Appendix I to Ch. 3 The Eikonal Equation in Optics

Size: px
Start display at page:

Download "Appendix I to Ch. 3 The Eikonal Equation in Optics"

Transcription

1 Appendix I to Ch. 3 The Eikonal Equation in Optics I. The Eikonal Equation of a Ray We may apply the Fermat's principle to find the path of propagation of a light ray. The optical path length propagated by a ray from point A to point B is given by L A B nds. (1) The ray would follow the path for which L op is an extremum; i.e. δ L op = δ A B nds=0. () Assume n is continuous everywhere, we may define a point characteristic function L (eikonal) given by the eikonal equation L L = n and L = n = neˆ t. (3) L op

2 Since for any closed curve Γ containing points A and B we have We find that for any path from point A to point B, we have Path 1 Path Γ L dr =0. (4) L dr = L dr. (5) A B A B If we trace a ray in the direction of L on any point of its optic path from A to B, we have L dr = L ds A B A B Ray, eˆ t Ray, eˆ t dr = nds= n dr. (6) ds A B A B Ray, eˆ t Ray, eˆ t

3 We can prove that this path will give a minimum value of L op since nds = L dr = L dr A B A B A B Ray, eˆ t Ray, eˆ t Other Rays = cos δ L ds L ds= nds. (7) A B A B A B Other Rays Other Rays Other Rays Eq. (7) tells us that if the ray propagates along a path in the direction of L (i.e., e ), its optic path-length will be a minimum ˆt in accordance with the Fermat s principle. We therefore show that the ray path will follow Eq. (3) the eikonal equation.

4 To obtain the ray equation of optics, we differentiate the eikonal equation after the path. Thereby we apply d eˆt ds = and obtain d 1 1 ( ) ( ) ( ) 1 L = eˆ t L = L L = L = n. (8) ds n n n Thus we obtain the ray equation d d dr n = L = n ds ds ds. [ Ray Equation ] (9) The physical ray path will be described byr from solving Eq. (9).

5 Example: Fata Morgana (Mirage) As a short example we will treat reflection at a hot film of air near the ground, which induces a decrease in air density and thereby a reduction of the refractive index. We may assume in good approximation that for calm air the index of refraction increases with distance y from the bottom (see Fig. E1), e.g. n(y)=n 0 (1 e αy ). Since the effect is small, ε 1is valid in general, while the scale length α is of the order α = 1 m 1. We apply the ray equation for all individual components of We find r = ( x, y( x)). d dx dx n = 0 n = C. [ x component] ds ds ds

6 Similarly, we see the solution for the y coordinate with the aid of above result and find that n( y) d dy d dy dx dx d dy C = n = n = C y ds ds dx dx ds ds dx dx n d dy n( y) 1 dn C C = n = dx dx y dy We may rescale the x coordinate to adjust the constant C as 1 without loss of generality. Since ε 1, we get 0 0 ( α y ) ( α y ε ε ) n = n 1 e n 1 e.. Thus dn dy n e. y 0ε α

7 Fig. E1 We find d y y = n 0εe α. dx This equation can be solved by fundamental methods and it is convenient to write the solution in the form 1 { ( ) } 0 ln cosh α y y = y + κ x x0 n0ε e. α κ = ε αn0e α y 0 /

8 For large distances from the point of reflection at x=x 0 straight propagation as expected. The maximum angle φ =tan 1 (κ/α) is defined by we find κ = ε αn e α y 0 / 0. As in Fig. E.1 the observer registers two images one of them is upside down and corresponds to a mirror image. The curvature of the light rays declines quickly with increasing distance from the bottom and therefore may be neglected for the 'upper' line of sight. At (x 0, y 0 ) a 'virtual' point of reflection may be defined.

9 II. The Eikonal Equation as a Consequence of Fermat Principle We can obtain the ray equation from the Fermat principle by applying the standard variational principle for light. The Fermat's principle, states that light will take the path which extremizes the optical path length from point A to B. The optical path length is given by L op A B n ( r ( s )) ds, (10), where I have indicated the dependence on arc length s. Following the usual variational approach, we try to find which path extremizes L op, i.e. δ L op = δ A B nds=0. (11)

10 We consider varying the path of the light ray with regard to r ( s) r ( s) + δ r ( s) with end points fixed. The first order variation in L op is given by δ L ( ) + ( ) op = δ n ds n δ ds. (1) A B It is important to note that the infinitesimal arc length changes as well. We can calculate the first δn term as δ r δ n = n dr ( ). Keep only first order terms in, the variation of arc length δds is given by ( ) ( ) dr dδ r δ ds = dr + dδ r dr = ds. ds ds

