PART ONE. Solutions to End-of-Chapter Problems

Size: px
Start display at page:

Download "PART ONE. Solutions to End-of-Chapter Problems"

Transcription

1 PAT ONE Solutions to End-of-Chapter Problems

2

3 CHAPTE QUANTITIES AND UNITS SECTION - Scientific and Engineering Notation. (a) (b) 75, (c),000, (a) (b) (c) 5,000, (a) (b) 99, (c) (a) (b) (c) (already in scientific notation) 5. (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

4 9. (a) (5 0 3 )(4 0 5 ) (b) (. 0 )(3 0 ) (c) (. 0 9 )(7 0 6 ) (a) (b) ( 8) (c) ( 5) (a) 89, (b) 450, (c),040,000,000, (a) (b) (c) (already in engineering notation) 3. (a) (b) (c) (a) (b) (c) (a) ( ) (b) ( ) (c) ( ) (a) (3 0 3 )( ) 79 0 ( 3 + 3) (b) (. 0 6 )(. 0 6 ).44 0 ( 6 6)

5 (c) (00)( ) (a) (b) (c) (3 ( 6)) (3 3) SECTION - Units and Metric Prefixes 8. (a) 89,000 Ω kω (b) (c) 450,000 Ω kω,040,000,000,000 Ω TΩ 9. (a) A A 345 μa (b) (c) 0.05 A A 5 ma A A.9 na 0. (a) A 3 ma (b) k (c) 0 0 F 0 pf. (a) F 3 μf (b) Ω 3.3 MΩ (c) A 350 na. (a) 5 μa A (b) 43 m (c) 75 kω Ω (d) 0 MW W SECTION -3 Metric Unit Conversions 3. (a) (5 ma) ( 0 3 μa/ma) μa 5000 μa (b) (c) (d) (300 μw)( 0 3 W/μW) 3. mw (5000 k)( 0 3 ) M/k 5 M (0 MW)( 0 3 kw/mw) kw 0,000 kw 5

6 4. (a) ma μa A A (b) 0.05 k m , (c) 0.0 kω Ω 6 MΩ 0 Ω (d) 55 mw kw W 3 0 W (a) 50 ma μa 50 ma ma ma (b) (c) 0 kω +. MΩ 0. MΩ +. MΩ.3 MΩ 0.0 μf pf 0.0 μf μf μf 6. (a) 0 kω 0 kω. kω + 0 kω. kω m 50 0 (b) 6 50 μ MW 0 (c) kw 0 6 SECTION -4 Measured Numbers 7. (a) has 3 significant digits. (b) has significant digits. (c) 50.0 has 5 significant digits. (d) has significant digits. (e) 0.05 has 3 significant digits. (f).6 0 has significant digits. 8. (a) 50, (b) (c) (d) (e)

7 CHAPTE OLTAGE, CUENT, AND ESISTANCE BASIC POBLEMS SECTION - Electrical Charge. Q (charge per electron)(number of electrons) ( C/e)( e) 80 0 C. ( e/c)( C) e 3. The magnitude of the charge on a proton (p) is equal to the magnitude of the charge on the electron (e). Therefore, ( C/p)(9 p) C 4. ( C/p)(7 p) C SECTION -3 oltage 5. (a) W 0 J 0 (b) Q C W 5 J.5 (c) Q C W 00 J 4 Q 5 C W 500 J 5 Q 00 C W 800 J 0 Q 40 C 8. W Q ( )(.5 C) 30 J 9. W.5 J.5 Q 0. C SECTION -4 Current 0. Q 0. C I 0 ma t 0 s 7

8 . (a) Q 75 C I 75 A (b) t s Q 0 C I 0 A (c) t 0.5 s Q 5 C I.5 A t s. Q 0.6 C I 0. A t 3s Q 3. I ; t t Q I 0 C 5 A 4. Q I t (.5 A)(0. s) 0.5 C s SECTION -5 esistance 5. A: Blue, gray, red, silver: 6800 Ω ± 0% B: Orange, orange, black, silver: 33 Ω ± 0% C: Yellow, violet, orange, gold: 47,000 Ω ± 5% 6. A: min 6800 Ω 0.(6800 Ω) 6800 Ω 680 Ω 60 Ω max 6800 Ω Ω 7480 Ω B: min 33 Ω 0.(33 Ω) 33 Ω 3.3 Ω 9.7 Ω max 33 Ω Ω 36.3 Ω C: min 47,000 Ω (0.05)(47,000 Ω) 47,000 Ω 350 Ω 44,650 Ω max 47,000 Ω Ω 49,350 Ω 7. (a) st band red, nd band violet, 3rd band brown, 4th band gold (b) 330 Ω; orange, orange, brown, (B). kω: red, red, red (D) 39 kω: orange, white, orange (A) 56 kω: green, blue, orange (L) 00 kω: brown, black, yellow (F) 8. (a) 36.5 Ω ± % (b).74 kω ± 0.5% (c) 8.5 kω ± % 9. (a) Brown, black, black, gold: 0 Ω ± 5% (b) Green, brown, green, silver: 5,00,000 Ω ± 0% 5. MΩ ± 0% (c) Blue, gray, black, gold: 68 Ω ± 5% 0. (a) 0.47 Ω ± 5%: yellow, violet, silver, gold (b) 70 kω ± 5%: red, violet, yellow, gold 8

9 (c) 5. MΩ ± 5%: green, brown, green, gold. (a) ed, gray, violet, red, brown: 8,700 Ω ± % 8.7 kω ± % (b) Blue, black, yellow, gold, brown: 60.4 Ω ± % (c) White, orange, brown, brown, brown: 930 ± % 9.3 kω ± %. (a) 4.7 kω ± %: brown, yellow, violet, red, brown (b) (c) 39. Ω ± %: orange, white, red, gold, brown 9.76 kω ± %: white, violet, blue, brown, brown 3. (a) 0 Ω (b) kω (c) 83 8 kω (d) 3K3 3.3 kω (e) Ω (f) 0M 0 MΩ Ω, equal resistance on each side of the contact. SECTION -6 The Electric Circuit 5. There is current through Lamp. 6. See Figure -. Figure - SECTION -7 Basic Circuit Measurements 7. See Figure -(a). 9

10 Figure - Figure See Figure -(b). 9. Position : 0, S Position : S, See Figure On the 600 DC scale: (0)(0 Ω) 00 Ω 33. (a) (00 Ω) 00 Ω (b) 5(0 MΩ) 50 MΩ (c) 45(00 Ω) 4500 Ω 34. See Figure -4. Figure -4 0

11 ADANCED POBLEMS 35. I t Q Q I t ( A)(5 s) 30 C W 000 J 33.3 Q 30 C 36. I t Q Q (number of electrons) / (number of electrons/coulomb) e Q C e/c Q C I A 3 t 50 0 s 37. Total wire length 00 ft esistance per 000 ft (000 ft)(6 Ω/00 ft) 60 Ω Smallest wire size is AWG 7 which has 5.47 Ω/000 ft 38. (a) 47J 4.7 Ω ± 5% (b) 560KF 560 kω ± % (c) M5G.5 MΩ ± % 39. The circuit in (b) can have both lamps on at the same time. 40. There is always current through See Figure -5. Figure -5

12 4. See Figure See Figure -6. Figure -6

13 CHAPTE 3 OHM S LAW, ENEGY, AND POWE BASIC POBLEMS SECTION 3- Ohm s Law. I is directly proportional to and will change the same percentage as. (a) I 3( A) 3 A (b) I A (0.8)( A) A 0.8 A 0. A (c) I A + (0.5)( A) A A.5 A. (a) When the resistance doubles, the current is halved from 00 ma to 50 ma. (b) When the resistance is reduced by 30%, the current increases from 00 ma to I /0.7.49(/) (.49)(00 ma) 43 ma (c) When the resistance is quadrupled, the current decreases from 00 ma to 5 ma. 3. Tripling the voltage triples the current from 0 ma to 30 ma, but doubling the resistance halves the current to 5 ma. SECTION 3- Application of Ohm s Law 4. (a) I 5 Ω 5 A (b) I 5 0 Ω.5 A (c) I Ω 0.5 A (d) I 30 5 kω ma (e) I 5. (a) I MΩ 9.7 kω 53. μa 3.33 ma (b) I kω 550 μa (c) I (e) I kω 66 k 0 MΩ 588 μa (d) I 6.60 ma k kω 500 ma 3

14 6. I 0 Ω. A 7. (a) I (c) I 5 0 kω 5.8 kω.50 ma (b) I 8.33 ma 5. MΩ.7 μa 8. Orange, violet, yellow, gold, brown 37.4 Ω ± % S I 0.3 A 37.4 Ω 4 9. I 37.4 Ω 0.64 A 0.64 A is greater than 0.5 A, so the fuse will blow. 0. (a) I ( A)(8 Ω) 36 (b) I (5 A)(47 Ω) 35 (c) I (.5 A)(60 Ω) 550 (d) I (0.6 A)(47 Ω) 8. (e) I (0. A)(470 Ω) 47. (a) I ( ma)(0 Ω) 0 m (b) I (50 ma)(33 Ω).65 (c) I (3 A)(4.7 kω) 4. k (d) I (.6 ma)(. kω) 3.5 (e) I (50 μa)( kω) 50 m (f) I (500 ma)(.5 MΩ) 750 k (g) I (850 μa)(0 MΩ) 8.5 k (h) I (75 μa)(47 Ω) 3.53 m. S I (3 A)(7 Ω) 8 3. (a) I (3 ma)(7 kω) 8 (b) I (5 μa)(00 MΩ) 500 (c) I (.5 A)(47 Ω) (a) (c) (e) 5. (a) (c) I I I I I 0 A 50 5 A A 0 k 5 A ma 5 Ω (b) 0 Ω (d) 300 Ω kω (b) kω (d) I I I I A A 7 ma Ω 0.55 Ω 3.5 kω kω 500 μa 4

15 (e) I k ma MΩ 6. I 6 ma 3 kω 7. (a) I 8 A 4 Ω (b) I 4 ma 3 kω (c) I μa 0. MΩ 00 kω 8. I Ω 0.8 A SECTION 3-3 Energy and Power 9. P W t 6 J.6 W 0 s 0. Since watt joule, P 350 J/s 350 W. P W t 7500 J 5 h 7500 J 5 h h 3600 s 7500 J 8,000 s 0.47 J/s 47 mw. (a) 000 W 0 3 W kw (b) 3750 W W 3.75 kw (c) 60 W W 0.60 kw (d) 50,000 W W 50 kw 3. (a),000,000 W 0 6 W MW (b) W 3 MW (c) W W 50 MW (d) 8700 kw W 8.7 MW 4. (a) W W 000 mw (b) 0.4 W W 400 mw (c) 0.00 W 0 3 W mw (d) 0.05 W W.5 mw 5. (a) W,000,000 μw (b) W 500 μw (c) 0.5 mw 50 μw (d) mw 6.67 μw 5

16 6. (a).5 kw W 500 W (b) 0.5 MW W 500,000 W (c) 350 mw W W (d) 9000 μw W W 7. W P in watts t W Q Q I t W P I t So, ( )( A) W 8. W J P W t s kw 000 W 000 J s kw-second 000 J kwh J kwh J SECTION 3-4 Power in an Electric Circuit 9. P I (5.5 )(3 ma) 6.5 mw 30. P I (5 )(3 A) 345 W 3. P I (500 ma) (4.7 kω).8 kw 3. P I ( A) (0 0 3 Ω) 0 4 W 00 μw 33. P (60 ) 60 Ω 5.8 W 34. P (.5 ) 56 Ω W 40. mw 35. P I P 00 W I ( A) 5 Ω 6

17 watts for minute kwmin kwmin 60 min/ hr 83.3 kwh W/s (000 W/kW)(3600 s/h) kwh 38. (50 W)( h) 600 Wh 50 W 0.05 kw (0.05 kw)( h) 0.6 kwh I 0 Ω 0.5 A L P I (.5 )(0.5 A) 0.56 W 56 mw 40. P W t 56 mj 56 mw s W (56 mj/s)(90 h)(3600 s/h) 50,544 J tot SECTION 3-5 The Power ating of esistors 4. P I (0 ma) (6.8 kω) 0.68 W Use the next highest standard power rating of W. 4. If the 8 W resistor is used, it will be operating in a marginal condition. To allow for a safety margin of 0%, use a W resistor. SECTION 3-6 Energy Conversion and oltage Drop in a esistance 43. (a) + at top, at bottom of resistor (b) + at bottom, at top of resistor (c) + on right, on left of resistor SECTION 3-7 Power Supplies and Batteries 44. OUT P ( W)(50 Ω) 7.07 L L 7

18 45. Ampere-hour rating (.5 A)(4 h) 36 Ah 80 Ah 46. I 8 A 0 h 47. I 650 mah 48 h 3.5 ma 48. P LOST P IN P OUT 500 mw 400 mw 00 mw P OUT 400 mw % efficiency 00% 00% 80% PIN 500 mw 49. P OUT (efficiency)p IN (0.85)(5 W) 4.5 W SECTION 3-8 Introduction to Troubleshooting 50. The 4th bulb from the left is open. 5. If should take five (maximum) resistance measurements. ADANCED POBLEMS 5. Assume that the total consumption of the power supply is the input power plus the power lost. P OUT W P OUT % efficiency 00% PIN POUT W P IN 00% 00% % efficiency 3.33 W 60% The power supply itself uses P IN P OUT 3.33 W W.33 W Energy W Pt (.33 W)(4 h) 3.9 Wh 0.03 kwh 53. f I A 50 Ω 8

19 54. Measure the current with an ammeter connected as shown in Figure 3-. Then calculate the unknown resistance with the formula, /I. Figure Calculate I for each value of : I 0 00 Ω 0 A I 0 00 Ω 00 ma 0 30 I 3 00 ma I ma 00 Ω 00 Ω I ma I ma 00 Ω 00 Ω I 7 I 9 I Ω Ω Ω 600 ma I ma I 0 A Ω Ω 700 ma 900 ma The graph is a straight line as shown in Figure 3-. This indicates a linear relationship between I and. Figure 3-9

20 56. S I 5 ma 00 Ω (a) I (c) I (e) I S S S.5 00 Ω 3 00 Ω 0 00 Ω 7.5 ma (b) I 5 ma (d) I 50 ma S S 00 Ω 4 00 Ω 0 ma 0 ma 57. I A 0.5 Ω I A Ω 3 I 0.5 A Ω ma 0 50 ma (0 )(30 ma) 50 ma 6 new value The voltage decreased by 4, from 0 to The current increase is 50%, so the voltage increase must be the same; that is, the voltage must be increased by (0.5)(0 ) 0. The new value of voltage is 0 + (0.5)(0 ) (0.4 CM Ω/ft)(4ft) Wire resistance: W 0.54 Ω 64.3 CM (a) 6 I 59.9 ma + W Ω (b) (59.9 ma)(00 Ω) 5.99 (c) W For one length of wire, W 0.3 kw 30 days (30 days)(4 h/day) 70 h Energy (0.3 kw)(70 h) 6 kwh kwh 3days P kwh/day kwh/day 4 h/day.0 kw 0

21 63. The minimum power rating you should use is W so that the power dissipation does not exceed the rating. 64. (a) ( ) P 0 Ω 4.4 W (b) W Pt (4.4 W)( min)(/60 h/min) 0.48 Wh (c) Neither, the power is the same because it is not time dependent. 65. (max) I max (max) 0.5 A min 8 Ω A fuse with a rating of less than.5 A must be used. A A fuse is recommended. Multisim Troubleshooting Problems 66. is open. 67. No fault 68. is shorted. 69. Lamp 4 is shorted. 70. Lamp 6 is open.

22 CHAPTE 4 SEIES CICUITS BASIC POBLEMS SECTION 4- esistors in Series. See Figure 4-. Figure 4-. The groups of series resistors are,, 3, 9 4 ; 3, 7, 4, 6 ; 6, 8, ; 0,, 5, 5 See Figure 4-. Figure k + 33 k + 47 k + k 70 k Ω+ 8 Ω + Ω 50

23 SECTION 4- Total Series esistance 5. T 8 Ω + 56 Ω 38 Ω 6. (a) T 560 Ω +.0 kω 560 Ω (b) T 47 Ω + 33 Ω 80 Ω (c) T.5 kω +. kω + 0 kω 3.7 kω (d) T.0 kω +.8 kω + 00 kω +.0 MΩ,0,800 Ω (round to.0 MΩ) 7. (a) T.0 kω kω +. kω 7.9 kω (b) T 0 Ω + 0 Ω + Ω +.0 Ω 33 Ω (c) T.0 MΩ kω +.0 MΩ kω + 0 MΩ 3.4 MΩ See Figure 4-3. Figure T (5.6 kω) 67. kω 9. T 6(47 Ω) + 8(00 Ω) + ( Ω) 8 Ω Ω + 44 Ω 6 Ω 0. T T ( ) 0 kω (4.7 kω +.0 kω +. kω kω) 0 kω.8 kω 8. kω. (a) kω + 33 kω + 47 kω + kω 70 kω (b) Ω + 8 Ω + Ω 50 Ω (c) kω + 8. kω +.0 kω +.0 kω.4 kω (d) Ω Ω Ω Ω Ω.97 kω 3

24 . T kω + 50 Ω +.4 kω +.97 kω 84.4 kω SECTION 4-3 Current in a Series Circuit 3. I S T 0 Ω 0. A 4. I 5 ma at all points in the circuit. SECTION 4-4 Application of Ohm s Law 5. (a) T. kω kω +.0 kω 8.8 kω 5.5 I 65 μa 8.8 kω T (b) T.0 MΩ +. MΩ kω 3.76 MΩ 6 I 4.6 μa 3.76 MΩ The ammeters are connected in series. See Figure 4-4. Figure (a). kω S T 8.8 kω 5.6 kω S T 8.8 kω 3.0 kω 3 S m T 8.8 kω 4

25 .0 MΩ (b) S T 3.76 MΩ. MΩ S T 3.76 MΩ kω 3 S 6.38 T 3.76 MΩ 7. (a) T 3(470 Ω) 40 Ω 48 I 34.0 ma 40 Ω (b) I (34.0 ma)(470 Ω) 6 (c) P min I (34.0 ma) 470 Ω W 8. T I each S T 5 ma 5 kω 5 kω.5 kω 4 SECTION 4-5 oltage Sources in Series 9. See Figure 4-5. Figure The total voltage is SECTION 4-6 Kirchhoff s oltage Law. S S S ( ) 0 ( )

26 3. (a) By Kirchhoff s voltage law: ( ) See Figure 4-6(a). (b) 8 ; 6 ; 3 4 ; 4 3 See Figure 4-6(b). Figure 4-6 SECTION 4-7 oltage Dividers Ω Ω 4.4% 5. (a) 47 Ω AB Ω (b). kω kω 5.5 kω AB k. k 3.3 k Ω + Ω + Ω 6.5 kω A S kω kω kω S kω 3 B S 3 C 6

27 3 680 Ω 7. min S Ω Ω max S Ω 8. T k 0 (by measurement); I.79 ma; 5.6 kω k (.79 ma)( kω).79 ; 560 (.79 ma)(560 Ω) ; 0k (.79 ma)(0 kω) 7.9 SECTION 4-8 Power in Series Circuits 30. P T 5(50 mw) 50 mw 3. T 5.6 kω + kω Ω + 0 kω 7.6 kω P I T (.79 ma) (7.6 kω) W 55 mw SECTION 4-9 oltage Measurements 3. oltage from point A to ground (G): AG 0 esistance between A and G: AG 5.6 kω kω +.0 kω +.0 kω 3. kω esistance between B and G: BG 5.6 kω +.0 kω +.0 kω 7.6 kω esistance between C and G: CG.0 kω +.0 kω kω BG CG DG BG AG CG AG DG AG 7.6 kω k Ω kω k Ω.0 kω k Ω

