Optical modulation by carrier depletion in a silicon PIN diode

Size: px
Start display at page:

Download "Optical modulation by carrier depletion in a silicon PIN diode"

Transcription

1 Optical modulation by carrier depletion in a silicon PIN diode Delphine Marris-Morini, Xavier Le Roux, Laurent Vivien, Eric Cassan, Daniel Pascal, Mathieu Halbwax, Sylvain Maine, Suzanne Laval Institut d'electronique Fondamentale, UMR CNRS 8622, Université Paris-Sud, bât Orsay, France delphine.marris@ief.u-psud.fr Jean Marc Fédéli, Jean François Damlencourt CEA-DRT/LETI, 17 rue des Martyrs, GRENOBLE cedex 9, France Abstract: Experimental results for refractive index variation induced by depletion in a silicon structure integrated in a PIN diode are reported. Thermal effect has been dissociated from the electrical contribution due to carrier density variation induced by a reverse bias voltage. A figure of merit V π of 3.1 V.cm has been obtained at 1.55µm. Numerical simulations show a good agreement between experimental and theoretical index variations Optical Society of America OCIS codes: ( ) Optoelectronics; ( ) Waveguide modulators; ( ) Integrated optoelectronic circuits; ( ) Optical devices; ( ) Modulators; ( ) Electro-optical devices References and links 1. G.T. Reed, C.E. Jason Png, Silicon optical modulators, Materials Todays 40-50, (2005). 2. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Page-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, A. Bjarklev, Strained silicon as a new electro-optical material, Nature 441, (2006). 3. P. Yu, J. Wu, B. Zhu Enhanced quantum-confined Pockels effect in SiGe superlattices, Phys. Rev. B 73, (2006). 4. Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, J.Harris Strong quantum-confined Stark effect in germanium quantum well structures on silicon, Nature 437, (2005). 5. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometer-scale silicon electro-optic modulator, Nature 435, (2005). 6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U.D. Keil, T. Franck, High speed silicon Mach Zehnder modulator, Opt. Express 13, (2005). 7. A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, S. Laval, Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures, App. Phys. Lett. 85, , (2004). 8. D. Marris, E. Cassan, L. Vivien, Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation, J. Appl. Phys. 96, , (2004). 9. D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J.M. Fédéli, J.F. Damlencourt, D. Bouville, J.Palomo, S.Laval, High speed all-silicon modulation-doped optical modulator, presented at the EMRS-spring meeting, Nice, 29 mai-2 june S. Maine, D. Marris-Morini, L. Vivien, D. Pascal, E. Cassan, S. Laval, Design optimisation of SiGe/Si:modulation-doped multiple quantum well modulator for high speed operation, in Proc SPIE 6183 (2006), D ISE software, R. Soref, B. Bennett, Electrooptical effects in silicon, IEEE J. Quantum Electron. QE (1987). 13. PhotonDesign software, (C) 2006 OSA 30 October 2006 / Vol. 14, No. 22 / OPTICS EXPRESS 10838