11 We thus obtain the variation of L op as dr dδ r δ Lop = n dr + n ds ds ds A B d dr = n n δ rds (1) ds ds A B The last equality there follows from an integration by part and the fact that δ r vanishes at the end points. Impose δl op =0 for arbitrary variations of δ r, we achieve the extremal path. This implies that the extremal path satisfies d dr n n = ds ds 0. [Ray Equati on ] (13)

12 We propose to define the point characteristic function L (eikonal) as the physical optical path for a ray to transverse from a point P 0 to any point P, that is L( P) L( P0 ) = n( r ) ds. (14) Since dr n( r ) ds= n( r ) dr, ds P P P P 0 0 P 0 P We arrive at L dr = L ( P ) L ( P ) P P 0 dr = n( r ) ds= n( r ) dr, (15) ds P P P P 0 0 which yields the relation dr ( ) L = n( r ) and L = n [ Eikonal Equation] (16) ds 0

PEAT SEISMOLOGY Lecture 6: Ray theory

PEAT SEISMOLOGY Lecture 6: Ray theory PEAT8002 - SEISMOLOGY Lecture 6: Ray theory Nick Rawlinson Research School of Earth Sciences Australian National University Introduction Here, we consider the problem of how body waves (P and S) propagate

More information

On Surfaces of Revolution whose Mean Curvature is Constant

On Surfaces of Revolution whose Mean Curvature is Constant On Surfaces of Revolution whose Mean Curvature is Constant Ch. Delaunay May 4, 2002 When one seeks a surface of given area enclosing a maximal volume, one finds that the equation this surface must satisfy

More information

Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

More information

Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

More information

03/11/13, Eikonal Equations, Superposition of EM Waves. Lecture Note (Nick Fang)

03/11/13, Eikonal Equations, Superposition of EM Waves. Lecture Note (Nick Fang) 03/11/13, Eikonal Equations, Superposition of EM Waves Lecture Note (Nick Fang) Outline: onnection of EM wave to geometric optics Path of Light in an Inhomogeneous Medium Superposition of waves, coherence

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

GRAY: a quasi-optical beam tracing code for Electron Cyclotron absorption and current drive. Daniela Farina

GRAY: a quasi-optical beam tracing code for Electron Cyclotron absorption and current drive. Daniela Farina GRAY: a quasi-optical beam tracing code for Electron Cyclotron absorption and current drive Daniela Farina Istituto di Fisica del Plasma Consiglio Nazionale delle Ricerche EURATOM-ENEA-CNR Association,

More information

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014 Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Fiber Optic Communication Systems. Unit-04: Theory of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-04: Theory of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-04: Theory of Light https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Limitations of Ray theory Ray theory describes only the direction

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

0.0 An Optics Primer. ,/r. e.=e. 0.1 Geometrical Optics \,, { \ \t 0;'. / (0.1)

0.0 An Optics Primer. ,/r. e.=e. 0.1 Geometrical Optics \,, { \ \t 0;'. / (0.1) 0.0 An Optics Primer The field of optics is a fascinating area of study. In many areas of science and engineering, the understanding of the concepts and effects in that field can be difficult because the

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

More information

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals Estimating Areas Consider the challenge of estimating the volume of a solid {(x, y, z) 0 z f(x, y), (x, y) }, where is a region in the xy-plane. This may be thought of as the solid under the graph of z

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

10.1 Curves defined by parametric equations

10.1 Curves defined by parametric equations Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Design of a double clad optical fiber with particular consideration of leakage losses

Design of a double clad optical fiber with particular consideration of leakage losses Vol. (4), pp. 7-62 October, 23 DOI.897/JEEER23.467 ISSN 993 822 23 Academic Journals http://www.academicjournals.org/jeeer Journal of Electrical and Electronics Engineering Research Full Length Research

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

Ranging detection algorithm for indoor UWB channels and research activities relating to a UWB-RFID localization system

Ranging detection algorithm for indoor UWB channels and research activities relating to a UWB-RFID localization system Ranging detection algorithm for indoor UWB channels and research activities relating to a UWB-RFID localization system Dr Choi Look LAW Founding Director Positioning and Wireless Technology Centre School

More information

Solutions 2: Probability and Counting

Solutions 2: Probability and Counting Massachusetts Institute of Technology MITES 18 Physics III Solutions : Probability and Counting Due Tuesday July 3 at 11:59PM under Fernando Rendon s door Preface: The basic methods of probability and

