-dandy Identities Know these like the back of your hand. "But I don't know the back of my

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

Date Lesson Text TOPIC Homework. Periodic Functions Hula Hoop Sheet WS 6.1. Graphing Sinusoidal Functions II WS 6.3

Date Lesson Text TOPIC Homework. Periodic Functions Hula Hoop Sheet WS 6.1. Graphing Sinusoidal Functions II WS 6.3 UNIT 6 SINUSOIDAL FUNCTIONS Date Lesson Text TOPIC Homework Ma 0 6. (6) 6. Periodic Functions Hula Hoop Sheet WS 6. Ma 4 6. (6) 6. Graphing Sinusoidal Functions Complete lesson shell WS 6. Ma 5 6. (6)

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

UNIT FOUR TRIGONOMETRIC FUNCTIONS MATH 621B 25 HOURS

UNIT FOUR TRIGONOMETRIC FUNCTIONS MATH 621B 25 HOURS UNIT FOUR TRIGONOMETRIC FUNCTIONS MATH 621B 25 HOURS Revised April 9, 02 73 74 Trigonometric Function Introductory Lesson C32 create scatter plots of periodic data and analyse using appropriate data Student

More information

Lesson 6.1 Linear Equation Review

Lesson 6.1 Linear Equation Review Name: Lesson 6.1 Linear Equation Review Vocabulary Equation: a math sentence that contains Linear: makes a straight line (no Variables: quantities represented by (often x and y) Function: equations can

More information

Math 1330 Precalculus Electronic Homework (EHW 6) Sections 5.1 and 5.2.

Math 1330 Precalculus Electronic Homework (EHW 6) Sections 5.1 and 5.2. Math 0 Precalculus Electronic Homework (EHW 6) Sections 5. and 5.. Work the following problems and choose the correct answer. The problems that refer to the Textbook may be found at www.casa.uh.edu in

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

Solving Equations and Graphing

Solving Equations and Graphing Solving Equations and Graphing Question 1: How do you solve a linear equation? Answer 1: 1. Remove any parentheses or other grouping symbols (if necessary). 2. If the equation contains a fraction, multiply

More information