2 1. Introduction Silicon microphotonics has generated an increasing interest in the recent years. Integrating optics and electronics on a same chip would allow the enhancement of integrated circuit (IC) performances, whereas telecommunications could benefit of the development of low cost solutions for high-speed optoelectronic devices and systems. One of the key elements for the development of silicon microphotonics is the realization of active devices in particular high bandwidth integrated optical modulators [1]. Although several ways have been investigated for high speed optical modulation in Si or Si based device, such as the use of Pockels effect in strained silicon [2] or in SiGe superlattices [3], the quantum-confined Stark effect in silicon-germanium/germanium quantum well structures [4], most studies are based on free carrier concentration variations, which are responsible for local refractive index variations and then phase modulation of a guided wave traveling through the active region [5-10]. To obtain carrier concentration variation, injection in PIN diodes has been widely used, but this solution generally leads to limited bandwidth due to carrier recombination time. Operation close to 1Gbit/s has been recently demonstrated with a ring resonator based modulator, with rise and fall times of 200 and 150 ps, respectively [5]. Carrier accumulation near the gate dielectric of a MOS capacitor permits to overcome this limitation. Data transmission at 10 Gbit/s has been demonstrated [6]. Another way to achieve high frequency operation is to use carrier depletion in a reverse biased PIN diode. A SiGe/Si Modulation- Doped Multiple Quantum Well (MD-MQW) structure has been proposed. Phase modulation has been experimentally demonstrated [7], and the intrinsic frequency response theoretically investigated [8]. The device speed mainly depends on the time needed for carriers to escape from and to be captured into the quantum wells (QWs). Rise time and fall time smaller than 10 ps have been estimated. In this paper an original all-silicon device for phase modulation is described. It is based on a doped layer inserted in a PIN diode. Like in the SiGe/Si MD-MQW structure, carrier depletion is used, but in the all-silicon device, carriers do not encounter any barrier and ultra short response times, lower than 2 ps have been estimated [9]. Experimental evidence for phase modulation in such a structure is here reported. 2. Device design The active region of the structure is schematically shown in Fig. 1. Fig. 1. Device structure: a highly doped P + layer is inserted in a silicon PIN diode. It is based on a doped P + silicon layer introduced as source of free holes in the core of a non-intentionally doped (nid) Si region (~10 16 cm -3 ). This structure is placed between P + and N + regions which form the N and P parts of the PIN diode. This stack is epitaxially grown on (C) 2006 OSA 30 October 2006 / Vol. 14, No. 22 / OPTICS EXPRESS 10839

3 a silicon-on-insulator (SOI) substrate to constitute a planar waveguide created by the refractive index difference between silicon and silicon oxide. At equilibrium, holes are electrostatically localized in the P + layer. When a reverse bias voltage is applied to the diode, the space-charge expands through the device. Holes are swept out from the active region thanks to the electrical field. Carrier density variations are responsible for refractive index variations, and thus for a phase shift of the optical guided mode propagating through the device. In the device under consideration, the active region has been epitaxially grown by Reduced-Pressure Chemical Vapor Deposition (RP-CVD) on a full silicon-on-insulator (SOI) wafer. The P + layer in the middle of the structure is about 150 nm thick, with a doping level > cm -3. The P and N par of the PIN diode are 50 nm thick, with a doping concentration of cm -3. The overall sample thickness is 500 nm, which is closely compatible with the integration in a rib SOI microwaveguide. The layer stack is locally etched down to the N + layer, to get the bottom electrical contact. The device is covered by a silicon oxide layer in which apertures are etched for the electrical contacts. Good optical quality facets are obtained by cleavage and lead to setting up a Fabry-Perot cavity. The sample length is 2.01 mm. Classical technological processes have been used, i.e. optical lithography, etching, metal deposition and lift-off, to realize the whole device with contact metallization. To simplify the device fabrication, the metal was deposited above the waveguide in this test device, although this is not favorable for low optical losses. For the modulator integration in a single mode microwaveguide, the metal has to be placed not above but close to the waveguide, while electrical continuity can be ensured by a thin P + layer, as described in [10] for a SiGe/Si modulator that presents a similar tradeoff between low losses and high RC-due cutoff frequency. 3. Experiment The phase modulation measurement relies on the shift of Fabry-Perot (FP) fringes when a bias voltage is applied on the diode. The FP cavity is formed by the optical waveguide between the cleaved facets of the sample. The resonance condition gives the wavelength at each maximum of the transmission spectrum as a function of the device length and of the effective index of the guided mode (Eq. (1)). 2 n eff ( λ) L = pλ (1) A first order approximation then gives the relation between the effective index variation of the guided mode and the induced shift of a resonance wavelength Δλ which is experimentally determined for different values of the bias voltage: Δλ Δ n eff ( λ) = ng ( λ) (2) λ n g is the group index which is determined according to Eq. (3), where Δλ p is the experimental wavelength difference between two successive resonance peaks, and L is the device length. n g ( λ ) p 2 λp = 2 LΔλ The experimental set-up uses a tunable laser in the 1550 nm range. A linearly polarized light beam is coupled into the waveguide using a polarization maintaining lensed-fiber. The output light is collected by an objective and is measured with a IR detector. Electrical probes are used to bias the diode. p (3) (C) 2006 OSA 30 October 2006 / Vol. 14, No. 22 / OPTICS EXPRESS 10840