28 33. Measure the voltage at point A with respect to ground and the voltage at point B with respect to ground. The difference of these two voltages is. A B 34. T kω kω + 00 kω +.0 MΩ + 00 kω.3 MΩ T 5.76 MΩ A AG T 5 T.3 M.4 Ω B C D. MΩ BG T 5 T.3 M 7.76 Ω. MΩ CG T 5 T.3 M 7. Ω 00 kω DG T 5 T.3 M 647 m Ω AC A C CA C A SECTION 4-0 Troubleshooting 37. (a) Zero current indicates an open. 4 is open since all the voltage is dropped across it. (b) S ma Ω 4 and 5 have no effect on the current. There is a short from A to B. 38. T 0 kω + 8. kω + kω +. kω kω 38 kω The meter reads about 8 kω. It should read 38 kω. The 0 kω resistor is shorted. ADANCED POBLEMS 39. I (0 ma)(680 Ω) 6.8 I (0 ma)(.0 kω) 0 4 I 4 (0 ma)(70 Ω).7 5 I 5 (0 ma)(70 Ω).7 3 S ( ) 3 30 ( ) I kω 780 Ω 0 ma 8

29 40. T 3(5.6 kω) +.0 kω + (00 Ω) 8 kω Three 5.6 kω resistors, one kω resistor, and two 00 Ω resistors 4. A 0, T kω + 0 kω + 47 kω + kω kω 96.6 kω kω B A k k Ω 0 kω C B 0k k Ω 47 kω D C 47k k Ω kω E D k k Ω F 0 4. I (0 ma)(00 Ω) 5 S Ω I 0 ma P 6 6 mw 80 Ω I (0 ma) 6 I 6 (0 ma)(80 Ω) 5.6 S (0 + 6 ) 30 ( ) Ω I 0 ma Ω I 0 ma 43. S I T (50 ma)(.5 kω) 375 I new 50 ma 0.5(50 ma) 50 ma 6.5 ma 88 ma S 375 new 000 Ω I 88 ma new 500 Ω must be added to the existing 500 Ω to reduce I by 5%. 44. P I I max P 0.5 W 0 Ω A 64.5 ma Since all resistors in series have the same current, use the largest to determine the maximum current allowable because the largest has the greatest power. Thus, the 0 Ω resistor burns out first. 9

30 45. (a) P T W + W + W 0.5 W W W W 8 4 I PT W T 400 Ω 9. ma (b) S I T T (9. ma)(400 Ω) 45.8 (c) P I P 0.5 W /8 I (9.mA) 343 Ω 46. See Figure W /4 (9.mA) 0.5 W / (9.mA) 686 Ω 37 Ω Figure 4-7 Figure See Figure 4-8. When the potentiometer is at minimum setting (0 Ω), OUT 0 : 0 + kω 0 ma ( kω ).0 kω 0 kω.0 kω kω 30

31 When the potentiometer is at maximum setting, OUT 00 : kω + 0 k 00 Ω + (.0 kω + )0 ( kω + )00 0 kω kω kω 54 kω 48. See Figure 4-9. ( ) 5.4 kω ma ( ) 9.9 kω ma ( ) kω ma kω ma A series of standard value resistors must be used to approximately achieve each resistance as follows: 4700 Ω Ω + Ω 5.4 kω 800 Ω Ω + 0 Ω 9.9 kω Ω + 80 Ω + 00 Ω 6.5 kω Ω Ω + 80 Ω + 00 Ω + 00 Ω 8.8 kω The highest power dissipation is in the 800 Ω resistor. P ( ma) 800 Ω 8. mw All resistors must be at least /8 W. Figure 4-9 3

32 49. The groups are:, 7, 8, and 0 ;, 4, 6, and ; 3, 5, 9, and See Figure kω Ω Ω +.0 kω 4.3 kω kω kω kω + 0 kω 3.6 kω kω kω + 8. kω kω 9.9 kω Problem 56: There is a short between these two points. Figure Position : T Ω + 80 Ω Ω.0 kω Position : T Ω + 90 Ω + 80 Ω Ω Ω 3.67 kω 5. Position A: T Ω Ω + 50 Ω +.0 kω. kω I 5.45 ma T. kω Position B: T Ω + 50 Ω +.0 kω.98 kω I 6.06 ma T.98 kω Position C: T Ω +.0 kω.5 kω I 7.95 ma T.5 kω Position D: T 4.0 kω I ma.0 kω T 3

33 5. Position A: T.0 kω 9 I.0 kω T 9 ma Position B: T kω + 33 kω + kω 56 kω 9 I 6 μa 56 kω T Position C: T kω + 33 kω + 68 kω + 7 kω + kω 5 kω 9 I 59.6 μa 5 kω T 53. First, find the value of 5 with the switch in Position D. 8 6 ma +.8 kω ma.8 kω. kω Position A: T 5.38 kω I 8 /5.38 kω 3.35 ma (3.35 ma)(.8 kω) 6.03 (3.35 ma)(.0 kω) (3.35 ma)(80 Ω).75 4 (3.35 ma)(560 Ω) Position B: T 4.8 kω I 8 /4.8 kω 3.73 ma (3.73 ma)(.8 kω) 6.7 (3.73 ma)(.0 kω) (3.73 ma)(80 Ω) Position C: T 4 kω I 8 /4 kω 4.5 ma (4.5 ma)(.8 kω) 8. (4.5 ma)(.0 kω) Position D: T 3 kω I 8 /3 kω 6 ma (6 ma)(.8 kω) Note: The voltage approach can also be used. 54. See Figure 4-0. The results in the table are correct. 33

34 55. Yes, 3 and 5 are each shorted. efer to Figure Yes, there is a short between the points indicated in Figure (a) burned open due to excessive power because it had the largest value in ohms. (b) eplace (0 kω). (c) T 47.7 kω I max P 0.5 W 0 kω 7.07 ma TOTAL I max T (7.07 ma)(47.7 kω) 338 Multisim Troubleshooting Problems 58. is open is shorted. 60. is open. 6. Lamp 4 is open. 6. No fault 63. The 8 Ω resistor is shorted. 34

35 CHAPTE 5 PAALLEL CICUITS BASIC POBLEMS SECTION 5- esistors in Parallel. See Figure 5-.. See Figure 5-. Figure 5- Figure 5- SECTION 5- Total Parallel esistance 3. From Problem : ( + + ) T kω 0 kω kω 68 kω 56 kω 08 kω 3.43 kω 4. T MΩ. MΩ 4.7 MΩ MΩ MΩ 557 kω 5. (a) 47 Ω 6 kω 5.6 Ω (b) 560 Ω.0 kω 359 Ω (c).5 kω. kω 0 kω 89 Ω (d).0 kω. MΩ.0 MΩ 470 kω 996 Ω 35

36 6. (a) T (4.7 kω)(. kω) k Ω +. kω.5 kω (b) T (7 Ω)(56 Ω) + 7 Ω + 56 Ω 8. Ω (c) T (.5 k Ω)(. kω) +.5 k Ω +. kω 89 Ω 7. T kω kω 5 Ω 8. T 3 Ω 5 00 Ω T 0 Ω 0 0 Ω T3 5 Ω T Ω 0 Ω 5 Ω.58 Ω SECTION 5-3 oltage in a Parallel Circuit T I T 0 ma T 600 Ω The total current divides equally among the four equal resistors. 0 ma I I I 3 I 4 5 ma 4 0. The resistors are all in parallel across the source. The voltmeters are each measuring the voltage across a resistor, so each meter indicates 00. SECTION 5-4 Application of Ohm s Law. (a) T 33 kω 33 kω 33 kω kω I T μa kω 36

37 (b) T.0 kω 3.9 kω 560 Ω 39 Ω 5 I T 76 ma 39 Ω. I T I + I + I A 3. (a) I 0 56 k I 0 k 4. T 79 μa 455 μa 8 (b) I 444 μa 8 k 8 I 80 μa 00 k I S T 5.5 ma each 4( kω) 8 kω kω SECTION 5-5 Kirchhoff s Current Law 5. I T 50 ma ma ma 350 ma 6. I T I + I + I 3 + I 4 + I 5 I 5 I T (I + I + I 3 + I 4 ) I ma (50 ma + 50 ma + 5 ma + 00 ma) 500 ma 35 ma 75 ma 7. I 3 I T (I + I 4 ) 50 ma 35 ma 5 ma I I ma See Figure 5-3. Figure

38 8. I T I + I + I 3 + I 4 + I 5 + I A A A A +. A +. A 4.4 A 9. (a) I T I + I + I 3 + I 4 + I 5 + I 6 + I 7 + I A A A A +. A +. A +.0 A +.0 A 6.4 A (b) I ground 6.4 A SECTION 5-6 Current Dividers 0. The 0 kω resistor has the highest current..7 kω. I IT 3 A 3.7 k + Ω.0 kω I IT 3 A 3.7 k + Ω.9 A 8 ma. (a). MΩ I IT 0 μa 3. M 6.88 μa + Ω.0 MΩ I IT 0 μa 3. M 3.3 μa + Ω (b) T 56 Ω kω. kω 3.3 kω 5.6 kω T I I T I I T I 3 I 3 T I 4 I 4 T T T T 56.0 k Ω Ω 0 ma 5.6 ma 56 Ω 0 ma. k.35 ma Ω 56 Ω 0 ma 3.3 k.56 ma Ω 56 Ω 0 ma 5.6 k 9 μa Ω SECTION 5-7 Power in Parallel Circuits 3. P T 5(40 mw) 00 mw 4. (a) T.0 MΩ. MΩ 688 kω P T T T (688 kω) 68.8 μw (b) T.0 kω. kω 3.3 kω 5.6 kω 56 Ω P T (0 ma) (56 Ω) 5.6 mw T T 38

39 5. P I P 75 W I each A I T 6(0.65 A) 3.75 A SECTION 5-8 Troubleshooting P 75 W 6. I each A The current in each bulb is independent of the number of parallel bulbs. I T 3.75 A 0.65 A 3.5 A 7. First determine what the total current should be: T 0 Ω 00 Ω.0 kω 560 Ω 70 Ω Ω 0 I T 0.4 ma Ω The measured current is 00.4 ma which is 0 ma less than it should be. Therefore, one of the resistors must be open. 0 open.0 kω I 0 ma The.0 kω resistor is open. 8. T kω 0 kω 8. kω.3 kω 5 5 I T 0.87 ma T.3 kω The meter indicates 7.8 ma. Therefore, a resistor must be open. 5 I ma 8. kω I I T I M 0.87 ma 7.8 ma 3.05 ma This shows that I 3 is missing from the total current as read on the meter. Therefore, 3 is open. 9. G T Ω 70 Ω 330 Ω 8.5 ms G meas 07.6 Ω 4.8 ms G open G T G meas 8.5 ms 4.8 ms 3.70 ms So, open 70 Ω G 3.70 ms is open. open 39

40 30. G T Ω 00 Ω 0 Ω 0 Ω G meas 4.6 ms 40.7 Ω There is a resistor open. 9. ms G open G T G meas 9. ms 4.6 ms 4.5 ms So, open Ω 4.5 ms One of the 0 Ω resistors is open, but identification requires more information. ADANCED POBLEMS 3. S I ( ma)(50 Ω) 50 m S 50 m 5 Ω I ma 3 I S 3 50 m 0.5 ma 00 Ω I 4 I T (I + I + I 3 ) 7.5 ma 3.5 ma 4 ma 4 S 50 m.5 Ω I 4 ma 4 3. T I T T (00 ma)(5 Ω) 500 m.5 T.5 I 0.4 ma 0 Ω 33. T T 0.48 I 0 A 0 A 4.8 A T 0.48 I 0 A 0 A.4 A T 0.48 I 3 0 A 0 A.6 A 3 3 T 0.48 I 4 0 A 0 A. A

41 34. (a) P T I T T (50 ma) (.0 kω).5 W PT.5 W Number of resistors n 0 Peach 0.5 W All resistors are equal because each has the same power. (b) T n n T 0(.0 kω) 0 kω I 50 ma (c) I T 5 ma n 0 (d) S I T T (50 ma)(.0 kω) (a) I I T I 50 ma 00 ma 50 ma 0 00 ma 00 Ω 0 50 ma 00 Ω (b) P P T P W 0.75 W.5 W S I.5 W.5 W S I S I 0.75 W 0.75 W S I Thus,.5 W 0.75 W I I.5I 0.75I.5 I I I I + I 00 ma.67i 00 ma 00 ma I ma I.67(74.9 ma) 5 ma 0.75 W S 74.9 ma 0 0 I 5 ma 80 Ω I S ma 34 Ω 4

42 00 (c) I 3 00 ma.0 kω 00 I 47 ma 680 Ω I I T I I 0.5 A 47 ma 00 ma 53 ma Ω 53 ma 36. (a) T 50 kω (b) T + 50 kω 470 kω (c) T 50 kω (d) T 3 45 kω kω 470 kω 90 kω 93 kω 37. I max 0.5 A 5 T(min) I (68 Ω) 68 Ω + max A T(min) 30 Ω (68 Ω) (30 Ω)(68 Ω + ) Ω 38. Position A: T kω 0 kω 70 kω 99.7 kω 4 4 I T 4 μa T 99.7 kω 4 I 4.9 μa 560 kω 4 I 09 μa 0 kω I μa 70 kω 4

43 Position B: T kω 0 kω 70 kω.0 MΩ 80 kω. MΩ 78.7 kω 4 4 I T 305 μa T 78.7 kω I 4.9 μa I 09 μa I μa 4 I μa.0 MΩ 4 I μa 80 kω I 6 4. MΩ 0.9 μa Position C: T MΩ 80 kω. MΩ 374 kω 4 4 I T 64. μa T 374 kω I μa I μa I μa 39. From Kirchhoff s current law, the total current into the room is equal to the current in the appliances: I HEATE + I LAMPS + I ACUUM 8.0 A + (0.833 A) A 4.7 A. The current into the room is less than the capacity of the breaker, so the vacuum cleaner can be plugged in without exceeding the capacity of the breaker. 40. T I 4 4 (00 ma)(5 Ω) 500 m.5 T.5 I 0 Ω.4 ma 0 Ω kω 0 kω 560 kω 390 kω. MΩ 00 kω 33.6 kω kω.0 MΩ 80 kω 680 kω 35. kω kω.8 MΩ 78.9 kω 4. T + T ( + ) T + T T T T ( T ) T ( T ) (680 Ω)(00 Ω) 680 Ω 00 Ω 83 Ω 43

44 43. I.5 ma. ma 0.3 ma S 3 4 I (0.3 ma)(.0 kω) 0.3 I. ma 0.8 ma 0.4 ma kω 750 Ω I 0.4 ma I μa 3.3 kω I ma 90 μa 709 μa Ω I 709 μa S I T T (50 ma)(.5 kω) 375 I new 50 ma + (0.5)(50 ma) 50 ma ma 33 ma S 375 T(new).0 kω I 33 ma new T(new) T new + T(new) new new T T T(new) T T(new) new T(new) T T T T(new) T(new) (.0 kω)(.50 kω).50 kω.0 kω 6 kω 45. T 4.7 kω 0 kω 0 kω.4 kω 4 I T 0.3 ma.4 kω With the 4.7 kω resistor open, 5 I 5 ma 5 kω Therefore, the 4.7 kω resistor is open. 46. Pins - T.0 kω 3.3 kω 767 Ω (correct reading) When one resistor is open, the reading is either.0 kω or 3.3 kω. Pins 3-4 T 70 Ω 390 Ω 60 Ω (correct reading) When one resistor is open, the reading is either 70 Ω or 390 Ω. Pins 5-6 T.0 MΩ.8 MΩ 680 kω 50 kω 0 kω (correct reading) 5 open: T.8 MΩ 680 kω 50 kω 5 kω 6 open: T.0 MΩ 680 kω 50 kω 6 kω 7 open: T.0 MΩ.8 MΩ 50 kω 84 kω 8 open: T.0 MΩ.8 MΩ 680 kω 330 kω 44

45 47. (a) One of the resistors has burned open because the power exceeded 0.5 W. Since each resistor has the same voltage, the smallest value will reach the maximum power dissipation first, as per the formula P /. (b) P, P (0.5 W)(.8 kω) 30 (c) eplace the.8 kω resistor and operate the circuit at less than 30 or use a higher wattage resistor to replace the existing.8 kω. 48. (a) kω. kω. kω 3.3 kω 8 kω.0 kω 4 Ω (b) kω 4.7 kω 6.8 kω 5.6 kω 5.6 kω.0 kω 58 Ω (c) Ω (d) Ω 49. (a) ( 3 4 ) + ( ) 4 Ω + 58 Ω 940 Ω (b) Ω (c) Ω (d) Ω Multisim Troubleshooting Problems 50. is open is open. 5. No fault 53. (a) The measured resistance between pin and pin 4 agrees with the calculated value. (b) The measured resistance between pin and pin 3 agrees with the calculated value. 45

46 CHAPTE 6 SEIES-PAALLEL CICUITS BASIC POBLEMS SECTION 6- Identifying Series-Parallel elationships., 3, and 4 are in parallel and this parallel combination is in series with both and 5. T ( 3 4 ) (a) in series with the parallel combination of and 3. See Figure 6-(a). (b) in parallel with the series combination of and 3. See Figure 6-(b). (c) in parallel with a branch containing in series with a parallel combination of four other resistors. See Figure 6-(c). Figure 6-3. See Figure 6-. Figure 6-46

47 4. (a) and 4 are in series with the parallel combination of and 3. T ( 3 ) (b) is in series with the parallel combination of, 3, and 4. T + ( 3 4 ) SECTION 6- Analysis of Series-Parallel esistive Circuits 5. T + T (.0 kω)(667 Ω).0 kω 667 Ω T 003 Ω 6. Brown, black, black, gold 0 Ω ± 5% Orange, orange, black, gold 33 Ω ± 5% Two 0 Ω resistors are in series with three 33 Ω resistors that are in parallel. 33 Ω AB 0 Ω + 0 Ω + 0 Ω + Ω 3 Ω 3 7. (a) T 56 Ω + Ω + 00 Ω 00 Ω 56 Ω + Ω + 50 Ω 8 Ω (b) T 680 Ω 330 Ω 0 Ω Ω Ω Ω 79 Ω 8. T Ω + 0 Ω + Ω 3 Ω 3 I T I I ma 3Ω 96.8 ma I I 3 I ma 3 5 (96.8 ma)(0 Ω) 968 m 3 4 (3.3 ma)(33 Ω) (a) T 8 Ω.5 I T.7 ma 8 Ω I I 4 I T.7 ma.7 ma I I ma I (.7 ma)(56 Ω) 655 m 3 I T ( T 3 ) (.7 ma)(50 Ω) 585 m 4 I 4 4 (.7 ma)( Ω) 57 m (b) T(p) Ω 330 Ω 0 Ω Ω T T(p) + 79 Ω 3 I T 3.8 ma 79Ω I I T 3.8 ma 47

48 I T(p) I T 0.5 Ω 3.8 ma 680 Ω 68 μa I 3 T(p) 3 I T 0.5 Ω 3.8 ma 330 Ω.7 ma I 4 T(p) 4 I T 0.5 Ω 3.8 ma 0 Ω.9 ma I (3.8 ma)(680 Ω) (3.8 ma)( Ω) 40 m 0. (a) 4.7 kω kω kω kω kω 5.65 kω 5.65 kω.7 kω.83 kω AB.83 kω 0 kω.55 kω (b) I T S T 6.55 kω 3.87 ma (c) The resistance to the right of AB is.83 kω. The current through this part of the circuit is I 6 /.83 kω 3.8 ma. I 3 I 5 Ω.7 k 3.8 ma 3.8 ma.06 ma kω 8.35 kω I.06 ma μa (d) S 6. From Problem 0, 6. 6 I. ma.7 kω. From Problem 0, I 3.06 ma I µa I 4 I 3 I 5.06 ma 530 µa 530 μa 48