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

CHAPTER 1 Optical Aberrations

CHAPTER 1 Optical Aberrations CHAPTER 1 Optical Aberrations 1.1 INTRODUCTION This chapter starts with the concepts of aperture stop and entrance and exit pupils of an optical imaging system. Certain special rays, such as the chief

More information

P282 Two-point Paraxial Traveltime in Inhomogeneous Isotropic/Anisotropic Media - Tests of Accuracy

P282 Two-point Paraxial Traveltime in Inhomogeneous Isotropic/Anisotropic Media - Tests of Accuracy P8 Two-point Paraxial Traveltime in Inhomogeneous Isotropic/Anisotropic Media - Tests of Accuracy U. Waheed* (King Abdullah University of Science & Technology), T. Alkhalifah (King Abdullah University

More information

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

More information

Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website:

Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website: Lecture 25 Chapter 23 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f Phys 531 Lecture 9 30 September 2004 Ray Optics II Last time, developed idea of ray optics approximation to wave theory Introduced paraxial approximation: rays with θ 1 Will continue to use Started disussing

More information

Experiment 3: Reflection

Experiment 3: Reflection Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

More information

Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter

Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter Cheng-Chung ee, Sheng-ui Chen, Chien-Cheng Kuo and Ching-Yi Wei 2 Department of Optics and Photonics/ Thin Film Technology Center, National

More information

The Mathematics of Geometrical and Physical Optics

The Mathematics of Geometrical and Physical Optics Orestes N. Stavroudis The Mathematics of Geometrical and Physical Optics The fc-function and its Ramifications WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I Preliminaries 1 1 Fermat's Principle and the

More information

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning Summer School on GNSS 2014 Student Scholarship Award Workshop August 2, 2014 3D-Map Aided Multipath Mitigation for Urban GNSS Positioning I-Wen Chu National Cheng Kung University, Taiwan. Page 1 Outline

More information

Lecture 38: MON 24 NOV Ch.33 Electromagnetic Waves

Lecture 38: MON 24 NOV Ch.33 Electromagnetic Waves Physics 2113 Jonathan Dowling Heinrich Hertz (1857 1894) Lecture 38: MON 24 NOV Ch.33 Electromagnetic Waves Maxwell Equations in Empty Space: E da = 0 S B da = 0 S C C B ds = µ ε 0 0 E ds = d dt d dt S

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

More information

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

More information

RECOMMENDATION ITU-R P Attenuation by atmospheric gases

RECOMMENDATION ITU-R P Attenuation by atmospheric gases Rec. ITU-R P.676-6 1 RECOMMENDATION ITU-R P.676-6 Attenuation by atmospheric gases (Question ITU-R 01/3) (1990-199-1995-1997-1999-001-005) The ITU Radiocommunication Assembly, considering a) the necessity

More information

Radiation from Antennas

Radiation from Antennas Radiation from Antennas Ranga Rodrigo University of Moratuwa November 20, 2008 Ranga Rodrigo (University of Moratuwa) Radiation from Antennas November 20, 2008 1 / 32 Summary of Last Week s Lecture Radiation

More information

Ch. 18 Notes 3/28/16

Ch. 18 Notes 3/28/16 Section 1 Light & Color: Vocabulary Transparent material: transmits most of the light that strikes it. Light passes through without being scattered, so you can see clearly what is on the other side. Ex.

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

More information

28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing 28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

More information

2018 free PDF version (first 7 chapters so far!)

2018 free PDF version (first 7 chapters so far!) 2018 free PDF version (first 7 chapters so far!) This book was initially written to serve as a general research level introduction to the field specified in the title. I wrote it to save my having to repeatedly

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Multimode Optical Fiber

Multimode Optical Fiber Multimode Optical Fiber 1 OBJECTIVE Determine the optical modes that exist for multimode step index fibers and investigate their performance on optical systems. 2 PRE-LAB The backbone of optical systems

More information

Lecture 12: Curvature and Refraction Radar Equation for Point Targets (Rinehart Ch3-4)

Lecture 12: Curvature and Refraction Radar Equation for Point Targets (Rinehart Ch3-4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 12: Curvature and Refraction Radar Equation for Point Targets (Rinehart Ch3-4) Radar Wave Propagation

More information

Chapter 5 5.1 What are the factors that determine the thickness of a polystyrene waveguide formed by spinning a solution of dissolved polystyrene onto a substrate? density of polymer concentration of polymer

More information

UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date:

UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date: UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date: Topics covered in the unit: 1. Electromagnetic Spectrum a. Order of classifications and respective wavelengths b. requency, wavelength,