4 As a typical example, two transmission spectra of the device recorded for wavelengths close to 1.55µm and for bias voltages of 0 and -4V respectively are reported in Fig. 2. The resonance wavelength shift is clearly visible. About 20 periods are taken into account in the experimental determination, to minimize experimental unreliability. Furthermore it can be noticed that the fringe contrast increases with the reverse bias, which is due to the free-carrier absorption decrease when holes are swept out of the active region. Fig. 2. Example of experimental transmission spectra of the device recorded for 0V and - 4V. The effective index variation with bias voltage ranging from 0 to -6V is deduced using Eq. (2), and the experimental results are plotted in Fig 3. The effective index variation increases as the reverse bias voltage increases. An index variation of is obtained between 0 and -6V. Fig. 3. Experimental effective index variation versus PIN bias voltage: measured effective index variation, electrical (due to hole depletion) and thermal contributions. This index variation may have two contributions: the first one from hole depletion in the structure and the second one from thermal effect related to the electrical power dissipated in the device which becomes more important as the reverse bias increases. Indeed, the recorded current/voltage characteristic shows a slight increase of the electrical current before avalanche breakdown (Fig. 4). (C) 2006 OSA 30 October 2006 / Vol. 14, No. 22 / OPTICS EXPRESS 10841

5 Fig. 4. Experimental current/voltage characteristic of the diode. To realize a high speed modulator, thermal contribution cannot be used, and it acts as a parasitic effect. Those two contributions have been dissociated using the method presented in Ref. [4], and results are reported in Fig. 3. It can be seen that there is no thermal contribution to the measured index variation from 0 to -2V, and it still represents a minor part up to -6V. Electrical contribution to the index variation due to carrier depletion in the diode reaches at -4V. To evaluate the modulation phase efficiency a figure of merit is usually defined as the product V π, where V π and are respectively the applied voltage and the length required to obtain a π phase shift of the guided wave. Neglecting dispersion effect, can be determined by the following Eq.: λ Lπ = (4) 2 Δ The lower the V π product, the more efficient the phase shifter. The electrical contribution to the index variation of at -4V leads to V π =3.1 V.cm. This is only slightly lower than the experimental index variation measured in a SiGe-Si Modulation-Doped Multiple Quantum Well (MD-MQW) structure which was at -4V, leading to a V π value of 2.2V.cm [7] and compares favourably with published values for the MOS capacitor based modulator (V π = 3.3V.cm [6]). The result presented here forms the first experimental evidence for index modulation by carrier depletion in all silicon structure. The effective index variation in such a phase shifter could be improved by optimization of the structure, which requires numerical simulations. In a first step comparison between experiments and effective index variation modeling has been performed. 4. Structure modeling Calculation of the hole distributions have been performed using a physical device simulation package (DESSIS-ISE [11]). This software performs numerical resolution of Poisson, carrier density continuity, and drift-diffusion equations. In these simulations, Fermi-Dirac statistic is used. Temperature and doping-dependent models are employed for carrier mobility, taking into account high field saturation. Auger and Shockley-Read-Hall (SRH) recombination mechanisms are included. The refractive index variation and the absorption losses in silicon at λ=1.55 µm due to free carriers are deduced from hole density distribution using the following formula [12]: n eff (C) 2006 OSA 30 October 2006 / Vol. 14, No. 22 / OPTICS EXPRESS 10842