49 SECTION 6-3 oltage Dividers with esistive Loads 56 kω 3. OUT 5 k 7.5 unloaded Ω L.0 MΩ 56 kω 53 kω 56 kω OUT 5 09 k 7.9 loaded Ω 4. With no load: 6.6 kω A 9.9 k 8 Ω 3.3 kω B 9.9 k 4 Ω With a 0 kω resistor connected from output A to ground: (6.6 kω)(0 kω) AG 3.98 kω 6.6 kω + 0 kω 3.98 kω A(loaded) 7.8 k 6.56 Ω With a 0 kω resistor connected from output B to ground: (3.3 kω)(0 kω) BG.48 kω 3.3 kω.48 kω B(loaded) 9.08 k 3.8 Ω efer to Figure 6-3. Figure

50 5. The 56 kω load will cause a smaller decrease in output voltage for a given voltage divider because it has less effect on the circuit resistance than the 0 kω load does. 6. With no load: T 0 kω kω +.7 kω 8.3 kω I. ma 8.3 kω With a 0 kω load: (8.3 kω)(0 kω) T 0 kω kω 8.3 kω + 0 kω I.5 ma 4.54 kω SECTION 6-4 Loading Effect of a oltmeter 7. The voltmeter presents the least loading across the kω load MΩ.0 MΩ 909 kω 909 kω 909 kω M MΩ kω +.0 MΩ.909 MΩ 3.3 MΩ 9. ACT MΩ M 3.3 Δ ACT M ACT 0. % M 00% M % %. The total resistance of the meter is M (0 k / )(0 ) 00 k. M 00 k00 k 50 k 33% 00 k00 k00 k 50 k M. M 0 M00 k 99 k 0 M00 k00 k 99 k M 49.8% 50

51 SECTION 6-5 The Wheatstone Bridge 3. UNK (8 kω)(0.0) 360 Ω 4 4. UNK ; UNK 390 Ω Ω kω 8.4 Ω 5. X 5 kω. kω 4.5 kω 7.33 kω 6. Change in thermistor resistance from 5C to 65C. Δ therm 5 Ω(65C 5C) 5 Ω(40C) 00 Ω At 65C: therm kω + 00 Ω. kω 3.0 kω A S kω B.0 kω kω 4 S 3 4 OUT B A SECTION 6-6 Thevenin s Theorem kω 7. TH 00 kω kω 8 kω TH 5 k Ω.7 8. (a) TH Ω + 78 Ω 47 Ω Ω + 5 Ω 73 Ω 78 Ω TH m Ω + Ω + Ω (b) (c) TH 00 Ω 70 Ω 73 Ω 00 Ω TH m Ω TH 00 kω 56 kω 35.9 kω 56 kω TH.5 56 kω 538 m 5

52 9. TH kω. kω +. kω.5 kω.58 kω 3 4. kω.5 kω TH A B S S k 3.7 k + + Ω Ω kω L TH.4 TH + L.06 L 6.8 kω L.06 I 6 μa L 4.7 kω L SECTION 6-7 The Maximum Power Transfer Theorem 30. TH 00 kω kω 8 kω L TH 8 kω 3. L TH 75 Ω 3. TH 73 Ω Therefore, L TH 73 Ω for maximum power transfer. SECTION 6-8 The Superposition Theorem 33. For the source: T Ω + 56 Ω 7 Ω 8. Ω I T 8.46 ma 8. Ω Ω I 3 56 IT 8.46 ma 5.7 ma (up) Ω For the.5 source: T Ω + 00 Ω 7 Ω 77.3 Ω.5 I T 9.4 ma 77.3 Ω Ω I 3 00 IT 9.4 ma 5.3 ma (up) Ω I 3(total) 5.7 ma ma.0 ma (up) 5

53 34. For the source: Ω I 3 7 IT 8.46 ma.75 ma (up) Ω For the.5 source: I I T 9.4 ma (down) I (total) 9.4 ma.75 ma 6.7 ma (down) SECTION 6-9 Troubleshooting (680 Ω)(4.7 kω) 35. eq 594 Ω 680 Ω kω T 560 Ω Ω Ω 64 Ω The voltmeter indicates Ω The voltmeter should read: Ω The meter reading is incorrect, indicating that the 680 Ω resistor is open. 36. If opens: A 5, B 0, and C 0 4 ( 3 + ) kΩ.6 kω ( 3 ) k 6.8 Ω The 7.6 reading is incorrect.. kω.kω k 4.5 Ω The 5.4 reading is incorrect. The 3.3 kω resistor is open. 38. (a) open: 5 ; (b) (c) 3 open: 3 5 ; open: T kω Ω Ω +. kω 4.3 kω.0 kω 5 5 T 4.3 k Ω 560 Ω 5 5 T 4.3 k.99 Ω 53

54 3 470 Ω T 4.3 k.67 Ω 5. kω T 4.3 k 7.80 Ω (d) (e) 5 open: T kω Ω Ω kω 5.33 kω.0 kω 5 5 T 5.33 k.8 Ω 560 Ω 5 5 T 5.33 k.58 Ω Ω T 5.33 k.3 Ω kω T 5.33 k 9.9 Ω Point C shorted to ground: T kω Ω Ω.03 kω kω 5 5 T.03 k 7.39 Ω 560 Ω 5 5 T.03 k 4.4 Ω Ω T.03 k 3.47 Ω 39. (a) open: 0, (b) open: T kω kω 4.3 kω.0 kω 0 0 T 4.3 k.33 Ω kω T 4.3 k 7.67 Ω 54

55 (c) 3 open: T kω kω 4.3 kω.0 kω 0 0 T 4.3 k.33 Ω kω 0 0 T 4.3 k 7.67 Ω (d) 4 shorted: T kω Ω Ω kω 5.33 kω ADANCED POBLEMS 40. (a) The parallel combination of and 3 is in series with the parallel combination of 4 and 5. This is all in parallel with. (b) and are in series with the parallel combination of 3 and 4. Also, 5 and 8 are in series with the parallel combination of 6 and 7. These two series-parallel combinations are in parallel with each other. 4. esistors 8, 9, and can be removed with no effect on the circuit because they are shorted by the pc connection. See Figure 6-4. Figure

56 4. The circuit is redrawn and simplified as shown in Figure 6-5. ( ( Ω.0 kω) + (.0 kω +.0 kω) 560 Ω) 90 Ω) 56 Ω) 560 Ω ( 58 Ω 90 Ω) + 56 Ω) 560 Ω 7 Ω (a) T ( Ω) ( Ω) (b) I T 60 7 Ω ma 560 Ω (c) I 56 Ω IT (0.56) ma 4 ma Ω + Ω (d) 966 Ω I 90 Ω I 56 Ω (0.55)4 ma 58.7 ma 90 Ω Ω 90 Ω I 90 Ω (90 Ω) (58.7 ma) 90 Ω 53.4 The voltage from point B to the negative side of the battery is Ω Ω B Ω 4. Ω + Ω Ω 4. AB. Figure B. kω kω.05 kω A. kω.05 kω.06 kω T 4.7 kω +.06 kω 5.76 kω.06 kω A kω.05 kω.05 kω B A kω.05 kω.0 kω C B kω (0.5)(.7 ) 850 m 56

57 44. The circuit is simplified in Figure 6-6 step-by-step to determine T. T 6 Ω 0 I T I I 9 6. ma 6 Ω 864 Ω I 6.mA ma Ω 80 Ω I 3 I 8 6.mA ma Ω 880 Ω I ma ma Ω 80 Ω I ma ma Ω Figure Using the currents found in Problem 44: I T (6. ma)(00 Ω).6 I (8.6 ma)(80 Ω) I 3 3 (7.84 ma)(0 Ω).7 4 I 4 4 (4.06 ma)(80 Ω) I 5 5 (3.78 ma)(00 Ω) 378 m 6 I 5 6 (3.78 ma)(680 Ω) m 8 I 8 8 (7.84 ma)(0 Ω).7 9 I T 9 (6. ma)(00 Ω).6 57

58 46. esistance of the right branch: Ω Ω Ω + 00 Ω 70 Ω esistance of the left branch: L Ω Ω 030 Ω Total resistance: T + L.0 kω Ω 643 Ω 00 I T 60.9 ma 643 Ω Current in right branch: L 030 Ω I IT 60.9 ma L ma + Ω Current in left branch: 70 Ω I L IT 60.9 ma L ma + Ω oltages with respect to the negative terminal of the source: A I 4 (38.0 ma)(560 Ω).3 B I ( ) (.9 ma)(780 Ω) 7.9 AB A B Writing KL around outside loop, and substituting I (I T ma): 0 + (I T ma) 47 kω + I T (33 kω) 0 (47 kω + 33 kω) I T I T ma 80 k 3 I T 3 (3.34 ma)(33 kω) 0 I (I T ma).34 ma S kω I.0 ma 48. C GND 6.0 kω B GND ( ) 4 kω. kω.05 kω A GND ( 3 + B GND ).05 kω. kω.06 kω T + A GND 5.6 kω +.06 kω 6.66 kω.06 kω A k.86 Ω.05 kω B k.47 Ω.0 kω C.47 k 735 m Ω 58

59 49. I max 00 ma 4 T 40 Ω 00 ma 4 6 T 4 6 T 6(40 Ω ) 60 Ω 4 40 Ω 60 Ω 80 Ω With load: L 60 Ω 000 Ω 56.6 Ω 56.6 Ω OUT Ω + Ω 50. efer to Figure T kω 5 ma kω + kω 4 kω Ω Ω With kω loads across the.5 and the 5 outputs: A ( 3L + ) L S ( 3L + ) L + ( ) ( ) 500 Ω k Ω Ω kω 500 Ω k Ω Ω kω+ kω Ω Ω + kω 59

60 3.3.5 Ω kω 333 Ω kω Ω B A 3 Figure efer to Figure 6-8(a). With the source acting alone: T.96 kω I T.0 ma.96 kω. kω I.0 ma. k.69 k 577 μa Ω + Ω.0 kω I μa.0 k. k 80 μa up Ω + Ω efer to Figure 6-8(b). With the 3 source acting alone: T.96 kω 3 I T.53 ma.96 kω.69 kω I 5.53 ma 665 μa up. kω +.69 kω I 5(total) 665 μa + 80 μa 845 μa 60

61 Figure Using Superposition: Current from the source: T 0 Ω + 00 Ω 560 Ω 00 Ω 80 Ω 0 Ω Ω 64 Ω I T 45.5 ma 64 Ω 43.5 Ω I L 45.5 ma 80 Ω.4 ma (up) Current from the 6 source: T 00 Ω + 0 Ω 560 Ω 00 Ω 80 Ω 00 Ω + 57 Ω 57 Ω 6 I T 38. ma 57 Ω 57 Ω I L 38. ma 80 Ω.66 ma (up) Current from the 0 source: T 560 Ω + 0 Ω 00 Ω 00 Ω 80 Ω 560 Ω Ω 599 Ω I T ma 599 Ω 38.8 Ω I L 6.7 ma 80 Ω 0.79 ma (down) Current from the 5 source: T 00 Ω + 0 Ω 00 Ω 560 Ω 80 Ω 00 Ω + 57 Ω 57 Ω 5 I T 3.8 ma 57 Ω 57 Ω I L 3.8 ma 80 Ω. ma (down) I L(total ).4 ma +.66 ma 0.79 ma. ma.08 ma (up) 6

62 53. efer to Figure 6-9(a). TH.65 kω.35 kω.5 kω efer to Figure 6-9(b)..69 kω TH k 3. Ω efer to Figure 6-9(c). 0 kω k.7 Ω kω Figure (a) When SW is connected to +, the voltage at the junction of 3, 4, and 5 is 4 kω 6.4 kω.6 k Ω k ( 4 k 6.4 k ) Ω + Ω Ω 36.6 kω The voltage at the junction of 5, 6, and 7 is 4 kω 36 kω 4.4 k 3 Ω k ( 4 k 36 k ) Ω + Ω Ω 36.4 kω 4 kω 4 kω OUT k 36 k.5 Ω Ω 6

63 (b) When SW is connected to +, the voltage at the junction of,, and 3 is 4 kω 4.6 kω.k Ω k ( 4 k 4.6 k ) Ω + Ω Ω 36.kΩ The voltage at the junction of 3, 4, and 5 is 4 kω 4.4 kω kω + 4 kω 4.4 kω ( ).6 kω kω 4 kω 4.4 kω 4.4 k 3 Ω.08.3 k ( 4 k 4.4 k ) Ω + Ω Ω 6.4 kω 4 kω 4 kω OUT k 36 k 0.75 Ω Ω 55. See Figure kω 3.9 kω kω. kω 4.7 kω 68 kω 9. kω 47 kω 7 kω 33 kω. kω 6. kω.0 kω Figure See Figure 6-. Figure 6-63

64 57. Position : T 0 kω + 30 kω 330 kω 0 kω kω 37.5 kω 7.5 kω k 88.0 Ω 0 kω k 58.7 Ω 0 kω k 9.3 Ω Position : T 0 kω + 0 kω 330 kω 0 kω kω 38.9 kω 0 kω kω k 89. Ω 8.9 kω k 58. Ω 0 kω k 9. Ω Position 3: T 30 kω + 0 kω 330 kω 30 kω kω 39.7 kω 0 kω kω k 89.8 Ω 0 kω kω k 59.6 Ω 9.7 kω k 9.3 Ω 58. (a) 560 kω G S DD +. M Ω kω (b) I I DD G MΩ I 5.80 μa S.75 I S.7 ma.5 kω I D S I.7 ma S 5.80 μa (c) D DD I D D 6 (67 μa)(4.7 kω) DS D S DG D G

65 59. The circuit is redrawn in Figure 6-. The meter reading at point A should be: 6 kω A 50 6 k 56.3 Ω The meter reading of 8.8 is incorrect. The most likely failure is an open kω resistor. This will cause the voltage at point A to be higher than it should be. To verify, let s calculate the voltage assuming that one of the kω resistors is open. kω A 50 k 8.8 This verifies an open kω. Ω Now check B :. kω B k 4.3 Ω This meter reading is correct. Figure The circuit is redrawn in Figure 6-3. (0 kω + 47 kω)(00 kω) BG 36.3 kω 0 kω + 47 kω + 00 kω AG 33 kω + BG 33 kω kω 69.3 kω T AG 7 kω 69.3 kω + 7 kω 96.3 kω 69.3 kω AG AG T 96.3 kω 36.3 kω BG BG T 96.3 kω 47 kω 47 kω CG BG correct 57 kω 57 kω AC AG CG correct 65

66 Figure The.5 reading indicated on one of the meters shows that the series-parallel branch containing the other meter is open. The 0 reading on the other meter shows that there is no current in that branch. Therefore, if only one resistor is open, it must be the. kω. 6. The circuit is redrawn in Figure 6-4. The resistance from point A to ground is A kω 8. kω 4.87 kω 4.87 kω 4.87 kω A k 4.87 k 9.57 k 5.3 Ω + Ω Ω The meter reading of 5.3 at point A is correct. 3.3 kω B k. Ω The meter reading of 30 at point B is incorrect. Either the 5.6 kω resistor is shorted or the 3.3 kω resistor is open. Since resistors tend to fail open, the 3.3 kω is most likely open. Figure A 0 6 B kω kω 66

67 Multisim Troubleshooting Problems is open. 65. is shorted. 66. is open. 67. No fault is open is shorted is open. 7. In fact, 5 is shorted, but it must be removed from the bridge before that can be determined. 67

68 CHAPTE 7 MAGNETISM AND ELECTOMAGNETISM BASIC POBLEMS SECTION 7- The Magnetic Field. Since B A φ, when A increases, B (flux density) decreases. φ 500 μwb. B 3000 μwb/m 3000 μt A 0.5 m φ 3. B A There are 00 centimeters per meter. ( m/00 cm m /0,000 cm A 50 cm m 0,000 cm 0.05 m φ BA ( T)(0.05 m ) 37.5 μwb G T (0.6 G)( T/0 4 G) 60 μt 5. T 0 4 G (00,000 µt)(0 4 G/T) 000 G SECTION 7- Electromagnetism 6. The compass needle turns 80. μ 7. μ r μ 0 μ 0 4π 0 7 Wb/At m Wb/At m μ r π 0 Wb/At m l 0.8 m 8. 7 μ A (50 0 Wb/At m )(0.08 m ) 9. F m NI (500 t)(3 A) 500 At At/Wb 68

69 SECTION 7-3 Electromagnetic Devices 0. When a solenoid is activated, its plunger is retracted.. (a) An electromagnetic force moves the plunger when the solenoid is activated. (b) A spring force returns the plunger to its at-rest position.. The relay connects +9 to pin turning on lamp and turning off lamp. 3. The pointer in a d Arsonval movement is deflected by the electromagnetic force when there is current through the coil. SECTION 7-4 Magnetic Hysteresis 4. F m 500 At H F 500 At m 7500 At/m l 0. m 5. The flux density can be changed by changing the current. Fm NI 500(0.5 A) 6. (a) H 47 At/m l l 0.3 m Fm NI (b) φ l μa μ μ r μ 0 μ μ r μ 0 (50)(4π 0 7 ) Wb/At m A ( cm)( cm) (0.0 m)(0.0 m) m (500 t)(0.5 A) 5 At φ m.39 0 At/Wb -7 (34 0 )( m ) φ 5.3 μwb (c) B 30,750 μwb/m A m 5.3 μwb 7. Material A has the most retentivity. SECTION 7-5 Electromagnetic Induction 8. The induced voltage doubles when the rate of change of the magnetic flux doubles. 00 m 9. I induced ma 00 Ω induced 69

70 0. The magnetic field is not changing; therefore, there is no induced voltage. 3 φ.4 0 Wb. B 0.7 Wb/m 0.7 T A (0.085 m) v 44 m v ind Bl sin θ 3.0 m/s (0.7 T)(0.085 m)(sin 90 ). (a) Positive (with respect to other end). (b) The induced force will oppose the motion; it is downward. SECTION 7-6 DC Generators 3. efficiency Pout 0.80 P in Pout 45 W P in 56.3 W I A I F + I L A + A 3 A 5. (a) P I ( A)(4 ) 68 W (b) P I (.0 A)(4 ) 4 W SECTION 7-7 DC Motors 6. (a) P 0.05Ts 0.05(3.0 N-m)(00 rpm) 378 W (b) hp 378 W 746 W 0.5 hp 7. P in 6 W; P out 50 W. efficiency Pout 50 W P 6 W 80.6% in ADANCED POBLEMS rev/s peaks/rev 0 peaks/s 70

71 9. The output voltage has a 0 dc peak with a 0 Hz ripple. See Figure 7-. Figure 7- Multisim Troubleshooting Problems 30. Upper lamp is open. 3. The design is flawed. is too little voltage to operate two relays in series but 4 is too much to operate a lamp. Install a separate power supply for the lamps and change the to 4 for the relays. 7

72 CHAPTE 8 INTODUCTION TO ALTENATING CUENT AND OLTAGE BASIC POBLEMS SECTION 8- The Sinusoidal Waveform. (a) f (b) f (c) f (d) f (e) f (f) f. (a) T (b) T (c) ) T (d) T (e) T (f) T T s Hz T 0. ms 5 Hz T 50 ms 0 Hz T ms khz T 500 μs khz T 0 μs 00 khz f f f f f f Hz 60 Hz 500 Hz khz s 00 khz 5 MHz 6.7 ms ms ms 5 μs 00 ns 3. T 0 μs 5 cycles μs 7