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

Course Syllabus OSE 3200 Geometric Optics

Course Syllabus OSE 3200 Geometric Optics Course Syllabus OSE 3200 Geometric Optics Instructor: Dr. Kyle Renshaw Term: Fall 2016 Email: krenshaw@creol.ucf.edu Class Meeting Days: Monday/Wednesday Phone: 407-823-2807 Class Meeting Time: 10:30-11:45AM

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

Seismology and Seismic Imaging

Seismology and Seismic Imaging Seismology and Seismic Imaging 5. Ray tracing in practice N. Rawlinson Research School of Earth Sciences, ANU Seismology lecture course p.1/24 Introduction Although 1-D whole Earth models are an acceptable

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Spectacle lens design following Hamilton, Maxwell and Keller

Spectacle lens design following Hamilton, Maxwell and Keller Spectacle lens design following Hamilton, Maxwell and Keller Koby Rubinstein Technion Koby Rubinstein (Technion) Spectacle lens design following Hamilton, Maxwell and Keller 1 / 23 Background Spectacle

More information

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS DIELECTRIC WAVEGUIDES and OPTICAL FIBERS Light Light Light n 2 n 2 Light n 1 > n 2 A planar dielectric waveguide has a central rectangular region of higher refractive index n 1 than the surrounding region

More information

Lecture 10. Dielectric Waveguides and Optical Fibers

Lecture 10. Dielectric Waveguides and Optical Fibers Lecture 10 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

Transmission Lines. Ranga Rodrigo. January 13, Antennas and Propagation: Transmission Lines 1/46

Transmission Lines. Ranga Rodrigo. January 13, Antennas and Propagation: Transmission Lines 1/46 Transmission Lines Ranga Rodrigo January 13, 2009 Antennas and Propagation: Transmission Lines 1/46 1 Basic Transmission Line Properties 2 Standing Waves Antennas and Propagation: Transmission Lines Outline

More information

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1 5 Trigonometric functions Trigonometry is the mathematics of triangles. A right-angle triangle is one in which one angle is 90, as shown in Figure 5.1. The thir angle in the triangle is φ = (90 θ). Figure

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line.

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line. Optical Systems 37 Parity and Plane Mirrors In addition to bending or folding the light path, reflection from a plane mirror introduces a parity change in the image. Invert Image flip about a horizontal

More information

Course Syllabus OSE 3200 Geometric Optics

Course Syllabus OSE 3200 Geometric Optics Course Syllabus OSE 3200 Geometric Optics Instructor: Dr. Kyu Young Han Term: Spring 2018 Email: kyhan@creol.ucf.edu Class Meeting Days: Monday/Wednesday Phone: 407-823-6922 Class Meeting Time: 09:00-10:15AM

More information

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science.

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science. Chapter 35 Interference 35.1: What is the physics behind interference? Optical Interference: Interference of light waves, applied in many branches of science. Fig. 35-1 The blue of the top surface of a

More information

travel (at same speed) through a vacuum / space do not accept air for vacuum travel in straight lines 2

travel (at same speed) through a vacuum / space do not accept air for vacuum travel in straight lines 2 M. (a) any two from: travel (at same speed) through a vacuum / space do not accept air f vacuum transverse transfer energy can be reflected can be refracted can be diffracted can be absbed travel in straight

More information

Lesson 5 Refraction And Lenses

Lesson 5 Refraction And Lenses Lesson 5 And Free PDF ebook Download: Lesson 5 And Download or Read Online ebook lesson 5 refraction and lenses in PDF Format From The Best User Guide Database Light, and Name: Ray Diagrams for Converging.

More information

How to Trisect an Angle (If You Are Willing to Cheat)

How to Trisect an Angle (If You Are Willing to Cheat) How to Trisect an ngle (If You re Willing to heat) Moti en-ri http://www.weizmann.ac.il/sci-tea/benari/ c 207 by Moti en-ri. This work is licensed under the reative ommons ttribution-sharelike 3.0 Unported

More information

THE CONDUCTANCE BANDWIDTH OF AN ELEC- TRICALLY SMALL ANTENNA IN ANTIRESONANT RANGES

THE CONDUCTANCE BANDWIDTH OF AN ELEC- TRICALLY SMALL ANTENNA IN ANTIRESONANT RANGES Progress In Electromagnetics Research B, Vol. 24, 285 301, 2010 THE CONDUCTANCE BANDWIDTH OF AN ELEC- TRICALLY SMALL ANTENNA IN ANTIRESONANT RANGES O. B. Vorobyev Stavropol Institute of Radiocommunications