6 ,8 Δn = 8,8.10 ΔN 8,5.10 ΔP Δα = 8,5.10 ΔN + 6,0.10 ΔP where ΔN and ΔP are the electron and hole concentration variations (cm -3 ) respectively. The local refractive index variations determined from the calculated hole density profiles using Eq. (5) have been introduced in a mode solver [13] in order to determine the effective index variation of the optical mode propagating through to the multilayer stack. The structure properties are given for TE light polarization and at 1.55 µm wavelength. For the optical calculations, the refractive indices of Si and SiO 2 have been taken equal to and 1.45 respectively. The theoretical effective index change due to hole depletion has been evaluated and is plotted in Fig. 5. (5) Fig. 5. Theoretical effective index variation versus PIN bias voltage. The general behavior of the experimental and modeling effective index variations with PIN bias are very similar. Theoretical index variation is a bit greater, but the difference between the results can be explained by the deviation of the real sample parameters from those used for modeling. An effective index variation of is expected at -4V. 5. Conclusion A new kind of all-silicon phase shifter, based on carrier depletion in a doped layer inserted inside a PIN diode has been made. Experimental evidence of efficient phase shift has been obtained with such a structure. Thermal effects are negligible for bias voltages of a few volts. The contribution arising from hole depletion in the structure yields a figure of merit V π equal to 3.1 V.cm. Process and design optimizations will be performed to further increase this phase shifter efficiency. The integration of the modulator in a single mode microwaveguide requires careful precaution to obtain both low losses and high frequency operation. The tradeoff between optical losses and RC cutoff frequency has been studied for a SiGe/Si modulator with similar tradeoff [7]. Such a phase shifter structure is well suited for the realization of integrated high speed modulators. Acknowledgments The authors would like to thank Daniel Bouchier from IEF and Joaquin Torres and Patrick Cogez from ST Microelectronics for fruitful discussions. The authors are very grateful to the staff of the IEF/CTU and CEA-LETI clean rooms. This work is supported by the French RMNT project CAURICO. (C) 2006 OSA 30 October 2006 / Vol. 14, No. 22 / OPTICS EXPRESS 10843

New advances in silicon photonics Delphine Marris-Morini

New advances in silicon photonics Delphine Marris-Morini New advances in silicon photonics Delphine Marris-Morini P. Brindel Alcatel-Lucent Bell Lab, Nozay, France New Advances in silicon photonics D. Marris-Morini, L. Virot*, D. Perez-Galacho, X. Le Roux, D.

More information

High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode

High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode F.Y. Gardes 1 *, A. Brimont 2, P. Sanchis 2, G. Rasigade 3, D. Marris-Morini 3, L. O'Faolain 4, F. Dong 4, J.M.

More information

High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud

High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud Data centers Optical telecommunications Environment Interconnects Silicon

More information

Intersubband spectroscopy of electron tunneling in GaN/AlN coupled quantum wells

Intersubband spectroscopy of electron tunneling in GaN/AlN coupled quantum wells Intersubband spectroscopy of electron tunneling in GaN/AlN coupled quantum wells N. Kheirodin, L. Nevou, M. Tchernycheva, F. H. Julien, A. Lupu, P. Crozat, L. Meignien, E. Warde, L.Vivien Institut d Electronique

More information

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Indian Journal of Pure & Applied Physics Vol. 55, May 2017, pp. 363-367 Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Priyanka Goyal* & Gurjit Kaur

More information

CMOS-compatible dual-output silicon modulator for analog signal processing

CMOS-compatible dual-output silicon modulator for analog signal processing CMOS-compatible dual-output silicon modulator for analog signal processing S. J. Spector 1*, M. W. Geis 1, G.-R.Zhou 2, M. E. Grein 1, F. Gan 2, M.A. Popović 2, J. U. Yoon 1, D. M. Lennon 1, E. P. Ippen

More information

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers Journal of Physics: Conference Series High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers To cite this article: Xi Xiao et al 2011 J. Phys.: Conf.