73 4. T f 0 ms 0.0 ms 50 khz 0 μs 0.0 ms 500 cycles in 0 ms 5. T 00 μs f 0 khz (00 μs/cycle)(00 cycles) 0 ms SECTION 8- oltage and Current alues of Sine Waves 6. (a) rms p 0.707( ) 8.48 (b) pp p ( ) 4 (c) AG p 7.64 π π 7. (a) I p.44i rms.44(5 ma) 7.07 ma (b) I AG 0.637I p 0.637(7.07 ma) 4.5 ma (c) I pp I p (7.07 ma) 4.4 ma 8. p 5 pp p 50 rms p 7.7 AG p (a) 7.7 (b) 5 (c) 0 (d) 7.7 SECTION 8-3 Angular Measurement of a Sine Wave 0. (a) 7.5 (b) 5 (c) 0. θ waveform A leading. With respect to 0 : Sine wave with peak at 75 is shifted 5 leading. Sine wave with peak at 00 is shifted 0 lagging. Phase difference: θ

74 3. See Figure 8-. Figure 8-4. (a) (b) (c) (d) (e) (f) π rad rad 80 π rad rad 80 π rad rad 80 π rad rad 80 π rad rad 80 π rad rad (a) (b) (c) (d) (e) (f) π 57.3 /rad.5 8 rad π 57.3 /rad 60 3 rad π 57.3 /rad 90 rad 3π 57.3 /rad 08 5 rad 6π 57.3 /rad 6 5 rad.8π 57.3 /rad 34 rad SECTION 8-4 The Sine Wave Formula 6. p.44(0 ) 8.8 (a) v p sin θ (8.8 )sin5 7.3 (b) v (8.8 )sin (c) v (8.8 )sin 50.7 (d) v (8.8 )sin

75 (e) (f) (g) (h) v (8.8 )sin v (8.8 )sin v (8.8 )sin v (8.8 )sin (a) i I p sin θ (00 ma)sin ma (b) i (00 ma)sin ma (c) i (00 ma)sin ma (d) i (00 ma)sin ma (e) i (00 ma)sin ma (f) i (00 ma)sin ma 8. p.44 rms.44(6.37 ) 9 π (a).5 8 v (9 )sin π (b) 45 4 v (9 )sin π (c) 90 v (9 )sin π (d) 35 4 v (9 )sin (e) π 80 v (9 )sin π (f) 70 v (9 )sin 70 9 (g) π 360 v (9 )sin v (5 )sin ( ) 3.0 v (5 )sin ( ) 4.5 v (5 )sin ( ) 3.0 v (5 )sin ( ) 7.5 v (5 )sin ( ).5 v (5 )sin ( ) v (5 )sin (30 30 ) 0 v (5 )sin (45 30 ) 3.88 v (5 )sin (90 30 ) 3.0 v (5 )sin (80 30 ) 7.5 v (5 )sin (00 30 ).60 v (5 )sin ( ) 5 75

76 SECTION 8-5 Analysis of AC Circuits. (a) 0 I rms kω (b) I AG 0 A over a full cycle. (c) 0 I p.0 kω 0 ma (d) I pp (0 ma) 0 ma (e) i I p 0 ma p 7.07 ma. (rms) (p).44(35 ) 49.5 (AG) 0.637(49.5 ) 3.5 (rms) s (p).44(55 ) 77.8 (AG) 0.637(77.8 ) I pp ma.0 kω I I rms pp 6 ma ma 4 I rms 4 (5.66 ma)(560 Ω) 3.7 rms Applying Kirchhoff s voltage law: s 0.707(8 ) (30 ) p (.44)(0.6 ) 5 max 4 + p 39 min 4 p 9 5. p (.44)(3 ) 4.4 DC p min DC p 5 6 SECTION 8-6 Alternators (AC Generators) 7. f number of pole pairs rev/s 50 rev/s 50 Hz 8. f number of pole pairs rev/s 3600 rev/min rev/s 60 s/min 60 rev/s f pole pairs 60 rev/s 0 Hz 76

77 9. rev/s f pole pairs 400 Hz 00 rps 30. N 0 f 0(400 Hz) 6 poles s 3000 rpm SECTION 8-7 AC Motors 3. A one-phase motor requires a starting winding or other means to produce torque for starting the motor, whereas a three-phase motor is self-starting. 3. The field is set up by current in the stator windings. As the current reaches a peak in one winding, the other windings have less current and hence less effect on the field. The result is a rotating field. SECTION 8-8 Nonsinusoidal Waveforms 33. t r 3.5 ms 0.5 ms 3.0 ms t f 6.0 ms 3 ms 3.0 ms t W 4.5 ms.5 ms.0 ms Amplitude (a) t μs % duty cycle W 00% 00% 5% T 4 μs (b) t 0 ms % duty cycle W 00% 00% 66.7% T 30 ms 35. (a) AG baseline + (duty cycle)(amplitude) + (0.5)(.5 ) (b) AG + (0.67)(3 ) (a) f (b) f 37. (a) f (b) f 50 khz 4 μ s 33.3 Hz 30 ms 0 μ s 00 μ s 50 khz 0 Hz 77

78 38. f 5 khz T 40 μs 3rd harmonic 75 khz 5th harmonic 5 khz 7th harmonic 75 khz 9th harmonic 5 khz th harmonic 75 khz 3th harmonic 35 khz 39. fundamental frequency 5 khz SECTION 8-9 The Oscilloscope 40. olts/div 0. m; Time/div 50 ms p olts/div Number of divisions 0. /div 3 divisions 0.6 T Time/div Number of divisions 50 ms/div 0 divisions 500 ms 4. p 0.6 rms p 0.707(0.6 ) 0.44 T 500 ms f Hz T 500 ms 4. p olts/div Number of divisions /div. divisions. rms p 0.707(. ).56 T Time/div Number of divisions 0. μs/div 6.8 divisions 0.68 μs f.47 MHz T 0.68 μs 43. Amplitude olts/div Number of divisions 0.5 /div.8 div.4 t W Time/div Number of divisions 0. s. div 0. s 0 ms T Time/div Number of divisions 0. s 4 div 0.4 s 400 ms t 0 ms % duty cycle W 00% 00% (0.3)00% 30% T 400 ms ADANCED POBLEMS 44. t f. khz ms At t 0. ms: 0. ms θ ms v (5 )sin 94.9 (35.36)sin

79 At t 0. ms: 0. ms θ ms v (5 )sin 58. (35.36)sin Δv I max max T A 00 Ω + 47 Ω 47 Ω 00 Ω AG DC L DC 00 T Ω See Figure 8-. Figure Average value area under curve/period ( )(ms) ms AG 7 ms 7 ms (a).5 cycles are displayed. (b) p /div.8 div 5.6, rms 0.707(5.6 ) 3.96 (c) T 4 div 0 µs/div 80 μs, f T 80 μs.5 khz 48. See Figure 8-3. Figure 8-3 Figure See Figure

80 50. p(in) ( div)(5 /div) 5 T in ( div)(0. ms/div) 00 μs f in 00 μ s 5 khz tot 560 Ω + (470 Ω (560 Ω Ω)) 560 Ω + 33 Ω 883 Ω 470 Ω 33 Ω 470 Ω 33 Ω p(out) ( ) p in 835 m Ω + Ω Ω Ω Ω f out f in 5 khz The scope display for channel shows five cycles of the output waveform with the peak being division high relative to the zero crossing of the sine wave. 5. p(out) (0. /div)(3 div) 0.6 T out (0 div)(50 ms/div) 500 ms f out Hz 500 ms.0 kω.0 kω (. kω +.0 kω) p(out).0 k. k.0 k.0 k (. k.0 k ) p Ω + Ω Ω + Ω Ω + Ω 76 Ω ( 0.33) ( in).76 k p 0.35 p(in) Ω p ( out) 0.6 p(in) f in f out Hz ( in) Multisim Troubleshooting Problems 5. p 35.3 ; T ms is open. 54. is open. 55. Amplitude 5 ; T ms 56. No fault 80

81 CHAPTE 9 CAPACITOS BASIC POBLEMS SECTION 9- The Basic Capacitor Q 50 μc. (a) C 5 μf 0 (b) Q C (0.00 μf)( k) μc Q mc (c) 0 C 00 μf. (a) (0. μf)(0 6 pf/μf) 00,000 pf (b) (0.005 μf)(0 6 pf/μf) 500 pf (c) (5 μf)(0 6 pf/μf) 5,000,000 pf 3. (a) (000 pf)(0 6 μf/pf) 0.00 μf (b) (3500 pf)(0 6 μf/pf) μf (c) (50 pf)(0 6 μf/pf) μf 4. (a) ( F)(0 6 μf/f) 0. μf (b) (0.00 F)(0 6 μf/f) 00 μf (c) ( F)(0 6 μf/f) μf 5. W C W (0 mj) C (00 ) μf 6. C Aε r ( F/m) (0.00 m )(5)( F/m).39 nf d 63.5 µm 7. C Aε r ( F/m) d (0. m )(.006)( m F/m) F 88.5 pf 8

82 Aε r ( ) 8. C d 5 Cd ()( 8 0 ) A ε r ( ) ( )( ) m l A m.9 0 m (almost. miles on a side) The capacitor is too large to be practical and, of course, will not fit in the Astrodome. 9. C Aε r ( ) d ( 0.09)(.5)( ) nf μf 0. ΔT 50 C ( 00 ppm/ C)50 C 0,000 ppm ΔC ( 0 0 ppm) pf C pf 0 pf 990 pf. ΔT 5 C (500 ppm/ C)5 C,500 ppm ( 0 6 pf/μf)(0.00 μf) 000 pf 000 ΔC,500 ppm.5 pf 0 6 SECTION 9- Types of Capacitors. The plate area is increased by increasing the number of layers of plate and dielectric materials. 3. Ceramic has a higher dielectric constant than mica. 4. See Figure 9-. Figure 9-5. (a) 0.0 μf (b) μf (c) 0.00 μf (d) pf 6. Aluminum, tantalum; electrolytics are polarized, others are not. 8

83 7. (a) Encapsulation (b) Dielectric (ceramic disk) (c) Plate (metal disk) (d) Conductive leads SECTION 9-3 Series Capacitors 8. C T 000 pf 00 pf 5 9. (a) C T + μf. μf 0.69 μf (b) C T 00 pf pf 390 pf 69.7 pf (c) C T μf 4.7 μf 47 μf μf.6 μf 0. (a) C T 0.69 μf CT 0.69 μf μf 0 0 F F μ μ 0.69 μf.μf 0. F 3.3 μ 6.9 (b) (c) C T 69.7 pf 69.7 pf 00pF pf pf 560pF pf pf 390pF pf 7.9 C T.6 μf.6 μf 0μF 30 0 F 7.8 μ 83

84 .6 μf 4.7μF F 6.8 μ.6 μf 47μF F.68 μ.6 μf μf 30 F 3.59 μ. Q T Q Q Q 3 Q 4 0 μc Q 0 μc.3 C 4.7 μf Q C Q 3 C Q 4 C μc μf 0 0 μc. μf μc 0 μf SECTION 9-4 Parallel Capacitors. (a) C T 47 pf + 0 pf pf 057 pf (b) C T 0. μf μf μf μf 0. μf 3. C T C + C. μf μf 5.5 μf Q T C T (5 5 μf)(5 ) 7.5 μc 4. Use four 0.47 μf capacitors and one 0. μf capacitor in parallel: C T 4(0.47 μf) + 0. μf. μf 84

85 SECTION 9-5 Capacitors in DC Circuits 5. (a) τ C (00 Ω)( μf) 00 μs (b) τ C (0 MΩ)(56 pf) 560 μs (c) τ C (4.7 kω)( μf). μs (d) τ C (.5 MΩ)(0.0 μf) 5 ms 6. (a) 5τ 5C 5(47 Ω)(47 μf).04 ms (b) 5τ 5C 5(3300 Ω)(0.05 μf) 48 μs (c) 5τ 5C 5( kω)(00 pf) μs (d) 5τ 5C 5(4.7 MΩ)(0 pf) 35 μs 7. τ C (00 Ω)( μf) 0 μs (a) v C 5 ( e t/c ) 5 ( e 0μs/0μs ) 5 ( e ) 9.48 (b) v C 5 ( e ) 3.0 (c) v C 5 ( e 3 ) 4.3 (d) v C 5 ( e 4 ) 4.7 (e) v C 5 ( e 5 ) τ C (.0 kω)(.5 μf).5 ms (a) v C i e t/c 5e.5ms/.5ms 5e 9. (b) v C i e t/c 5e 4.5ms/.5ms 5e 3.4 (c) v C i e t/c 5e 6ms/.5ms 5e m (d) v C i e t/c 5e 7.5ms/.5ms 5e 5 68 m 9. (a) v C 5 ( e t/c ) 5 ( e μs/0μs ) 5 ( e 0. ).7 (b) v C 5 ( e 5μs/0μs ) 5 ( e 0.5 ) 5.90 (c) v C 5 ( e 5μs/0μs ) 5 ( e.5 ) (a) v C i e t/c 5e 0.5ms/.5ms 5e (b) v C i e t/c 5e ms/.5ms 5e (c) v C i e t/c 5e ms/.5ms 5e SECTION 9-6 Capacitors in AC Circuits 3. (a) X C (b) X C (c) X C (d) X C πfc πfc πfc πfc 339 kω π(0 Hz)(0.047 μf) 3.5 kω π(50 Hz)(0.047 μf) 677 Ω π(5 khz)(0.047 μf) 33.9 Ω π(00 khz)(0.047 μf) 85

86 3. (a) X CT πfc 3.39 kω π( khz)(0.047 μf) (b) C T 0 μf + 5 μf 5 μf X CT 6.37 kω π(hz)(5 μf) (c) C T 0.5 μf + μf μf X CT 5.3 kω π(60 Hz)(0.5 μf) 33. X C X C.4 kω π fc π( khz)(56 nf) 970 Ω π fc π( khz)(8 nf) X CT X C + X C.4 kω kω.39 kω C T C C 56 nf 8 nf 33.3 nf C C C 33.3 nf T S C 56 nf C 33.3 nf T S C 8 nf 34. (a) For X CT 00 Ω: f khz πx C π(00 Ω)(0.047 μf) CT For X CT kω: f khz πx C π( k Ω)(0.047 μf) CT (b) For X CT 00 Ω: f 63.7 Hz πx C π(00 Ω)(5 μf) CT For X CT kω: f 6.37 khz πx C π( k Ω)(5 μf) CT 86

87 (c) For X CT 00 Ω: f 3.8 khz πx C π(00 Ω)(0.5 μf) CT For X CT kω: f 38 Hz πx C π( k Ω)(0.5 μf) CT 35. X C I rms rms 0 00 ma 0. kω 00 Ω 36. rms I rms X C X C 3.39 kω π(0 khz)( μf) rms ( ma)(3.39 kω) X C πfc 3.39 kω P true 0 W P r I rms X C ( ma) (3.39 kω) 3.39 ma SECTION 9-7 Capacitor Applications 38. The ripple voltage is reduced when the capacitance is increased. 39. X C(bypass) ideally should be 0 Ω to provide a short to ground for ac. ADANCED POBLEMS C 40. X T S C X C C T X X (μf)(8 ) μf C C X S T X S μf μf 4 87

88 4. v v i e t/c e t/c v i ln(e t/c ) ln i t C v ln i t C ln i 3 t (.0 kω)(.5 μf)ln 3.8 ms 5 4. v F ( e t/c ) v F F e t/c F e t/c F v e t/c F v F v F ln(e t/c v ) ln F t v ln C F v t C ln F 8 t ( 0 k Ω )(0.00 μ F)ln 7.6 μs Looking from the capacitor, the Thevenin resistance is TH Ω τ TH C (47 Ω)(0.00 μf) 3.4 μs v 44. t C C ln F t 0 μs 7.86 kω v 7. C C ln (000 pf)ln 0 F 88

89 45. τ ( + )C (55 kω)( μf) 55 ms τ ( + 3 )C (43 kω)( μf) 43 ms 5τ 5(43 ms) 5 ms v C 0( e 0ms/.55ms ) 3.3 See Figure 9-(a). v C 3.3e 5ms/43ms.96 See Figure 9-(b). Figure C μf, C μf, C μf, C μf C T μf, X C(tot) 68.8 kω s 0 I C 45 μa X 68.8 kω C(tot) C T μF C s C 0.0μF C s C X C 4. kω C.9 I C 95.0 μa X 4.kΩ C C μF C3 C.9.78 C μf X C kω C 3.78 I C μa X 35.4 kω C3 C4 C C m X C4.3 kω C m I C μa X.3 kω C4 C 5 6 C5 C5 X C5 53. kω C I C5 I C6 X C 4 5 C μf 505 m 303 m 0.0μF 303 m 5.7 μa 53.kΩ C6 C4 C5 505 m 303 m 0 m 89

90 47. C C3 (4 ma)x C3 (4 ma)(750 Ω) 3 f 4.5 khz πx C 3C3 π(750 Ω)(0.005 μf) X C 5 Ω πfc π(4.5 khz)(0.00 F) μ C 3 I C 5.87 ma X C 5 Ω I C I C(tot) I C + I C ma + 4 ma 9.87 ma C 5 3 C X C 03 Ω I 9.87 ma C C πfx 48. Position : C 5 C5 C C T(,5) T(,5) π(4.5 khz)(03 C Ω + C μf μf μf + + C C C μf T(3,6) C 6 C 6 3 T(3,6) Position : C C T(,5) C 5 C5 C C T(4,6) T(,5) 4 6 ) μf μf μf μf μf + C μf μf C T μf C T(3,6) μf C T(,5) μf μf μf + + C T(4,6) 0.08 μf C 0.05 μf μf 6 CT(4,6) 0.08 μf 6.54 C μf Δ increase, Δ decrease 90

91 C tot(3,5,6) μf C tot ( 3,5,6) C3 C5 C μf 0.0μF 0.05 μf C tot(,3,5,6) 0.0 μf μf μf + + C tot μf C C 0.0μF F tot C tot (, 3, 5, 6) μ C C C tot μf μF C Ctot μf Ctot(, 3, 5, 6 ) 0.063μF Ctot(3,5,6) μF C3 C C μf Ctot(3,5,6) μF C5 C.76.9 C5 0.0μF Ctot(3,5,6) μF C6 C C μf C4 C5 + C Multisim Troubleshooting Problems 50. C is leaky. 5. C is open. 5. C is shorted. 53. No fault 54. C is shorted. 9

92 CHAPTE 0 C CICUITS BASIC POBLEMS SECTION 0- Sinusoidal esponse of C Circuits. Both voltages are also sine waves with the same 8 khz frequency as the source voltage.. The current is sinusoidal. SECTION 0- Impedance and Phase Angle of Series C Circuits 3. (a) Z (b) Z + X C ( 70 Ω) + (00 Ω) 88 Ω + X C ( 680 Ω) + (000 Ω) 09 Ω 4. (a) tot 00 kω + 47 kω 47 kω C tot μf + 0.0μF 0.0 μf X C(tot) 3 kω πfc tot π(00 Hz)( μf) Z tot + X C ( tot ) ( 47 kω) + (3 kω) 74 kω θ tan X C Ω tot ) 3k tan 57.6 (I leads ) tot 47 kω (b) C tot 560 pf pf 0 pf X C(tot) 7. kω πfc π(0 khz)(0 pf) Z tot tot + X C ( tot ) ( 0 kω) + (7. kω).3 kω θ tan X Ω C ( tot ) 7.k tan 35.4 (I leads ) 0 kω 9