More information

Trigonometry. David R. Wilkins

Trigonometry. David R. Wilkins Trigonometry David R. Wilkins 1. Trigonometry 1. Trigonometry 1.1. Trigonometric Functions There are six standard trigonometric functions. They are the sine function (sin), the cosine function (cos), the

More information

An Analytical Approach Treating Three- Dimensional Geometrical Effects of Parabolic Trough Collectors

An Analytical Approach Treating Three- Dimensional Geometrical Effects of Parabolic Trough Collectors An Analytical Approach Treating Three- Dimensional Geometrical Effects of Parabolic Trough Collectors Marco Binotti Guangdong Zhu*, Ph.D., Guangdong.Zhu@nrel.gov Allison Gray National Renewable Energy

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane: 1 Directional Derivatives and Gradients Suppose we need to compute the rate of change of f(x, y) with respect to the distance from a point (a, b) in some direction. Let u = u 1 i + u 2 j be the unit vector

More information

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to; Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

More information

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions 10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

Dispersion and Ultrashort Pulses II

Dispersion and Ultrashort Pulses II Dispersion and Ultrashort Pulses II Generating negative groupdelay dispersion angular dispersion Pulse compression Prisms Gratings Chirped mirrors Chirped vs. transform-limited A transform-limited pulse:

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens 3-1 Section 3 Imaging With A Thin Lens Object at Infinity An object at infinity produces a set of collimated set of rays entering the optical system. Consider the rays from a finite object located on the

More information

TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES. Andrei G. Marchuk

TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES. Andrei G. Marchuk TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES Andrei G. Marchuk Institute of Computational Mathematics and Mathematical Geophysics Siberian Division Russian Academy of Sciences, 639, Novosibirsk, RUSSIA mag@omzg.sscc.ru

More information

Chapter 34: Geometric Optics

Chapter 34: Geometric Optics Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

More information

Fiber designs for high figure of merit and high slope dispersion compensating fibers

Fiber designs for high figure of merit and high slope dispersion compensating fibers 25 Springer Science+Business Media Inc. DOI: 1.17/s1297-5-61-1 Originally published in J. Opt. Fiber. Commun. Rep. 3, 25 6 (25) Fiber designs for high figure of merit and high slope dispersion compensating

More information

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1) Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

More information

Simulation of a DBR Edge Emitting Laser with External Air Gap Tuning Mirror

Simulation of a DBR Edge Emitting Laser with External Air Gap Tuning Mirror Engineered Excellence A Journal for Process and Device Engineers Simulation of a DBR Edge Emitting Laser with External Air Gap Tuning Mirror Abstract A methodology for simulating an edge emitting laser

More information

Laboratory 12: Image Formation by Lenses

Laboratory 12: Image Formation by Lenses Phys 112L Spring 2013 Laboratory 12: Image Formation by Lenses The process by which convex lenses produce images can be described with reference to the scenario illustrated in Fig. 1. An object is placed

More information

Reconstructing Virtual Rooms from Panoramic Images

Reconstructing Virtual Rooms from Panoramic Images Reconstructing Virtual Rooms from Panoramic Images Dirk Farin, Peter H. N. de With Contact address: Dirk Farin Eindhoven University of Technology (TU/e) Embedded Systems Institute 5600 MB, Eindhoven, The

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

EC O4 403 DIGITAL ELECTRONICS

EC O4 403 DIGITAL ELECTRONICS EC O4 403 DIGITAL ELECTRONICS Asynchronous Sequential Circuits - II 6/3/2010 P. Suresh Nair AMIE, ME(AE), (PhD) AP & Head, ECE Department DEPT. OF ELECTONICS AND COMMUNICATION MEA ENGINEERING COLLEGE Page2

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Geometrical optics Design of imaging systems

Geometrical optics Design of imaging systems Geometrical optics Design of imaging systems Geometrical optics is either very simple, or else it is very complicated Richard P. Feynman What s it good for? 1. Where is the image?. How large is it? 3.

More information

Actually, you only need to design one monocular of the binocular.

Actually, you only need to design one monocular of the binocular. orro rism Binoculars Design a pair of 8X40 binoculars: Actually, you only need to design one monocular of the binocular. Specifications: Objective ocal Length = 200 mm Eye Relief = 15 mm The system stop

More information

PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #1 SOLUTIONS

PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #1 SOLUTIONS PHYSICS 40A : STATISTICAL PHYSICS HW ASSIGNMENT # SOLUTIONS () The information entropy of a distribution {p n } is defined as S n p n log 2 p n, where n ranges over all possible configurations of a given

More information