More information

Silicon photonics: Optical modulation in silicon platform

Silicon photonics: Optical modulation in silicon platform Silicon Photonics Silicon-based micro and nanophotonic devices Silicon photonics: Optical modulation in silicon platform, Institut d Electronique Fondamentale, CNRS UMR 8622, Université Paris Sud, 91405

More information

Comparison between strip and rib SOI microwaveguides for intra-chip light distribution

Comparison between strip and rib SOI microwaveguides for intra-chip light distribution Optical Materials 27 (2005) 756 762 www.elsevier.com/locate/optmat Comparison between strip and rib SOI microwaveguides for intra-chip light distribution L. Vivien a, *, F. Grillot a, E. Cassan a, D. Pascal

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultrasmall modal volumes

Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultrasmall modal volumes Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultrasmall modal volumes Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson School

More information

Energy harvesting in silicon optical modulators

Energy harvesting in silicon optical modulators Energy harvesting in silicon optical modulators Sasan Fathpour and Bahram Jalali Optoelectronic Circuits and Systems Laboratory Electrical Engineering Department University of California, Los Angeles,

More information

Simplified model enabling optimization of silicon modulators

Simplified model enabling optimization of silicon modulators Simplified model enabling optimization of silicon modulators Diego Perez-Galacho, Delphine Marris-Morini, Remco Stoffer, Eric Cassan, Charles Baudot, Twan Korthorst, Frederic Boeuf, Laurent Vivien To cite

More information

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS J. Piprek, Y.-J. Chiu, S.-Z. Zhang (1), J. E. Bowers, C. Prott (2), and H. Hillmer (2) University of California, ECE Department, Santa Barbara, CA 93106

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory MICRO RING MODULATOR Dae-hyun Kwon High-speed circuits and Systems Laboratory Paper preview Title of the paper Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator Publication

More information

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging Christophe Kopp, St ephane Bernab e, Badhise Ben Bakir,

More information

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm Rong Sun 1 *, Po Dong 2 *, Ning-ning Feng 1, Ching-yin Hong 1, Jurgen Michel 1, Michal Lipson 2, Lionel Kimerling 1 1Department

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Design of High Efficiency Multi-GHz SiGe HBT Electro-Optic Modulator

Design of High Efficiency Multi-GHz SiGe HBT Electro-Optic Modulator Design of High Efficiency Multi-GHz SiGe HBT Electro-Optic Modulator Shengling Deng, Z. Rena Huang*, J. F. McDonald Department of Electrical, Computer, and System Engineering, Rensselaer Polytechnic Institute,

More information

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide [ APPLIED PHYSICS LETTERS ] High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide Dazeng Feng, Shirong Liao, Roshanak Shafiiha. etc Contents 1. Introduction

More information

Physics of Waveguide Photodetectors with Integrated Amplification

Physics of Waveguide Photodetectors with Integrated Amplification Physics of Waveguide Photodetectors with Integrated Amplification J. Piprek, D. Lasaosa, D. Pasquariello, and J. E. Bowers Electrical and Computer Engineering Department University of California, Santa

More information

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Prof. Utpal Das Professor, Department of Electrical Engineering, Laser Technology Program, Indian Institute of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall. Effect Measurements. (Supporting Information)

Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall. Effect Measurements. (Supporting Information) Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall Effect Measurements (Supporting Information) Kaixiang Chen 1, Xiaolong Zhao 2, Abdelmadjid Mesli 3, Yongning He 2*

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Hui Yu, Marianna Pantouvaki*, Joris Van Campenhout*, Katarzyna

More information

PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator

PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator References Sasikanth Manipatruni, Qianfan Xu, Michal Lipson School of Electrical and Computer Engineering, Cornell

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform D. Vermeulen, 1, S. Selvaraja, 1 P. Verheyen, 2 G. Lepage, 2 W. Bogaerts, 1 P. Absil,

More information

Graphene electro-optic modulator with 30 GHz bandwidth

Graphene electro-optic modulator with 30 GHz bandwidth Graphene electro-optic modulator with 30 GHz bandwidth Christopher T. Phare 1, Yoon-Ho Daniel Lee 1, Jaime Cardenas 1, and Michal Lipson 1,2,* 1School of Electrical and Computer Engineering, Cornell University,