93 5. (a) X C Z (b) X C Z (c) X C Z (d) X C Z 6. (a) X C Z (b) X C Z (c) X C Z (d) X C Z πfc + X C 73 kω π(00 Hz)(0.00 μf) ( 56 kω) + (73 kω) 76 kω πfc + X C 45 kω π(500 Hz)(0.00 μf) ( 56 kω) + (45 kω) 55 kω 7.3 kω πfc π(.0 khz)(0.00 μf) + X C ( 56 kω) + (7.3 kω) 9.5 kω πfc + X C 8.9 kω π(.5 khz)(0.00 μf) ( 56 kω) + (3.8 kω) 63.0 kω πfc + X C 339 kω π(00 Hz)( μf) ( 56 kω) + (339 kω) 343 kω πfc + X C 67.7 kω π(500 Hz)( μf) ( 56 kω) + (67.7 kω) 87.9 kω πfc + X C 33.9 kω π( khz)( μf) ( 56 kω) + (33.9 kω) 65.4 kω πfc + X C 3.5 kω π(.5 khz)( μf) ( 56 kω) + (3.5 kω) 57.6 kω SECTION 0-3 Analysis of Series C Circuits 7. (a) I (b) I s ma Z 88 Ω s ma Z 09 Ω 93

94 8. (a) I (b) I s 50 8 μa Z 74 kω s 8 65 μa Z.3 kω 9. See Figure 0-. C tot + 0.μF 0. μf μf X C Z I tot 54 Ω π(5 khz)( μf) tot + X C ( 50 Ω) + (54 Ω) 6 Ω s.3 ma Z 6 Ω X C(0.μF) 06 Ω π(5 khz)(0.μf) X C(0. μf) 48. Ω π(5 khz)(0. μf) C I tot X C(0.μF) (.3 ma)(06 Ω).3 C I tot X C(0.μF) (.3 ma)(48. Ω) I tot tot (.3 ma)(50 Ω) 0.66 θ tan X C tot 54 Ω tan 7.0 (I tot leads s ) 50 Ω Figure 0-94

95 0. (a) X C 79.6 Ω π(0 Hz)(00 μf) Z (b) I + X C ( 56 Ω) + (79.6 Ω) 97.3 Ω Ω 03 ma 56 Ω (c) s Z Ω X 79.6 Ω (d) C C s Z Ω. Z 0 s kω I 0 ma X C 589 Ω π(0 khz)(0.07 μf) + X C kω + (589 Ω) (000 Ω) ( 000 Ω ) (589 Ω) 808 Ω θ tan 589 Ω Ω. (a) X C 4.08 MΩ π( Hz)(0.039 μf) φ 90 tan X Ω C 4.08 M 90 tan kω (b) X C 40.8 kω π(00 Hz)(0.039 μf) φ 90 tan X Ω C 40.8 k 90 tan kω (c) X C 4.08 kω π( khz)(0.039 μf) φ 90 tan X Ω C 4.08 k 90 tan kω (d) X C 408 Ω π(0 khz)(0.039 μf) φ 90 tan X Ω C tan kω 95

96 3. (a) X C 5.9 MΩ πfc π( Hz)(0.μF) X C φ tan.59 MΩ tan kω (b) X C 5.9 kω πfc π(00 Hz)(0.μF) X C φ tan 5.9 kω tan kω (c) X C.59 kω πfc π( khz)(0.μf) X C φ tan.59 kω tan kω (d) X C 59 Ω πfc π(0 khz)(0.μf) X C φ tan 59 Ω tan kω SECTION 0-4 Impedance and Phase Angle of Parallel C Circuits 4. Z X C + X C (. kω)(. kω) (. kω) + (. kω).05 kω 5. B C πfc.76 ms G.33 ms 750 Ω Y Z + B C G (.33 ms) + (.76 ms) 3.07 ms Y 3.07 ms.76 ms 36 Ω θ tan 64.3 (I leads ).33 ms 6. (a) B C π(.5 khz)(0. μf).07 ms Y Z (.33 ms) + (.07 ms).47 ms Y θ tan.47 ms.07 ms.33 ms 405 Ω

97 (b) (c) (d) B C π(3.0 khz)(0. μf) 4.5 ms Y Z (.33 ms) + (4.5 ms) 4.36 ms Y θ tan 4.36 ms 4.5 ms.33 ms 30 Ω 7. B C π(5.0 khz)(0. μf) 6.9 ms Y Z (.33 ms) + (6.9mS) 7.04 ms Y θ tan 7.04 ms 6.9mS.33 ms 4 Ω 79. B C π(0 khz)(0. μf) 3.8 ms Y Z (.33 ms) + (3.8 ms) 3.9 ms Y 3.9 ms 3.9 ms 7.0 Ω θ tan ms 7. B C πfc πf(c + C ) π( khz)(0.3 μf) 4.0 ms G ms Ω Y G B ( ms) + (4.0 ms) 4.08 ms Z Y θ tan + C 45 Ω 4.08 ms 4.0 ms ms SECTION 0-5 Analysis of Parallel C Circuits 8. Z tot (68 Ω)(90 Ω) 54.3 Ω (68 Ω) + (90 Ω) C s 0 0 I tot 84 ma 54.3 Ω I I C 0 68 Ω 0 Ω 90 Ω 47 ma ma 97

98 9. X C 67.7 Ω π(50 khz)(0.47 μf) X C 45 Ω π(50 khz)(0.0 μf) I C I C X s X C s C 8 8 ma 67.7 Ω 8 45 Ω 55.3 ma I s ma 0 Ω I s ma 80 Ω ( tot) + IC( tot ( 80.8 ma) + (73.3 ma) I tot I 9 ma I θ tan C( tot ) 73.3 ma tan 65.0 I( tot) 80.8 ma 0. (a) Z X C (.0 k Ω)(. k Ω) XC.0 kω. kω 903 Ω S (b) 00 m I.0 kω (c) S 00 m I C 47.6 μ X C. kω (d) 00 m I tot S Z 903 Ω (e).0 kω θ tan tan X. kω C 5.5 (I tot leads s ). X C 6.77 kω π(500 Hz)(0.047 μf) (a) Z (4.7 k Ω)(6.77 k Ω) (4.7 k Ω ) + (6.77 k Ω) 3.86 kω (b) I s 00 m.3 μa 4.7 kω (c) s 00 m I C 4.8 μa X 6.77 kω (d) I tot s C 00 m Z 5.9 μa 3.86 kω (e) θ tan 4.7 kω kω 98

99 . tot kω, C tot 3.0 pf X C(tot) 49.8 kω π(00 khz)(3.0 pf) Z ( kω)(49.8 kω) ( kω) + (49.8 kω) 0. kω θ tan tot kω tan 3.8 X C(tot) 49.8 kω eq Z cos θ (0. kω)cos kω X C(eq) Z sin θ (0. kω)sin kω C eq 96 pf πfx C (eq) SECTION 0-6 Analysis of Series-Parallel C Circuits 3. X C 06 Ω π(5 khz)(0. μf) X C 6 Ω π(5 khz)(0.047 μf) X C3 48. Ω π(5 khz)(0. μf) The total resistance in the resistive branch is tot Ω + 80 Ω 50 Ω The combined parallel capacitance of C and C 3 is C (tot)p C + C μf + 0. μf 0.67 μf X C(tot)p 39.7 Ω π(5 khz)(0.67 μf) The impedance of tot in parallel with C (tot)p is tot X C( tot) p (50 Ω)(39.7 Ω) Z p 39.6 Ω tot + X C( tot) p (50 Ω) + (39.7 Ω) The angle associated with tot and C (tot)p in parallel is θ tan tot 50 Ω tan 85.5 X C( tot) p 39.7 Ω Converting from parallel to series: eq Z p cos θ (39.6 Ω)cos Ω X C(eq) Z p sin θ (39.6 Ω)sin Ω The total circuit impedance is Z tot eq + ( X C + X C(eq) ) (3.08 Ω) + (45.6 Ω) 45.6 Ω 99

100 The voltage across the parallel branches is Z p 39.6 Ω C C3 s Ztot Ω 330 Ω Ω 80 Ω Ω X C 06 Ω C 8.74 Ztot 45.6 Ω 4. From Problem 3, eq 3.08 Ω and X C + X C(eq) 45.6 Ω. Since 45.6 Ω > 3.08 Ω, the circuit is predominantly capacitive. 5. Using data from Problem 3: s I tot 8.4 ma Z 45.6 Ω I C I C3 X X tot C C C3 C3 I I Ω 4.4 ma ma 48. Ω Ω 6.39 ma 6. tot Ω X C 339 Ω π( khz)(0.47 μf) Z tot tot XC (89.9 ) (339 ) + Ω + Ω 35 Ω s 5 (a) I tot 4.7 ma Ztot 35 Ω (b) θ tan X C 339 Ω tan tot 89.9 Ω 47 Ω (c) s Ztot Ω 75. (I tot leads s ) (d) Ω 5 35 s.83 Ztot Ω (e) 3.83 (f) X 339 Ω C s Ztot Ω 00

101 SECTION 0-7 Power in C Circuits 7. P a true + P r ( W) + (3.5 A) P 4.03 A 8. From Problem 0: I tot 03 ma, X C 79.6 Ω P rue I tot (03 ma) (56 Ω) 0.59 W P r I tot X C (03 ma) (79.6 Ω) A 9. Using the results from Problem : eq 8.4 kω X C(eq) 8.3 kω πfc π(00 khz)(96 pf) eq X θ tan C (eq) 8.3 kω tan 3.8 eq 8.4 kω PF cos θ cos From Problem 6: I tot 4.7 ma, tot 89.9 Ω, X C 339 Ω, Z tot 35 Ω P true I tot tot (4.7 ma) (89.9 Ω) 69 mw P r I tot X C (4.7 ma) (339 Ω) 68 ma P a tot Z tot (4.7 ma) (35 Ω) 640 ma PF cos cos(75.) 0.57 I SECTION 0-8 Basic Applications 3. X Use the formula, out C. See Figure 0-. Ztot Frequency (khz) X C (kω) Z tot (kω) out ()

102 Figure 0-3. Use the formula, out 0. Ztot See Figure 0-3. Frequency (khz) X C (Ω) Z tot (Ω) out () Figure 0-3 0

103 33. For Figure 0-73: X C 86 Ω π(5 khz)(0.039 μf) Z ( 3.9 kω ) + (86 Ω) 3.98 kω θ tan Ω X 86 C tan kω I s 5 μa Z 3980 Ω I (5 μa)(3.9 kω) 979 m C IX C (5 μa)(86 Ω) 05 m The phasor diagram is shown is Figure 0-4(a). For Figure 0-74: X C 3.8 Ω π(5 khz)(0 μf) Z ( 0 Ω ) + (3.8 Ω) 0.5 Ω θ tan Ω X 3.8 C tan Ω I s 95.3 ma Z 0.5 Ω I (95.3 ma)(0 Ω) 953 m C IX C (95.3 ma)(3.8 Ω) 303 m The phasor diagram is shown in Figure 0-4(b). (a) For Figure 0-73 (b) For Figure 0-74 Figure X C.3 kω π(3 khz)(0.047 μf) The signal loss is the voltage drop across C. X C.3 k C Ω ( ) out A ( ) + (0 kω) + (.3 kω) in B X C 50 m 5.6 m 03

104 35. For Figure 0-73: f c.05 khz πc π(3.9 kω)(0.039 μf) For Figure 0-74: f c.59 khz πc π(0 Ω)(0 μf) 36. f c.05 khz πc π(3.9 kω)(0.039 μf) Since this is a low-pass filter, BW f c.05 khz SECTION 0-9 Troubleshooting 37. After removing C, the circuit is reduced to Thevenin s equivalent: (4.7 kω)(5 kω) th.4 kω 9.7 kω 5 kω th k 5.5 Ω Assuming no leakage in the capacitor: X C 59 Ω π(0 Hz)(0 μf) out X (4.7 k ) (59 ) C Ω 3. + X C Ω + Ω θ tan 59 Ω kω With the leakage resistance taken into account: 59 out 5.5 (.4 k ) (59) X C Ω th.83 th + X C Ω + θ tan 59 Ω kω The leaky capacitor reduces the output voltage by 0.38 and increases the phase angle by (a) The leakage resistance effectively appears in parallel with. Thevenizing from the capacitor: th leak 0 kω 0 kω kω.43 kω.67 k th leak Ω.67 k in + leak Ω 43 m 04

105 X C 3386 Ω π(0 Hz)(4.7 μf) 3386 out 43 m (.43 k ) (3386 ) X C Ω th th + X C Ω + Ω 3 m (b) X C 3386 Ω π(00 khz)(470 pf) eq ( + 3 ). kω kω.05 kω ( leak )( X C ) ( kω)(3386 Ω) X C leak X ( kω) + (3386 Ω) leak + C 7 Ω eq in.96 X C leak + eq X C leak consists of a reactive and a resistive term and cannot be added directly to eq. 3.0 kω out.96 3 k Ω 39. (a) out 0 (less than normal output) X C 3386 Ω π(0 Hz)(4.7 μf) (b) out X C 3386 Ω 0,494 in 0.3 (greater than normal output) Ω + X C (c) 0 kω out in 0 k 0.5 (greater than normal output) + Ω (d) out 0 (less than normal output) 40. (a) out 0 (less than normal) (b) 3.0 kω out in 5 3 k.5 (greater than normal output) + Ω X C 3386 (c) out Ω 5 ( ) 3933 in.7 (greater than normal output) 3 Ω + + X C (d) out 0 (less than normal output) (e) out. kω in.7 (greater than normal output) Ω + X C 05

106 ADANCED POBLEMS 4. (a) I L(A) Ω 4.8 A I L(B) 40 7 Ω 3.33 A (b) PF A cos θ 0.85; θ 3.8 PF B cos θ 0.95; θ 8.9 X C(A) (50 Ω)sin Ω X C(B) (7 Ω)sin Ω P r(a) I L(A) X C(A) (4.8 A) (6.3 Ω) 606 A P r(b) I L(B) X C(B) (3.33 A) (.48 Ω) 50 A (c) A (50 Ω)cos Ω B (7 Ω)cos Ω P true(a) I L ( A) A (4.8 A) (4.5 Ω) 979 W P true(b) I ( B) B L (3.33 A) (68.4 Ω) 758 W (d) P a(a) P true A Pr A ( ) ( ) (979 W) (606 A) 5 A P a(b) P true B Pr B ( ) ( ) (758 W) (50 A) 798 A 4. out in X + C X C + X C X (.44) C X C ( ) X C πfc C πf π(0 Hz)(00 kω) 0.08 μf 43. X C 5.9 kω π( khz)(0.0 μf) θ tan X tot C tot tan θ X C tot X C tan θ (5.9 kω)tan kω 06

107 tot + tot ( + ) tot + tot ( tot ) tot tot (47 kω)( kω tot kω).4 kω 44. X C 444 Ω π(.5 khz)(0.05 μf) X C 355 Ω π(.5 khz)(0.047 μf) 4 X C X 4 C 4 + X C (90 Ω)(355 Ω) (90 Ω) + (355 Ω) 756 Ω θ 4C tan Ω 4 90 tan 33.9 X C 355 Ω The equivalent series and X C for 4 X C : eq ( 4 X C )cos θ 4C (756 Ω)cos Ω X C(eq) ( 4 X C )sin θ 4C (756 Ω)sin Ω Z tot + X ) + ( X + tot C( tot) ( 3 eq C X C(eq) (.0 kω Ω +.0 kω + 67 Ω) + (444 Ω + 4 Ω) ( 3307 Ω ) + (4666 Ω) 579 Ω θ tan X C Ω ( tot ) 4666 tan 54.7 tot 3307 Ω s 0 I tot.75 ma Ztot 579 Ω I tot leads s by 54.7 I C I I I 3 I tot.75 ma 355 I 4 X C Ω I.75 ma tot.45 ma 4 (90 ) (355 ) + X C Ω + Ω 90 I C 4 Ω I.75 ma tot ma 4 (90) (355 ) + X C + Ω C I tot X C (.75 ma)(444 Ω) 7.43 I tot (.75 ma)(.0 Ω).75 I tot (.75 ma)(680 Ω).9 3 I tot 3 (.75 ma)(.0 Ω).75 4 C I 4 4 (.45 ma)(90 Ω).3 C lags I tot by 90. ) 07

108 Figure 0-5,, and 3 are all in phase with I tot. 4C lags I tot by See Figure θ cos (0.75) 4.4 P true P a cos θ P P a true.5 kw ka PF 0.75 P r P a sin θ ( ka)sin ka Z tot 5 A 0 Ω P true I tot tot 400 W I (5 A) x tot 6 Ω 4 Ω Ω Z + X tot tot tot tot C X C Z (0 Ω) (6 Ω) 44 Ω C x 3.3 μf π( khz)( Ω) 47. For I 0 A, A B and X C 3.39 kω π( khz)(0.047 μf). kω (. kω) + (3.39 kω) s.0 kω (.0 kω) + X C s 08

109 Cancelling the s terms and solving for X C :. kω.0 kω (. kω) + (3.39 kω) (.0 kω) + (.0 kω) + X C C (.0 kω) +.0 kω (. kω). kω X C + (3.39 kω) (.0 kω) ((. kω) + (3.39 kω) ) X (.0 kω) (. kω) X C ( ) (.0 kω) (. kω) + (3.39 kω) (. kω) C 0.03 μf π( khz)(.54 kω).54 kω 48. See Figure 0-6. in 0 peak f 00 khz 0 μ s X C 5.9 Ω π(00 khz)(0. μf) X C can be neglected because it is very small compared to kω. A kω 8 kω (8. kω +.0 kω) 4.77 kω 4.77 kω out A k 3.3 peak Ω The waveform on the scope is correct, so the circuit is OK. Figure

110 Multisim Troubleshooting Problems 49. C is leaky. 50. C is shorted. 5. No fault 5. C is open. 53. is open. 54. C is shorted. 55. Phase shift with C shorted

111 CHAPTE INDUCTOS BASIC POBLEMS SECTION - The Basic Inductor. (a) H 000 mh/h 000 mh (b) 50 μh 0.00 mh/μh 0.5 mh (c) 0 μh 0.00 mh/μh 0.0 mh (d) H 000 mh/h 0.5 mh. (a) 300 mh 0 3 μh/mh 300,000 μh (b) 0.08 H 0 6 μh/h 80,000 μh (c) 5 mh 0 3 μh/mh 5000 μh (d) mh 0 3 μh/mh 0.45 μh 3. L N N μa l Ll μa (.6 0 (30 mh)(0.05 m) 6 5 )(0 0 m ) 3450 turns 4. I dc W 0 Ω 0. A 5. W (0.H)(A) LI 50 mj 6. v induced L (rate of change of I) (00 mh)(00 ma/s) 0 m SECTION -3 Series and Parallel Inductors 7. L T 5 μh + 0 μh + 0 μh + 40 μh + 80 μh 55 μh 8. L x 50 mh 0 mh mh 8 mh

112 9. L T μh 50 μh 5 μh 5 μh 7.4 μh L ( mh) 0. 8 mh L + mh ( 8 mh)l + (8 mh)( mh) ( mh)l (4 mh)l 96 mh L 96 mh 4 mh 4 mh (0 H)(5 H). (a) L T H H 0 H + 5 H 00 mh (b) L T 50 mh (c) L T μh 00 μh 400 μh 57 μh. (a) (00 mh)(50 mh) (60 mh)(40 mh) L T mh + 4 mh 57.3 mh 50 mh 00 mh (b) ( mh)(6 mh) L T 4 mh 8 mh (c) ( mh)(4 mh) L T 4 mh mh 6 mh SECTION -4 Inductors in DC Circuits 3. (a) τ (c) τ L L 00 μh 00 Ω 3 H.5 MΩ μs (b) τ μs L 0 mh 4.7 kω.3 μs 4. (a) L 50 μh 5τ L 5 mh μs (b) 5τ 56 Ω Ω (c) L 00 mh 5τ μs kω.7 μs 5. τ (a) (b) L 0 mh 0 μs.0 kω v L i e t/τ 5e 0μs/0μs 5e 5.5 v L i e t/τ 5e 0μs/0μs 5e.03