More information

Hybrid silicon modulators

Hybrid silicon modulators 280 CHINESE OPTICS LETTERS / Vol. 7, No. 4 / April 10, 2009 Hybrid silicon modulators Invited Paper Hui-Wen Chen, Yinghao Kuo, and J. E. Bowers Department of Electrical and Computer Engineering, University

More information

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers On-chip Si-based Bragg cladding waveguide with high index contrast bilayers Yasha Yi, Shoji Akiyama, Peter Bermel, Xiaoman Duan, and L. C. Kimerling Massachusetts Institute of Technology, 77 Massachusetts

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Bistability in Bipolar Cascade VCSELs

Bistability in Bipolar Cascade VCSELs Bistability in Bipolar Cascade VCSELs Thomas Knödl Measurement results on the formation of bistability loops in the light versus current and current versus voltage characteristics of two-stage bipolar

More information

VERTICAL CAVITY SURFACE EMITTING LASER

VERTICAL CAVITY SURFACE EMITTING LASER VERTICAL CAVITY SURFACE EMITTING LASER Nandhavel International University Bremen 1/14 Outline Laser action, optical cavity (Fabry Perot, DBR and DBF) What is VCSEL? How does VCSEL work? How is it different

More information

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product Myung-Jae Lee and Woo-Young Choi* Department of Electrical and Electronic Engineering,

More information

All-optical logic based on silicon micro-ring resonators

All-optical logic based on silicon micro-ring resonators All-optical logic based on silicon micro-ring resonators Qianfan Xu and Michal Lipson School of Electrical and Computer Engineering, Cornell University 411 Phillips Hall, Ithaca, NY 14853 lipson@ece.cornell.edu

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 4 Spring 2016 Outline 1 Lateral confinement: index and gain guiding 2 Surface emitting lasers 3 DFB, DBR, and C3 lasers 4 Quantum well lasers 5 Mode locking P. Bhattacharya:

More information

Ultra-low voltage resonant tunnelling diode electroabsorption modulator

Ultra-low voltage resonant tunnelling diode electroabsorption modulator Ultra-low voltage resonant tunnelling diode electroabsorption modulator, 1/10 Ultra-low voltage resonant tunnelling diode electroabsorption modulator J. M. L. FIGUEIREDO Faculdade de Ciências e Tecnologia,

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g< Robert G. Hunsperger Integrated Optics Theory and Technology Sixth Edition 4ü Spri rineer g< 1 Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of Optical Fibers with Other Interconnectors

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes Microelectronics Journal 8 (7) 74 74 www.elsevier.com/locate/mejo Degradation analysis in asymmetric sampled grating distributed feedback laser diodes Han Sung Joo, Sang-Wan Ryu, Jeha Kim, Ilgu Yun Semiconductor

More information

Si and InP Integration in the HELIOS project

Si and InP Integration in the HELIOS project Si and InP Integration in the HELIOS project J.M. Fedeli CEA-LETI, Grenoble ( France) ECOC 2009 1 Basic information about HELIOS HELIOS photonics ELectronics functional Integration on CMOS www.helios-project.eu

More information

Silicon-On-Insulator based guided wave optical clock distribution

Silicon-On-Insulator based guided wave optical clock distribution Silicon-On-Insulator based guided wave optical clock distribution K. E. Moselund, P. Dainesi, and A. M. Ionescu Electronics Laboratory Swiss Federal Institute of Technology People and funding EPFL Project

More information

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides JaeHyuk Shin, Yu-Chia Chang and Nadir Dagli * Electrical and Computer Engineering Department, University of California at

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Proceedings Integrated SiGe Detectors for Si Photonic Sensor Platforms

Proceedings Integrated SiGe Detectors for Si Photonic Sensor Platforms Proceedings Integrated SiGe Detectors for Si Photonic Sensor Platforms Grégory Pandraud 1, *, Silvana Milosavljevic 1, Amir Sammak 2, Matteo Cherchi 3, Aleksandar Jovic 4 and Pasqualina Sarro 4 1 Else