113 (c) (d) (e) v L i e t/τ 5e 30μs/0μs 5e v L i e t/τ 5e 40μs/0μs 5e v L i e t/τ 5e 50μs/0μs 5e L 75 mh 6. τ 9.5 µs 8. kω I F s 0. ma 8. kω -0µs/9.5µs (a) i IF ( e ) 0.8 ma -0µs/9.5µs (b) i IF ( e ).08 ma -30µs/9.5µs (c) i IF ( e ).7 ma SECTION -5 Inductors in AC Circuits 7. The total inductance for each circuit was found in Problem. (a) X L πfl tot π(5 khz)(4.33 H) 36 kω (b) X L πfl tot π(5 khz)(50 mh).57 kω (c) X L πfl tot π(5 khz)(57 μh).79 Ω 8. The total inductance for each circuit was found in Problem. (a) X L πfl tot π(400 Hz)(57.3 mh) 44 Ω (b) X L πfl tot π(400 Hz)(4 mh) 0. Ω (c) X L πfl tot π(400 Hz)(5.33 mh) 3.4 Ω 9. L tot L + L L L + L 3 50 mh 3 + (0 mh)(40 mh) 60 mh X L(tot) πfl tot π(.5 khz)(63.3 mh) 994 Ω X L πfl tot π(.5 khz)(0 mh) 34 Ω X L3 πfl tot π(.5 khz)(40 mh) 68 Ω rms 0 I tot 0. ma 994 Ω I L X I L3 X X L ( tot ) L L X L3 + X X L + X L3 L3 I I tot tot 63.3 mh 68 Ω 0.mA ma Ω + Ω 34 Ω 0.mA ma Ω + Ω 3

114 0. (a) L tot mh 0 X L 0 Ω I 500 ma X L πfl tot X L 0 Ω f 55.6 Hz L π(57.3 mh) (b) (c) π tot L tot 4 mh, X L 0 Ω X L 0 Ω f 796 Hz L π(4 mh) π tot L tot 5.33 mh, X L 0 Ω X L 0 Ω f 597 Hz L π(5.33 mh) π tot. X L(tot) 994 Ω from Problem 9. P r I rms X L ( tot ) (0. ma) (994 Ω) 0 ma ADANCED POBLEMS. TH kω 4.7 kω kω 6.8 kω 4.57 kω L 3.3 mh τ 0.7 μs 4.57 kω TH 3. (a) v F ( i F )e t/l (for 60 μs, use 0 μs. The initial voltage is 0.) 0 + ( 0 0 )e (8. kω)(0 μs)/75 mh 3.35 (b) (c) v F ( i F )e t/l (for 70 μs, use 0 μs for calculation) 0 + ( 0 0 )e (8. kω)(0 μs)/75 mh. v F ( i F )e t/l (for 80 μs, use 30 μs for calculation) 0 + ( 0 0 )e (8. kω)(30 μs)/75 mh By KL, is equal and opposite to L (because S 0 ). Therefore, TH S S kω 0. kω TH.6 I F 569 µa 4.57 kω TH - t / τ µs/0.7µs (a) i IF ( e ) 569 µa( e ) 4.7 kω 6.8 kω 47 μa (b) i I 569 μa F 4

115 6. T ( + 3) ( + 4) 8 kω.5 kω 4.7 kω L 3.3 mh τ µs 4.7 kω - t / τ µs/0.699µs i I e 569 µa e 36 μa i ( ) 7. X L π(3 khz)(5 mh) 94. Ω X L3 π(3 khz)(3 mh) 56.5 Ω L3 I L3 X L3 (50 ma)(56.5 Ω).83 L L 7.7 I L 76. ma 94. Ω X L I L I L I L3 76. ma 50 ma 6. ma 8. Position : L T 5 mh + mh 6 mh Position : L T 5 mh + 00 μh mh 6. mh Position 3: L T 5 mh μh + 00 μh + mh 7. mh Position 4: L T 5 mh + 0 mh μh + 00 μh + mh 7. mh Multisim Troubleshooting Problems 9. L 3 is open. 30. L is shorted. 3. No fault 3. L is open. 33. L 3 is shorted. 5

116 CHAPTE L CICUITS BASIC POBLEMS SECTION - Sinusoidal esponse of L Circuits. All the frequencies are 5 khz.. I,, and L are all sinusoidal. SECTION - Impedance and Phase Angle of Series L Circuits 3. (a) Z (b) Z L (.0 k ) 500 X Ω Ω. Ω L (.5 k ) (.0 k ) X Ω Ω.8 kω 4. (a) tot 47 Ω + 0 Ω 57 Ω L tot 50 mh + 00 mh 50 mh X L(tot) πfl tot π(00 Hz)(50 mh) 94. Ω (b) tot + X L ( tot) Z ( 57 Ω) + (94. Ω) 0 Ω θ tan X L Ω ( tot ) 94. tan 58.8 tot 57 Ω (5.0 mh)(8.0 mh) L tot 3.08 mh 5.0 mh 8.0 mh X L(tot) πfl tot π(0 khz)(3.08 mh) 387 Ω Z tot + X L ( tot) ( 470 Ω) + (387 Ω) 609 Ω θ tan X L Ω ( tot ) 387 tan 39.5 tot 470 Ω 5. (a) X L πfl π(00 Hz)(0.0 H).6 Ω (b) Z + X L ( Ω) + (.6 Ω) 7.4 Ω X L πfl π(500 Hz)(0.0 H) 6.8 Ω Z + X L ( Ω) + (6.8 Ω) 64.0 Ω 6

117 (c) (d) X L πfl π( khz)(0.0 H) 6 Ω Z + X L ( Ω) + (6 Ω) 7 Ω X L πfl π( khz)(0.0 H) 5 Ω Z + X L ( Ω) + (5 Ω) 5 Ω 6. (a) Z cos θ (0 Ω)cos Ω X L Z sin θ (0 Ω)sin Ω (b) Z cos θ (500 Ω)cos Ω X L Z sin θ (500 Ω)sin Ω (c) Z cos θ (.5 kω)cos Ω X L Z sin θ (.5 kω)sin kω (d) Z cos θ (998 Ω)cos Ω X L Z sin θ (998 Ω)sin Ω SECTION -3 Analysis of Series L Circuits Ω + 0 Ω 57 Ω tot Ltot L+ L 50 mh + 00 mh 50 mh XLtot ( ) πfltot π( khz)(50 mh) 94 Ω tot 57 Ω tot ( ) 5 s 944 Ω 0.30 tot X + L( tot) 8. tot 470 Ω L tot 3.08 mh + + L L 5.0 mh 8.0 mh XLtot ( ) πfltot π(0 khz)(3.08 mh) 387 Ω tot ( ) Ltot ( ) 470 Ω tot 8 s 6.8 tot + X L (470 Ω) + (387 Ω) X ( ) 387 Ω Ltot 8 s 5.08 tot + X L( tot) (470 Ω) + (387 Ω) 9. (a) Z. kω from Problem 3. 0 I s Z. kω (b) Z.8 kω from Problem 3. I s 5.77 ma Z.8 kω 7

118 0. Using the results of Problem 4: (a) I s ma Z 0 Ω (b) I s 8 3. ma Z 609 Ω. X L π(60 Hz)(0. H) 37.7 Ω θ tan Ω X 37.7 L tan Ω. θ tan X L X L π(60 Hz)(0. H) 37.7 Ω 37.7 Ω θ tan Ω Double L: X L π(60 Hz)(0. H) 75.4 Ω 75.4 Ω θ tan Ω θ increases by 9.4 from 38.7 to The circuit phase angle was determined to be 38.7 in Problem. This is the phase angle by which the source voltage leads the current; it is the same as the angle between the resistor voltage and the source voltage. The inductor voltage leads the resistor voltage by 90. See Figure -. Figure - 4. (a) X L π(60 Hz)(00 mh) 37.7 Ω Z + X L Z L ( 50 Ω) + (37.7 Ω) 55 Ω s X Z L s 50 Ω Ω 37.7 Ω Ω 8

119 (b) (c) (d) X L π(00 Hz)(00 mh) 6 Ω Z + X L Z L ( 50 Ω) + (6 Ω) 96 Ω s X Z L s 50 Ω Ω 6 Ω Ω X L π(500 Hz)(00 mh) 34 Ω Z + X L Z L ( 50 Ω) + (34 Ω) 348 Ω s X Z L s 50 Ω Ω 34 Ω Ω X L π( khz)(00 mh) 68 Ω Z + X L Z L ( 50 Ω) + (68 Ω) 646 Ω s X Z L s Ω Ω Ω Ω 5. (a) X L π( Hz)(0 H) 6.8 Ω φ tan X L 6.83 Ω tan kω (b) X L π(00 Hz)(0 H) 6.8 kω φ tan Ω 6.8 k tan 39 kω (c) X L π( khz)(0 H) 6.8 kω φ tan Ω 6.8 k tan 39 kω (d) X L π(0 khz)(0 H) 68 kω φ tan Ω 68 k tan 39 kω 6. (a) φ 90 tan X Ω L tan kω (b) φ 90 tan X Ω L 6.8 k 90 tan kω 9

120 (c) φ 90 tan X Ω L 6.8 k 90 tan kω (d) φ 90 tan X Ω L 68 k 90 tan kω SECTION -4 Impedance and Phase Angle of Parallel L Circuits 7. X L π( khz)(800 μh) 0 Ω Y tot Z Ω Y tot 0.3 S + 0 Ω 7.69 Ω 0.3 S 8. (a) X L π(.5 khz)(800 μh) 7.54 Ω Y Z Y + X L Ω 6.37 Ω 0.57 S Ω 0.57 S (b) X L π(3 khz)(800 μh) 5. Ω Y Z Y + X L Ω 9.43 Ω 0.06 S + 5. Ω 0.06 S (c) (d) X L π(5 khz)(800 μh) 5. Ω Y Z Y + X L Ω 0.9 Ω 0.09 S X L π(0 khz)(800 μh) 50.3 Ω Y Z Y + X L Ω.6 Ω S Ω Ω 0.09 S S 0

121 9. X L πfl X f L Ω πl π(800 μh).39 khz SECTION -5 Analysis of Parallel L Circuits 0 0. I 4.55 ma. kω 0 I L.86 ma 3.5 kω I (4.55 ma) + (.86 ma) 5.37 ma tot. (a) X L π( khz)(5 mh) 34 Ω X L (560 Ω)(34 Ω) Z X (560 Ω) + (34 Ω) (b) I (c) I L (d) I tot + L s ma 560 Ω X s L Ω 59 ma s ma Z 74 Ω (e) θ tan 560 Ω tan 60.7 X L 34 Ω 74 Ω ( ) XL (.5 k Ω)(5.0 k Ω). Z tot 4.59 kω (.54 k ) X Ω L.5 k θ tan Ω 5.0 kω 66.5 eq Z tot cos θ (4.59 kω)cos kω X L(eq) Z tot sin θ (4.59 kω)sin kω SECTION -6 Analysis of Series-Parallel L Circuits 3. X L π(00 khz)(.0 mh) 68 Ω X L (500 Ω)(68 Ω) Z p X (500 Ω) + (68 Ω) + L θ tan X L 500 Ω tan Ω 579 Ω

122 eq Z p cos θ (579 Ω)cos Ω X L(eq) Z p sin θ (579 Ω)sin Ω Z tot ( ) + X (444 Ω) + (534 Ω 694 Ω + eq L(eq) ) 5 I tot 36 ma 694 Ω I tot (36 ma)(0 Ω) 7.9 L I tot Z p (36 ma)(579 Ω) The circuit is predominantly inductive because X L(eq) > tot. 5. Using the results of Problem 3: I tot 36 ma L 0.8 I L 33. ma X 68 Ω I L ma 500 Ω SECTION -7 Power in L Circuits 6. P a true + P r ( 00 mw) + (340 ma) P 354 ma 7. X L π(60 Hz)(0. H) 37.7 Ω Z I tot P true P r + X L ( 47 Ω) + (37.7 Ω) 60.3 Ω s 6.6 ma Z 60.3 Ω I tot I tot X L (6.6 ma) (47 Ω) 3.0 mw (6.6 ma) (37.7 Ω) 0.4 ma 8. θ tan. kω tan X L 3.5 kω PF cos θ cos Using the results of Problems 3 and 5: PF cos θ cos P true s I cos θ (5 )(36 ma)(0.386) 347 mw P r I L X L (33. ma) (68 Ω) 69 ma P a s I tot (5 )(36 ma) 900 ma

123 SECTION -8 Basic Applications 30. Use the formula, out in. Z tot See Figure -. Frequency (khz) X L (kω) Z tot (kω) out () Figure - 3. X Use the formula, out L in. Z tot See Figure -3. Frequency (khz) X L (kω) Z tot (kω) out (m) Figure For Figure -55: See Figure -4(a). X L π(8 khz)(0 H) 503 kω Z X ( 39 kω) + (503 kω) 505 kω + L 3

124 θ tan Ω X 503 k L tan kω 39 kω in 505 k 77. m Z Ω L X Z L in 503 kω 505 k 996 m Ω For Figure -56: See Figure -4(b). X L π(8 khz)(0 H) 503 kω Z + X L ( 39 kω) + (503 kω) 505 kω θ tan Ω X 503 k L tan kω Z L in X Z L in 39 kω 50 m 505 k 3.86 m Ω 503 kω 50 m 505 k 49.8 m Ω Figure -4 SECTION -9 Troubleshooting 33. L 8 3 L (a) out 0 (b) out 0 (c) out 0 (d) out 0 4

125 ADANCED POBLEMS 35. See Figure -5(a). th Ω + 56 Ω Ω 48.8 Ω Ω th Ω See Figure -5(b): L tot 5 mh + 50 mh 50 mh X L(tot) πfl tot π(400 Hz)(5 mh) 6.8 Ω X L( tot) 6.8 L Ω th th + X L( tot) (48.8 Ω) + (6.8 Ω) Figure Since X L(tot) > th, the circuit is predominantly inductive. 37. From Problem 35, X L(tot) 6.8 Ω Z tot X Ltot ( ) 56 Ω + Ω (33 Ω ) + (6.8 Ω) 7.8 Ω s 5 I tot 343 ma Z 7.8 Ω tot 38. (a) X L πfl π(80 khz)(8.0 mh) 4.0 kω Z tot ( ) XL. kω (.0 kω kω (5.6 kω) + (4.0 kω) ) 875 Ω s 8 (b) I tot 0.6 ma Z 875 Ω tot (c) tot ( + 3) + 4. kω 4.3 kω kω 6.54 kω θ tan X L 4.0 kω tan 3.6 tot 6.54 kω 5

126 (d) See Figure -6(a). th kω +.0 kω 3.3 kω 6.37 kω kω th s kω X 4.0 k L L Ω th 3.8 th + X L (6.37 k Ω ) + (4.0 k Ω) 7.37 (e) See Figure -6(b) and (c): th 3.0 kω 3.3 kω 767 Ω kω th s k Ω The voltage across the 4 -L combination is the same as the voltage across 3. X L th ( th + 4 ) + X L (5.6 k ) (4.0 k ) 6.89 k Ω + Ω Ω (6.37 k ) (4.0 k ) 7.53 kω Ω + Ω Figure -6 6

127 39. (a) Z X L X L + X L (68 Ω)(00 Ω) (68 Ω) + (00 Ω) 56. Ω Ω 68 θ tan tan X 34. L X L 00 Ω Converting the parallel combination of and X L to an equivalent series form: eq Z X cosθ (56. Ω)cos Ω X L(eq) Z B I Z L X L sinθ (56. Ω)sin Ω X L X L + eq) + X L(eq) (47 Ω Ω) + (3.6 ) ( Ω 98.7 Ω Z s B ma 98.7 Ω (b) 68 I L Ω I 405 ma 8 ma (68 ) (00 ) + X L Ω + Ω (c) X L L3 X L + X L3 75 Ω + 45 Ω 0 Ω s 40 I L X L L3 0 Ω 333 ma (d) 00 I X L Ω I 405 ma 335 ma (68 ) (00 ) + X L Ω + Ω kω kω 0.7 kω 3 ( ) 4.7 kω 0.7 kω 3.7 kω + 3 ( ) 5.6 kω kω 8.87 kω tot ( + 3 ( )) 3.3 kω 8.87 kω.4 kω X L π(0 kω)(50 mh) 3.4 kω θ tan Ω X 3.4 k L tan kω out lags in.4 k (.4 k ) (3.4 k ) tot Ω in 609 m + tot X L Ω + Ω 3 ( 4 + ) k 3 Ω 609 m 3 ( 4 5) 3.7 k 5.6 k 5 m + + Ω + Ω kω out m 43 m kω+ 6.8 kω out 43 m Attenuation 0.43 in 4. L tot (( L 4 + L5 ) L3 + L ) L (.0 mh.0 mh).0 mh.0 mh.0 mh (.0 mh.0 mh).0 mh.0 mh.0 mh.0 mh 7

128 X L(tot) πfl 6.8 Ω X L( tot ) L(tot) + X L( tot ) 6.8 (00 ) (6.8 ) Ω 0.53 Ω + Ω 6.8 Ω L Ω 6.8 Ω out Ω out 0.33 Attenuation 0.33 in in 4. Ω A.5 k.5 kω A See Figure -7. When the switch is thrown from position to position, the inductance will attempt to keep A through, thus a.5 k spike is created across for a short time. This design neglects the arcing of the switch, assuming instantaneous closure from position to position. The value of L is arbitrary since no time constant requirements are imposed. Figure See Figure -8. The correct output voltage is calculated as follows: X L πfl π(0 khz)(50 mh) 34 Ω 3.9 kω kω 0.7 kω 4.7 kω 0.7 kω 3.7 kω 5.6 kω kω 8.87 kω 3.3 kω 8.87 kω.4 kω.4 k A (.4 k ) (3.4 k ) Ω Ω + Ω 8

129 3.7 kω B k 5.6 k 0.5 Ω + Ω 6.8 kω out k 3.9 k 0.43 Ω + Ω The measured output is approximately 0.3 peak, which is incorrect. After trial and error, we find that if the 4.7 kω is open we get: tot 3.3 kω (5.6 kω kω kω).74 kω.74 k A (.74 k ) (3.4 k ) Ω Ω + Ω 6.8 kω out k 3.9 k 6.8 k 0.74 Ω + Ω + Ω This is relatively close to the measured value. Component tolerances could give us the scope reading. Figure -8 Multisim Troubleshooting Problems 44. is shorted. 45. L is open. 46. L is shorted. 47. is open. 48. No fault 49. L is shorted. 9

130 CHAPTE 3 LC CICUITS AND ESONANCE BASIC POBLEMS SECTION 3- Impedance and Phase Angle of Series LC Circuits. X C πfc 677 Ω π(5 khz)(0.047 μf) X L πfl π(5 khz)(5 mh) 57 Ω Z + ( X L ) C X ( 0 Ω ) + (677 Ω 57 Ω) (0 Ω) + (50 Ω) 50 Ω θ tan X C X L 50 Ω tan 88.9 ( s lagging I) 0 Ω X tot X C X L 50 Ω Capacitive. Z + X L X C ( ) (4.7 kω) + (8.0 kω 3.5 kω) 6.5 kω 3. Doubling f doubles X L and halves X C, thus increasing the net reactance and, therefore, the impedance increases. SECTION 3- Analysis of Series LC Circuits 4. Z tot I tot Z + X L X C ( ) (4.7 kω) + (4.5 kω) 6.5 kω s tot 4 64 μa 6.5 kω I tot (64 μa)(4.7 kω).89 L I tot X L (64 μa)(8.0 kω) 4.9 C I tot X C (64 μa)(3.5 kω).5 5. θ tan Ω X 4.5 k tot tan kω The voltage values were determined in Problem 4. lags s by 43.8 because it is in phase with I. L and C are each 90 away from and 80 out of phase with each other. See Figure

131 Figure 3-6. tot 0 Ω 390 Ω 4 Ω L tot L + L 0.5 mh +.0 mh.5 mh C tot C + C 0.0 μf pf 0.08 μf X L(tot) 36 Ω X C(tot) 540 Ω Z tot tot + X L( tot) X C( tot) ( ) (4 Ω) + (304 Ω) 335 Ω s (a) I tot 35.8 ma Ztot 335 Ω (b) P true I tot tot (35.8 ma) (4 Ω) 8 mw (c) P r I tot X tot (35.8 ma) (304 Ω) 390 ma (d) P a P ) + ( P 430 ma ( true r ) SECTION 3-3 Series esonance 7. Because X C < X L, f r is less than the frequency indicated. 8. X C X L at resonance. s 9. f r π LC π 734 khz (mh)(47 pf) X L πf r L π(734 khz)( mh) 4.6 kω X C X L 4.6 kω Z tot 0 Ω s I 54.5 ma Z 0 Ω tot 0. C L 00 at resonance s 0 Z 00 Ω I 50 ma X L X C max I L max ma kω 3

132 . f r 454 khz π LC π (8 μh)(.5 nf) X L π fl π(454 khz)(8 μh) 34 Ω X 34 Q L Ω 6 39 Ω f 454 khz BW r 75.7 khz Q 6 BW 75.7 khz f c f r 454 khz 46 khz BW 75.7 khz f c f r khz + 49 khz 3.0. I max s 77 ma 39 Ω I half-power 0.707I max 0.707(77 ma) 54 ma SECTION 3-4 Series esonant Filters 3. (a) f r π LC (b) f r π LC 4.5 khz π ( mh)(0.0μf) 4.0 khz π ( mh)(0.0 μf) These are bandpass filters. 4. (a) tot 0 Ω + 75 Ω 85 Ω f r π LC π ( mh)(0.0μf) (b) X L π(4.5 khz)( mh).09 kω X L.09 kω Q 3 85 Ω BW tot f 4.5 khz r. khz Q 3 tot 0 Ω + Ω 3 Ω f r π LC π ( mh)(0.0 μf) X L π(4.0 khz)( mh) 30 Ω X L 30 Ω Q Ω BW tot f 4.0 khz r.54 khz Q khz 4.0 khz 3

133 5. (a) f r π LC π (00 μh)(0.00 μf) X L π(339 khz)(00 μh) 3 Ω X Ω Q L Ω BW f 339 khz r 39 khz Q khz (b) f r π LC π (5 mh)(0.047 μf) X L π(0.4 khz)(5 mh) 37 Ω X Ω Q L Ω BW f 0.4 khz r.6 khz Q khz SECTION 3-5 Parallel LC Circuits 6. X L πfl π( khz)(5 mh).3 kω X C 603 Ω πfc π( khz)(0.0 μf) Y Z tot (0.0 S) Y + X C X L 4 00 Ω Ω.3 k + ( S S) 0.03 ms 0.03 ms 99.7 Ω 7. X L π( khz)(5 mh).3 kω X C 603 Ω π( khz)(0.0 μf) Since X C < X L, the parallel circuit is predominantly capacitive. The smaller reactance in a parallel circuit dominates the circuit response because it has the largest current. Ω 8. I tot Z s tot ma I 99.7 Ω s 5 I L 4.4 ma I C X L.3 kω L C s 5 s ma 00 Ω X s C Ω 8.9 ma 33

134 9. X π fl π ( )( ) B L L X C B C 0 khz 0 mh 68 Ω.59 ms X 68 Ω L.06 k π fc π 0 khz 5 nf Ω ( )( ) 94 µs X.06 kω C W 80 Ω X L 68 Ω Q Ω ( ) ( ) (eq) Q + 80 Ω kω G p p(eq) W 00 µs 5.0 kω p(eq) The equivalent circuit is shown in Figure 3-. Figure 3- tot p tot Y G (eq) + B 00 µs + (.59 ms 94 µs) 678 µs Z tot.47 kω 678 µs SECTION 3-6 Parallel esonance 0. Z r is infinitely large.. f r π W L LC C (0 Ω) (47 pf) 50 mh 04 khz π (50 mh)(47 pf) X L πf r L π(03.8 khz)(50 mh) 3.6 kω X L 3.6 kω Q Ω W Z r W (Q + ) 0 Ω(630 + ) 53. MΩ. From Problem : Z r 53. MΩ and f r 04 khz s 6.3 I tot 9 na Z 53. MΩ r I C I L (0 Ω) kω) 93 μa 34

135 SECTION 3-7 Parallel esonant Filters 3. Q BW X L kω 80 5 Ω f 5 khz r 6.5 Hz Q BW f c f c 800 Hz 400 Hz 400 Hz 5. P (0.5)P r (0.5)(.75 W).38 W 6. Q f 8 khz r 0 BW 800 Hz X L(res) Q W 0(0 Ω) 00 Ω X L 00 Ω L.99 mh πf r π(8 khz) X C X L at resonance C π f 0.99 μf π(8 khz)(00 Ω) r X C 7. Since BW Q f r, the bandwidth is halved when Q is doubled. So, when Q is increased from 50 to 00, BW decreases from 400 Hz to 00 Hz. 8. f r π LC L 35. mh 4π f C 4(3.4) (60) (00 μf) r 9. See Figure 3-3. Figure

136 ADANCED POBLEMS 30. (a) 0 log out 0 log 0 db in (b) 0 log out 3 0 log 4.4 db in 5 (c) 0 log out log 3 db in 0 (d) 0 log out 5 0 log 4 db in 5 3. X L(tot) 3.33 kω + + X L X L 5 kω 0 kω X L( tot ) (0 kω)(3.33 kω) Z p X L(tot) X (0 kω) + (3.33 kω) + L( tot ) 3.6 kω θ p tan 0 kω tan 7.6 X L ( tot) 3.33 kω Converting the parallel combination of, X L, and X L to an equivalent series circuit: eq Z p cos θ p (3.6 kω)cos Ω X L(eq) Z p sin θ (3.6 kω)sin kω Z (tot) I tot I I C + eq) + ( X L (eq) + X C ) + (497 Ω) + (000 ) ( Ω 4740 Ω Z s tot Ω. ma I tot (. ma)(3.3 kω) 6.96 C I tot X C (. ma)(.0 kω). L-L- I tot Z p (. ma)(3.6 kω) 6.67 L 6.67 I L.33 ma X 5 kω I L I X L L L kω 667 μa kω 667 μa 36

137 3. For ab 0, a b in both magnitude and phase angle. X L 6 Ω; X L 5 Ω 6 a L (80 ) (6 ) Ω 9.38 Ω + Ω It is not possible for ab to be 0 because the LC branch has no resistance; thus, the voltage from a to b can only have a phase angle of 0, 90, or 90 (the branch will be either resonant, purely inductive, or purely capacitive depending on the value of X C ). Therefore, it is not possible for a to equal b in both magnitude and phase angle, which are necessary conditions. 33. X C 4 Ω π(3 khz)(0. μf) X L π(3 khz)( mh) 6 Ω X L π(3 khz)(8 mh) 5 Ω s I -L X (80 Ω) + (6 Ω I C-L X C + L ) s 33 ma X 4 Ω 5 Ω L 4.5 ma θ L tan X Ω L 6 tan Ω The resistive component of current in the left branch is: I I L cos θ L (4.5 ma)cos ma The reactive component of current in the left branch is: I X I L sin θ L (4.5 ma)sin ma In the right branch X C >X L, so I C L is totally reactive and is 80 out of phase with I X in the left branch. I tot I + IC L I X ( ) (5.8 ma) + (33 ma 3.5 ma) 04 ma 34. For parallel resonance: f r W C L π L C X L π(.6 khz)(5 mh) 408 Ω Q p p Z r W ( + ) 4 Ω(0 + ) Q 4.6 kω.6 khz π(5 mh)(0.5 μf) X L W 408 Ω 0 4 Ω X L π(.6 khz)(0 mh) 63 Ω Since Z r is much greater than, W, or X L and is resistive, the output voltage is: out s 0 For series resonance: f r 4. khz π L C π (0 mh)(0.5 F) and X C X L π(4. khz)(0 mh) 58 Ω X L π(4. khz)(5 mh) 644 Ω μ 37

138 Since X C < X L, the parallel portion of the circuit is capacitive. XC Z r ( W + XL) W+ XL 7 Ω W + ( XL XC) Assuming that Z r is almost totally reactive: Z r 7 Ω out 0 s.96 + Z r (860 Ω ) + (7 Ω) 35. f r BW Q (500 Hz)(40) 0 khz.5 X C 5 Ω 0 ma C π f μf π(0 khz)(5 Ω) Q W f r W r X C X L 40 X Q L π X 40 W C L LC L 0.05X L 0.05(πf r L) ( 0.05(πf L) ) C C W r L L 0.05 fr LC f r 4π LC 4π LC 4π LC In the above derivation, the term (0.05(π)) 0.05 f 4π r LC 0.05 f LC r LC(4π ) f r L f r 989 μh C(4π ) 36. efer to Figure 3-4. f r Choose C 0.00 μf π LC f r 4π LC (a) f r 500 khz: L 4π f r C 4π (500 khz) (0.00 μf) 0 μh (b) f r 000 khz: L 4π f r C 4π (000 khz) (0.00 μf) 5.3 μh (c) f r 500 khz: L 3 4π C 4π (500 khz) (0.00 μf).3 μh f r 38

139 (d) f r 000 khz: L 4 4π f r C 4π (000 khz) (0.00 μf) 6.3 μh Figure See Figure 3-5. The winding resistance is neglected because it contributes negligibly to the outcome of the calculations. f r π LC f r 4π LC C 4π f r L For f r 8 MHz, 9 MHz, 0 MHz, and MHz: C 40 pf 4π (8 MHz) (0 μh) C 3 pf 4π (9 MHz) (0 μh) C 3 5 pf 4π (0 MHz) (0 μh) C 4 pf 4π (MHz) (0 μh) Figure

140 Multisim Troubleshooting Problems 38. L is open. 39. No fault 40. C is open. 4. L is shorted. 4. C is shorted. 43. L is shorted. 40

141 CHAPTE 4 TANSFOMES BASIC POBLEMS SECTION 4- Mutual Inductance. L M k L L 0.75 ( μh)(4 H).5 μh μ. L M k L L k L μh M 0.5 L L (8 μh)( H) μ SECTION 4- The Basic Transformer 3. n N N sec pri (a) N n N (b) N n N sec pri sec pri (a) In phase (b) Out of phase (c) Out of phase SECTION 4-3 Step-Up and Step-Down Transformers 6. n N N sec pri sec.5 pri.5(0 ) N sec N pri (50 turns) 500 turns 4

142 8. n N sec sec 0 N pri pri pri n sec See Figure 4-(a). N sec (a) sec n pri pri N pri See Figure 4-(b). N sec (b) sec n pri pri N pri 0(0 ) 00 rms (50 ) 00 rms Figure 4-0. sec pri n N N N N sec pri sec pri sec (0.)(00 ) 40. sec sec n 0. pri N N pri pri sec (6 ) n (a) L Nsec n pri 0 pri 6 N pri 0 (b) L 0 (The transformer does not couple constant dc voltage) (c) N sec L npri pri 4(0 ) 40 N pri 4. No, the voltages would not change. 4

143 5. (a) L (0.) sec (0.)(00 ) 0 (b) pri 0 L 0( ) Meter would indicate 0. SECTION 4-4 Loading the Secondary 7. I I sec pri N pri N n I sec n sec I pri 3 00 ma ma 8. sec pri I I pri sec (a) sec n pri Nsec 30 pri 5 N pri sec 5 (b) I sec 50 ma 300 Ω L (c) I pri sec 5 I 50 ma sec 5 ma pri 30 (d) P L I sec L (50 ma) (300 Ω) 0.75 W SECTION 4-5 eflected Load 9. pri L 680 Ω 680 Ω n n Ω pri n L 50 (8 Ω) 0 kω. I pri sec pri ma 0 kω 43

144 . pri 300 Ω; L.0 kω n L pri L.0 kω n Ω pri SECTION 4-6 Impedance Matching 3. pri n n n pri L L pri L 6 Ω 4 Ω 4 n n 0.5 from Problem 3. pri speaker n 5 I pri.56 A 6 Ω Ω 6 Ω I sec I pri n (.56 A) 3. A P speaker I sec speaker (3. A) (4 Ω) 38.9 W 5. n 0 n L pri n L n pri 0 (50 Ω) 00(50 Ω) 5 kω 6. pri L L (0.0) L n 0 For L l kω, pri (0.0)( kω) 0 Ω 0 Ω (pri) Ω P (.67 ) 0 Ω 0.78 W L pri 44

145 For L kω, pri (0.0)( kω) 0 Ω 0 Ω (pri) Ω P (.86 ) 0 Ω W For L 3 kω, pri (0.0)(3 kω) 30 Ω 30 Ω (pri) Ω (3.75 ) P 30 Ω W For L 4 kω, pri 40 Ω 40 Ω (pri) Ω (4.44 ) P 40 Ω W For L 5 kω, pri 50 Ω 50 Ω (pri) Ω P (5 ) 50 Ω W For L 6 kω, pri 60 Ω 60 Ω (pri) Ω (5.45 ) P 60 Ω W For L 7 kω, pri 70 Ω 70 Ω (pri) Ω (5.83 ) P 70 Ω W For L 8 kω, pri 80 Ω 80 Ω (pri) Ω (6.5 ) P 80 Ω W 45

146 For L 9 kω, pri 90 Ω 90 Ω (pri) Ω P (6.43 ) 90 Ω W For L 0 kω, pri 00 Ω 00 Ω (pri) Ω (6.67 ) P 00 Ω W See Figure 4-. Figure 4- SECTION 4-7 Transformer atings and Characteristics 7. P L P pri P lost 00 W 5.5 W 94.5 W 8. P 94.5 W % efficiency out 00% 00% 94.5 % Pin 00 W 9. Coefficient of coupling

147 Pa ka 30. (a) I L(max).67 A sec 600 sec 600 (b) L(min) 359 Ω I L(max).67 A sec (c) X C 359 Ω IL C max πfx π(60 Hz)(359 Ω) C 7.4 μf 3. ka rating (.5 k)(0 A) 5 ka SECTION 4-8 Tapped and Multiple-Winding Transformers For secondary : sec 4 n pri For secondary : sec 6 n 0.5 pri For secondary 3: sec 3 n 0.5 pri 34. (a) See Figure 4-3. (b) turns: sec turns: sec turns: sec turns: sec

148 Figure For both primaries: 00 Top secondary: n Next secondary: n Third secondary: n Bottom secondary: n 000 SECTION 4-9 Troubleshooting 36. Open primary winding. eplace transformer. 37. If the primary shorts, excessive current is drawn which potentially can burn out the source and/or the transformer unless the primary is fused. 38. Some, but not all, of the secondary windings are shorted or the primary voltage is lower than expected. ADANCED POBLEMS 39. (a) N sec 400 turns turns 700 turns L n pri Nsec pri 35 N pri 00 L 35 I L Ω.9 A L 300 L L 5 I L.5 A 0 Ω L 48

149 (b) Z pri Z pri + + N (.94)( Ω) (6)(0 pri N pri L L N700 N S S S 35.3 Ω 60 Ω S 8.9 Ω Ω) 40. (a) pri 400 Nsec sec 0 n 0.05 N pri pri 400 (b) I sec 5 ka sec 0 (c) I pri ni sec (0.05)(4.7 A).09 A 4. (a) The lower 00 Ω resistor is shorted out by the meter ground; so, the full secondary voltage measured by the meter is: meter sec Nsec n pri N pri 6 (b) The common point between the 00 Ω resistors is ground. Both resistors are still in the secondary with one-half of the secondary voltage across each. meter sec Position : L 560 Ω + 0 Ω +.0 kω 780 Ω n L 780 Ω 0 Ω 3.3 pri N sec N sec + N sec + N sec3 nn pri turns Position : L 0 Ω +.0 kω 0 Ω L 0 Ω n.0 0 Ω pri N sec N sec + N sec3 nn pri turns Position 3: L.0 kω L n pri 000 Ω 0 Ω 0 N sec N sec3 nn pri turns 49

150 43. pri kω 3 ma pri n n L n pri L pri L 8 Ω kω This is 70.7 primary turns for each secondary turn n A I pri(max) 83.3 ma ma Isec(max) 794 ma L(min) 5.9 Ω 794 ma 45. n I pri(max) (0.0833)( A) 83.3 ma A fuse rated at 0. A should be used. Multisim Troubleshooting Problems 46. Partial short in transformer. 47. Secondary is open. 48. No fault. 49. Primary is open. 50

151 CHAPTE 5 TIME ESPONSE OF EACTIE CICUITS BASIC POBLEMS SECTION 5- The C Integrator. τ C (. kω)(0.047 μf) 03 μs. (a) 5C 5(47 Ω)(47 μf).0 ms (b) 5C 5(3300 kω)(0.05 μf) 48 μs (c) 5C 5( kω)(00 pf) μs (d) 5C 5(4.7 MΩ)(0 pf) 35 μs 3. τ 6 ms, C 0. μf τ C τ 6 ms 7.3 kω C 0. µf Use a standard 7 kω resistor. 4. t (min) 5τ 5(6 ms) 30 ms W SECTION 5- esponse of C Integrators to a Single Pulse 5. v C 0.63(0 ).6 6. (a) v 0.86(0 ) 7. (b) v 0.95(0 ) 9 (c) v 0.98(0 ) 9.6 (d) v 0.99(0 ) 9.8 (considered 0 ) 7. See Figure 5-. Figure 5-5

152 8. τ C (.0 kω)( μf) ms v out 0.63(8 ) 5.06 The time to reach steady-state with repetitive pulses is 5 ms. See Figure 5- for output wave shape. Figure 5- SECTION 5-3 esponse of C Integrators to epetitive Pulses 9. τ (4.7 kω)(0 μf) 47 ms 5τ 35 ms See Figure 5-3. Figure T 00 μs t W 0.5(00 μs) 5 μs f 0 khz st pulse: 0.63( ) 63 m Between st and nd pulses: 0.05(63 m) 3.6 m nd pulse: 0.63( 3.6 m) m 644 m Between nd and 3rd pulses: 0.05(644 m) 3. m 3rd pulse: 0.63( 3. m) + 3. m 644 m 5

153 See Figure 5-4. Figure 5-4. The steady-state output equals the average value of the input which is 5 with a small ripple. SECTION 5-4 esponse of C Differentiators to a Single Pulse. See Figure 5-5. Figure τ (.0 kω)( μf) ms See Figure 5-6. Steady-state is reached in 5 ms. Figure

154 SECTION 5-5 esponse of C Differentiators to epetitive Pulses 4. τ (.0 kω)( μf) ms See Figure 5-7. Figure The output voltage is approximately the same wave shape as the input voltage but with an average value of 0. SECTION 5-6 esponse of L Integrators to Pulse Inputs 6. 0 mh τ 0 kω μs 5τ 5 μs out(max) 0.63(8 ) 5.06 See Figure 5-8. Figure mh 7. τ 50 μs.0 kω 5τ 50 μs out(max) See Figure 5-9. Figure