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

High speed silicon Mach-Zehnder modulator

High speed silicon Mach-Zehnder modulator High speed silicon Mach-Zehnder modulator Ling Liao, Dean Samara-Rubio, Michael Morse, Ansheng Liu, Dexter Hodge Intel Corporation, SC12-326, 2200 Mission College Blvd., Santa Clara, CA 95054 ling.liao@intel.com

More information

An electrically pumped germanium laser

An electrically pumped germanium laser An electrically pumped germanium laser The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Camacho-Aguilera,

More information

Design and Simulation of Optical Power Splitter By using SOI Material

Design and Simulation of Optical Power Splitter By using SOI Material J. Pure Appl. & Ind. Phys. Vol.3 (3), 193-197 (2013) Design and Simulation of Optical Power Splitter By using SOI Material NAGARAJU PENDAM * and C P VARDHANI 1 * Research Scholar, Department of Physics,

More information

Figure 1. Schematic diagram of a Fabry-Perot laser.

Figure 1. Schematic diagram of a Fabry-Perot laser. Figure 1. Schematic diagram of a Fabry-Perot laser. Figure 1. Shows the structure of a typical edge-emitting laser. The dimensions of the active region are 200 m m in length, 2-10 m m lateral width and

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Review of Semiconductor Physics k B 1.38 u 10 23 JK -1 a) Energy level diagrams showing the excitation of an electron from the valence band to the conduction band. The resultant free electron can freely

More information

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, * and Chunlai Xue State Key Laboratory on Integrated Optoelectronics,

More information

Lecture 4 INTEGRATED PHOTONICS

Lecture 4 INTEGRATED PHOTONICS Lecture 4 INTEGRATED PHOTONICS What is photonics? Photonic applications use the photon in the same way that electronic applications use the electron. Devices that run on light have a number of advantages

More information

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Christoph Theiss, Director Packaging Christoph.Theiss@sicoya.com 1 SEMICON Europe 2016, October 27 2016 Sicoya Overview Spin-off from

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

Wavelength tracking with thermally controlled silicon resonators

Wavelength tracking with thermally controlled silicon resonators Wavelength tracking with thermally controlled silicon resonators Ciyuan Qiu, Jie Shu, Zheng Li Xuezhi Zhang, and Qianfan Xu* Department of Electrical and Computer Engineering, Rice University, Houston,

More information

Demonstration of directly modulated silicon Raman laser

Demonstration of directly modulated silicon Raman laser Demonstration of directly modulated silicon Raman laser Ozdal Boyraz and Bahram Jalali Optoelectronic Circuits and Systems Laboratory University of California, Los Angeles Los Angeles, CA 995-1594 jalali@ucla.edu

More information

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b, Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b, a Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde

More information

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 8 (August 2013), PP.34-39 Design and Simulation of N-Substrate Reverse Type

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

arxiv:physics/ v2 [physics.optics] 17 Mar 2005

arxiv:physics/ v2 [physics.optics] 17 Mar 2005 Optical modulation at around 1550 nm in a InGaAlAs optical waveguide containing a In- GaAs/AlAs resonant tunneling diode J. M. L. Figueiredo a), A. R. Boyd, C. R. Stanley, and C. N. Ironside Department

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Optics Communications

Optics Communications Optics Communications 283 (2010) 3678 3682 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom Ultra-low-loss inverted taper coupler for silicon-on-insulator

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

Hybrid vertical-cavity laser integration on silicon

Hybrid vertical-cavity laser integration on silicon Invited Paper Hybrid vertical-cavity laser integration on Emanuel P. Haglund* a, Sulakshna Kumari b,c, Johan S. Gustavsson a, Erik Haglund a, Gunther Roelkens b,c, Roel G. Baets b,c, and Anders Larsson

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7 13.7 A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13µm SOI CMOS Andrew Huang, Cary Gunn, Guo-Liang Li, Yi Liang, Sina Mirsaidi, Adithyaram Narasimha, Thierry Pinguet Luxtera,

More information

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics PIERS ONLINE, VOL. 3, NO. 3, 27 329 Applications of Cladding Stress Induced Effects for Advanced Polarization Control in licon Photonics D.-X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard

More information

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality Wing H. Ng* a, Nina Podoliak b, Peter Horak b, Jiang Wu a, Huiyun Liu a, William J. Stewart b, and Anthony J. Kenyon

More information

Optical Interconnection in Silicon LSI

Optical Interconnection in Silicon LSI The Fifth Workshop on Nanoelectronics for Tera-bit Information Processing, 1 st Century COE, Hiroshima University Optical Interconnection in Silicon LSI Shin Yokoyama, Yuichiro Tanushi, and Masato Suzuki

More information

for optical communication system

for optical communication system High speed Ge waveguide detector for optical communication system Xingjun Wang, Zhijuan Tu and Zhiping Zhou State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics

More information

OPTICAL modulators that encode a bit stream onto the

OPTICAL modulators that encode a bit stream onto the IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 6, NO. 1, DECEMBER 1 176 Optimization of Ion Implantation Condition for Depletion-Type Silicon Optical Modulators Hui Yu, Wim Bogaerts, Member, IEEE, and An De

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors 846 PIERS Proceedings, Cambridge, USA, July 6, 8 Design and Analysis of Resonant Leaky-mode Broadband Reflectors M. Shokooh-Saremi and R. Magnusson Department of Electrical and Computer Engineering, University

More information

Self-phase-modulation induced spectral broadening in silicon waveguides

Self-phase-modulation induced spectral broadening in silicon waveguides Self-phase-modulation induced spectral broadening in silicon waveguides Ozdal Boyraz, Tejaswi Indukuri, and Bahram Jalali University of California, Los Angeles Department of Electrical Engineering, Los

More information

Optimization of Ion Implantation Condition for Depletion-type Silicon optical modulators

Optimization of Ion Implantation Condition for Depletion-type Silicon optical modulators JQE-1-1 1 Optimization of Ion Implantation Condition for Depletion-type Silicon optical modulators Hui Yu, Wim Bogaerts, Member, IEEE, and An De Keersgieter Abstract We study the influence of the ion implantation

More information

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5 Microwave tunnel diode Some anomalous phenomena were observed in diode which do not follows the classical diode equation. This anomalous phenomena was explained by quantum tunnelling theory. The tunnelling

More information

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical 286 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 2, JANUARY 15, 2008 Design and Fabrication of Sidewalls-Extended Electrode Configuration for Ridged Lithium Niobate Electrooptical Modulator Yi-Kuei Wu,

More information

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices 644 Realization of Polarization-Insensitive Optical Polymer Waveguide Devices Kin Seng Chiang,* Sin Yip Cheng, Hau Ping Chan, Qing Liu, Kar Pong Lor, and Chi Kin Chow Department of Electronic Engineering,

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

More information

Characterization of Photonic Structures with CST Microwave Studio. CST UGM 2010 Darmstadt

Characterization of Photonic Structures with CST Microwave Studio. CST UGM 2010 Darmstadt Characterization of Photonic Structures with CST Microwave Studio Stefan Prorok, Jan Hendrik Wülbern, Jan Hampe, Hooi Sing Lee, Alexander Petrov and Manfred Eich, Institute of Optical and Electronic Materials

More information

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc.

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc. Simulation of silicon based thin-film solar cells Copyright 1995-2008 Crosslight Software Inc. www.crosslight.com 1 Contents 2 Introduction Physical models & quantum tunneling Material properties Modeling

More information

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

Highly sensitive silicon microring sensor with sharp asymmetrical resonance Highly sensitive silicon microring sensor with sharp asymmetrical resonance Huaxiang Yi, 1 D. S. Citrin, 2 and Zhiping Zhou 1,2 * 1 State Key Laboratory on Advanced Optical Communication Systems and Networks,

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information