155 SECTION 5-7 esponse of L Differentiators to Pulse Inputs 8. (a) τ 00 μ H 45.4 ns. kω (b) At end of pulse, v out (0 )e.. See Figure ns 37 ns 8.89 Figure τ 00 μ H 45.4 ns. kω 5τ 7 ns See Figure 5-. Figure SECTION 5-8 Applications 0. τ C ( kω)(0.00 μf) μs v B F ( e t/c ) 0 ( e 440μs/μs ) 0.0. The output of the integrator is ideally a dc level which equals the average value of the input signal, 6 in this case. SECTION 5-9 Troubleshooting. τ C (3.3 kω)(0. μf) 76 μs 5τ 5C 5(76 μs) 3.63 ms (b) Since the output looks like the input, the capacitor must be open or the resistor shorted because there is no charging time. (c) The zero output could be caused by an open resistor or a shorted capacitor. 3. τ 76 μs; 5τ 5(76 μs) 3.63 ms (b) No fault. (c) Open capacitor or shorted resistor. 55

156 ADANCED POBLEMS 4. (a) Looking from the source and capacitor, (. kω)(.0 kω +.0 kω) tot.05 kω 4. kω τ tot C (.05 kω)(560 pf) 588 ns µs (b) See Figure 5-..6µs/0.588µs v 0 e 0 m Figure 5-5. (a) Looking from the capacitor, the Thevenin resistance is 5 kω. τ (5 kω)(4.7 μf) 3.5 ms; 5τ 5(3.5 ms) 8 ms (b) See Figure 5-3. Figure L tot 8 μh + 4 μh μh (0 kω)(4.7 kω) tot 5.95 kω 4.7 kω Ltot μh τ.0 ns tot 5.95 kω This circuit is an integrator. 56

157 7. v F ( e t/τ ).5 5( e t/τ ).5 5 5e t/τ 5e t/τ 5.5 e t/τ ln e t/τ ln 0.5 t τ t τ s s 8. The scope display is correct. See Figure 5-4. Figure 5-4 Multisim Troubleshooting Problems 9. Capacitor is open. 30. is open. 3. No fault 3. L is open. 57

158 CHAPTE 6 DIODES AND APPLICATIONS SECTION 6- Introduction to Semiconductors. Two types of semiconductor materials are silicon and germanium.. Semiconductors have 4 valence electrons. 3. In a silicon crystal, a single atom forms 4 covalent bonds. 4. When heat is added to silicon, the number of free electrons increases. 5. Current in silicon is produced at the conduction band and the valence band levels. 6. Doping is the process of adding trivalent or pentavalent elements to an intrinsic semiconductor in order to increase the effective number of free electrons or holes, respectively. 7. Antimony is an n-type impurity. Boron is a p-type impurity. 8. A hole is the absence of an electron in the valence band of an atom. 9. ecombination is the process in which an electron that has crossed the pn junction falls into a hole in the p-region, creating a negative ion. SECTION 6- The Diode 0. The electric field across a pn junction is created by the diffusion of free electrons from the n-type material across the barrier and their recombination with holes in the p-type material. This results in a net negative charge on the p side of the junction and a net positive charge on the n side of the junction, forming an electric field.. A diode cannot be used as a voltage source using the barrier potential because the potential opposes any further charge movement and is an equilibrium condition, not an energy source.. Forward biasing of a pn junction is accomplished by connecting the positive terminal of a battery to the p-type material. 3. A series resistor is necessary to limit the diode current when a diode is forward-biased to prevent overheating. 58

159 SECTION 6-3 Diode Characteristics 4. To generate the forward bias portion of the diode characteristic curve, use the set-up shown in Figure 6-. Figure 6-5. The barrier potential would decrease from 0.7 to 0.6 is there were an increase in junction temperature. 6. (a) The diode is reverse-biased because the anode is at 5 and the cathode is at 8. (b) The diode is forward-biased because the anode is at ground and the cathode is at 00. (c) The diode is forward-biased by the positive voltage produced by the voltage divider. (d) The diode is forward-biased because its cathode is more negative than the anode due to the 0 source. 7. (a) (reversed biased) (b) F 0.7 (c) F 0.7 (d) F (a) The diode should be forward-biased with F 0.7. The 5 measurement indicates an open diode. (b) The diode should be forward-biased with F 0.7. The 5 measurement indicates an open diode. (c) The diode should be reverse-biased and the measured voltage should be 0. The.5 reading indicates that the diode is shorted. (d) The diode is reverse-biased. The 0 reading across the resistor indicates there is no current. From this, it cannot be determined whether the diode is functioning properly or is open. 9. A S 5 B A C S D S 8 59

Contemporary Electronics: Fundamentals. Experiments in. Fundamentals First Edition

Contemporary Electronics: Fundamentals. Experiments in. Fundamentals First Edition Instructor Solutions Manual to accompany Contemporary Electronics: Fundamentals First Edition and Experiments in Contemporary Electronics: Fundamentals First Edition Louis Frenzel CONTENTS Preface PART

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012 SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Chapter 28 - Direct Current Circuits

Chapter 28 - Direct Current Circuits Chapter 8 - Direct Current Circuits 8. (a = becomes Δ V = 0.0 W = so = 6.7 Ω (.6 V so.6 V = ( 6.7 Ω FG. 8. and =.7 A = + r so 5.0 V =.6 V + (.7 A r r =.97 Ω.00 V 8. The total resistance is = = 5.00 Ω.

More information

Electrical Engineering Fundamentals

Electrical Engineering Fundamentals Electrical Engineering Fundamentals EE-238 Sheet 1 Series Circuits 1- For the circuits shown below, the total resistance is specified. Find the unknown resistance and the current for each circuit. 12.6

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Static electricity 2 Repulsion and attraction 3 Electric circuits 4 Circuit symbols 5 Currents 6 Resistance 7 Thermistors and light dependent resistors 8 Series circuits

More information

4. An overheated resistor is usually a symptom of a problem rather than its cause.

4. An overheated resistor is usually a symptom of a problem rather than its cause. TRUE/FALSE 1. Voltage can exist only where there is a current path. Page: 1 2. An open circuit condition is one where R =. 3. One ampere equals 1 joule per second. 4. An overheated resistor is usually

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits C HAP T E O UTLI N E 33 1 AC Sources 33 2 esistors in an AC Circuit 33 3 Inductors in an AC Circuit 33 4 Capacitors in an AC Circuit 33 5 The L Series Circuit 33

More information

1. A B C D 10. A B C D 19. A B C D 2. A B C D 11. A B C D 20. A B C D 3. A B C D 12. A B C D 21. A B C D 4. A B C D 13. A B C D 22.

1. A B C D 10. A B C D 19. A B C D 2. A B C D 11. A B C D 20. A B C D 3. A B C D 12. A B C D 21. A B C D 4. A B C D 13. A B C D 22. NYT MT 1150 lectrical ircuit Uniform Final Spring2015 Please submit this page with your answer and question sheets Must circle the correct answer on the answer sheet. 1. 10. 19. 2. 11. 20. 3. 12. 21. 4.

More information

10 Electromagnetic Interactions

10 Electromagnetic Interactions Lab 10 Electromagnetic Interactions What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. A changing magnetic field can create an electric field

More information

Table of Contents. Introduction...2 Conductors and Insulators...3 Current, Voltage, and Resistance...6

Table of Contents. Introduction...2 Conductors and Insulators...3 Current, Voltage, and Resistance...6 Table of Contents Introduction...2 Conductors and Insulators...3 Current, Voltage, and Resistance...6 Ohm s Law... 11 DC Circuits... 13 Magnetism...20 Alternating Current...23 Inductance and Capacitance...30

More information

PHYS102 Previous Exam Problems. Circuits

PHYS102 Previous Exam Problems. Circuits PHYS102 Previous Exam Problems CHAPTER 27 Circuits Combination of resistors Potential differences Single loop circuits Kirchhoff laws Multiloop circuits RC circuits General 1. Figure 1 shows two resistors

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2018 Objectives At the end of this presentation the learner will be able to: Identify the characteristics of Sine

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

ELECTRONICS AND ELECTRICITY

ELECTRONICS AND ELECTRICITY INTRODUCTION ELECTRONICS ND ELECTRICITY The science of Electronics and Electricity makes a very important contribution to our everyday existence. Electricity is concerned with the generation, transmission

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

Unit 3 Magnetism...21 Introduction The Natural Magnet Magnetic Polarities Magnetic Compass...21

Unit 3 Magnetism...21 Introduction The Natural Magnet Magnetic Polarities Magnetic Compass...21 Chapter 1 Electrical Fundamentals Unit 1 Matter...3 Introduction...3 1.1 Matter...3 1.2 Atomic Theory...3 1.3 Law of Electrical Charges...4 1.4 Law of Atomic Charges...4 Negative Atomic Charge...4 Positive

More information

Electromagnetic Induction - A

Electromagnetic Induction - A Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

More information

Preface...x Chapter 1 Electrical Fundamentals

Preface...x Chapter 1 Electrical Fundamentals Preface...x Chapter 1 Electrical Fundamentals Unit 1 Matter...3 Introduction...3 1.1 Matter...3 1.2 Atomic Theory...3 1.3 Law of Electrical Charges...4 1.4 Law of Atomic Charges...5 Negative Atomic Charge...5

More information

WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: EC Session:

WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: EC Session: WLJT OLLEGES OF PPLIED SIENES In academic partnership with IRL INSTITUTE OF TEHNOLOGY Question ank ourse: E Session: 20052006 Semester: II Subject: E2001 asic Electrical Engineering 1. For the resistive

More information

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Fundamentals of Electric Circuits Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Overview This chapter will introduce Ohm s law: a central concept

More information

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage esson- ATENATING UENT Alternating urrent and oltage An alternating current or voltage is that variation of current or voltage respectively whose magnitude and direction vary periodically and continuously

More information

ECE103 Spring Homework 1

ECE103 Spring Homework 1 ECE103 Spring 2015 Homework 1 Due Tuesday January 29 in class. Show all your work; all problems must be properly solved and assumptions justified. A list of results is NOT acceptable. Solve the homework

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

Chapter 6: Alternating Current

Chapter 6: Alternating Current hapter 6: Alternating urrent 6. Alternating urrent.o 6.. Define alternating current (A) An alternating current (A) is the electrical current which varies periodically with time in direction and magnitude.

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge Chapter 0 n an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. Circuits Within a battery, a chemical reaction occurs

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

DC Circuits, Ohm's Law and Multimeters Physics 246

DC Circuits, Ohm's Law and Multimeters Physics 246 DC Circuits, Ohm's Law and Multimeters Physics 246 Theory: In this lab we will learn the use of multimeters, verify Ohm s law, and study series and parallel combinations of resistors and capacitors. For

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

Experiment VI: The LRC Circuit and Resonance

Experiment VI: The LRC Circuit and Resonance Experiment VI: The ircuit and esonance I. eferences Halliday, esnick and Krane, Physics, Vol., 4th Ed., hapters 38,39 Purcell, Electricity and Magnetism, hapter 7,8 II. Equipment Digital Oscilloscope Digital

More information

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar.

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. PHY054 Spring 009 Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. 7, 009 Exam 3 Solutions 1. Two coils (A and B) made out of the same wire are in a uniform magnetic field with the coil axes

More information

MECH 1100 Quiz 4 Practice

MECH 1100 Quiz 4 Practice Name: Class: Date: MECH 1100 Quiz 4 Practice True/False Indicate whether the statement is true or false. 1. An advantage of a of a three-phase induction motor is that it does not require starter windings.

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

PHYS 235: Homework Problems

PHYS 235: Homework Problems PHYS 235: Homework Problems 1. The illustration is a facsimile of an oscilloscope screen like the ones you use in lab. sinusoidal signal from your function generator is the input for Channel 1, and your

More information

z z" z v 2 ft = 2k ft. 328 Concepts of Physics The energy dissipated in 1000 s = P * 1000 s

z z z v 2 ft = 2k ft. 328 Concepts of Physics The energy dissipated in 1000 s = P * 1000 s 38 Concepts of Physics. A series AC circuit contains an inductor ( mh), a capacitor ( (JF), a resistor ( ft) and an AC source of V, Hz. Find the energy dissipated in the circuit in s. Solution : The time

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance)

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance) SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance) 2.1 Indicating Instruments Analog Instruments: An analog device is one in which

More information

REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A. Topic and Description NIDA Lesson CARD #

REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A. Topic and Description NIDA Lesson CARD # REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A KS01-EE104A Direct current circuits T1 Topic and Description NIDA Lesson CARD # Basic electrical concepts encompassing: electrotechnology industry static and current

More information

ELECTRIC CIRCUITS CMPE 253 DEPARTMENT OF COMPUTER ENGINEERING LABORATORY MANUAL ISHIK UNIVERSITY

ELECTRIC CIRCUITS CMPE 253 DEPARTMENT OF COMPUTER ENGINEERING LABORATORY MANUAL ISHIK UNIVERSITY ELECTRIC CIRCUITS CMPE 253 DEPARTMENT OF COMPUTER ENGINEERING LABORATORY MANUAL ISHIK UNIVERSITY 2017-2018 1 WEEK EXPERIMENT TITLE NUMBER OF EXPERIMENT No Meeting Instructional Objective 2 Tutorial 1 3

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself.

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself. MUST 382 / EELE 491 Spring 2014 Basic Lab Equipment and Measurements Electrical laboratory work depends upon various devices to supply power to a circuit, to generate controlled input signals, and for

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

DC Circuits. Date: Introduction

DC Circuits. Date: Introduction Group # Date: Names: DC Circuits Introduction In this experiment you will examine how to make simple DC measurements that involve current, voltage, and resistance. The current I through a resistor R with

More information

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases)

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases) Old Exams-Chapter 27 T081 Q1. Fig 1 shows two resistors 3.0 Ω and 1.5 Ω connected in parallel and the combination is connected in series to a 4.0 Ω resistor and a 10 V emf device. The potential difference

More information

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law EENG-201 Experiment # 1 Series Circuit and Parallel Circuits I. Objectives Upon completion of this experiment, the student should be able to: 1. ead and use the resistor color code. 2. Use the digital

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

Electronics & Control

Electronics & Control Electronics & Control Analogue Electronics Introduction By the end of this unit you should be able to: Know the difference between a series and parallel circuit Measure voltage in a series circuit Measure

More information

Sample VA Electrical Technology Assessments

Sample VA Electrical Technology Assessments Sample 243-133-VA Electrical Technology Assessments EVALUATION OF ASSESSMENT TOOLS USED TO MEASURE ACHIEVEMENT OF IET COURSE COMPETENCIES Please attach copies of all assessment tools used in this section

More information

5500A. Multi-Product Calibrator. Extended Specifications 2005

5500A. Multi-Product Calibrator. Extended Specifications 2005 5500A Multi-Product Calibrator Extended Specifications 2005 5500A Specifications The following paragraphs detail specifications for the 5500A Calibrator. The specifications are valid after allowing a warm-up

More information

VCE VET INTEGRATED TECHNOLOGIES

VCE VET INTEGRATED TECHNOLOGIES Victorian Certificate of Education 2015 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Letter STUDENT NUMBER VCE VET INTEGRATED TECHNOLOGIES Written examination Monday 9 November 2015 Reading time: 9.00 am

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW Learning Objectives a. Identify elements that are connected in series b. State and apply KVL in analysis of a series circuit c. Determine the net effect of series-aiding and series-opposing voltage sources

More information

AP Physics - Problem Drill 14: Electric Circuits

AP Physics - Problem Drill 14: Electric Circuits AP Physics - Problem Drill 14: Electric Circuits No. 1 of 10 1. Identify the four electric circuit symbols. (A) 1. AC power 2. Battery 3. Light Bulb 4. Resistor (B) 1. Ammeter 2. Resistor 3. AC Power 4.

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

AT7450 2A-60V LED Step-Down Converter

AT7450 2A-60V LED Step-Down Converter FEATURES DESCRIPTION IN Max = 60 FB = 200m Frequency 52kHz I LED Max 2A On/Off input may be used for the Analog Dimming Thermal protection Cycle-by-cycle current limit I LOAD max =2A OUT from 0.2 to 55

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

Introduction. Upon completion of Basics of Electricity you will be able to: Explain the difference between conductors and insulators

Introduction. Upon completion of Basics of Electricity you will be able to: Explain the difference between conductors and insulators Table of Contents Introduction...2 Electron Theory...4 Conductors, Insulators and Semiconductors...5 Electric Charges...7 Current...9 Voltage... 11 Resistance... 13 Simple Electric Circuit... 15 Ohm s

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND Experiment 6 Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can

More information

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1 hapter Seven ALTERNATING URRENT MQ 1 7.1 If the rms current in a 50 Hz ac circuit is 5 A, the value of the current 1/300 seconds after its value becomes zero is (a) 5 2 A (b) 5 3/2 A (c) 5/6 A (d) 5/ 2

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity.

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity. Ac fundamentals and AC CIRCUITS Q1. Explain and derive an expression for generation of AC quantity. According to Faradays law of electromagnetic induction when a conductor is moving within a magnetic field,

More information

ADT7351. General Description. Applications. Features. Typical Application Circuit. Oct / Rev0.

ADT7351. General Description. Applications. Features. Typical Application Circuit.   Oct / Rev0. General Description The ADT735 is a step-down converter with integrated switching MOSFET. It operates wide input supply voltage range from 4.5 to 28 with 3A continuous output current. It includes current

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Electrical Engineering / Electromagnetics

Electrical Engineering / Electromagnetics Electrical Engineering / Electromagnetics. Plot voltage versus time and current versus time for the circuit with the following substitutions: A. esistor B. Capacitor C. Inductor t = 0 A/B/C A. I t t B.

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-500043 CIVIL ENGINEERING TUTORIAL QUESTION BANK Course Name : BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Course Code : AEE018

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

Lab 1: Introductory Experiments and Linear Circuits I

Lab 1: Introductory Experiments and Linear Circuits I Lab 1: Introductory Experiments and Linear Circuits I Christopher Agostino Lab Partner: MacCallum Robertson February 19, 2015 Introduction In this lab, we intend to learn how to properly use the equipment

More information

Alternating Current Study Guide. Preface. This module is DIFFICULT.

Alternating Current Study Guide. Preface. This module is DIFFICULT. Preface This module is DIFFICULT. This material will take more effort to understand and more effort to pass than tests from previous modules. This is on par with a college-level electrical engineering

More information

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel.

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel. Review 6 1. The two characteristics of all magnets are: they attract and hold Iron, and, if free to move, they will assume roughly a south - north position. 2. Lines of flux always leave the north pole

More information

Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm.

Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. 2. Calculate the resistances of following equipment: using 220V AC a) a 1000 W electric heater b)

More information

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals.

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals. Chapter 6: Alternating Current An alternating current is an current that reverses its direction at regular intervals. Overview Alternating Current Phasor Diagram Sinusoidal Waveform A.C. Through a Resistor

More information

TENTATIVE PP225D120. POW-R-PAK TM 225A / 1200V Half Bridge IGBT Assembly. Description:

TENTATIVE PP225D120. POW-R-PAK TM 225A / 1200V Half Bridge IGBT Assembly. Description: Description: The Powerex is a configurable IGBT based power assembly that may be used as a converter, chopper, half or full bridge, or three phase inverter for motor control, power supply, UPS or other

More information

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward?

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward? chapter ELECTRIC CIRCUITS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 20.1 Electromotive Force and Current Section 20.2 Ohm s Law 1. Which one of the following

More information

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c CURRENT ELECTRICITY 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour 2. Electric pressure is also called (a) resistance (b) power (c) voltage (d) energy 3. The substances which

More information

Experiment 18: Driven RLC Circuit

Experiment 18: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 8: Driven LC Circuit OBJECTIVES To measure the resonance frequency and the quality factor of a driven LC circuit INTODUCTION

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit?

1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit? 1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit? (a) 3.5 Ω (b) 16.4 Ω (c) 3.69 Ω (d) 45.15 Ω 2. Sign convention used for potential is: (a) Rise

More information

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT PSPM II 2005/2006 NO. 3 3. (a) Write Kirchhoff s law for the conservation of energy. FIGURE 2 (b) A circuit of two batteries and two resistors is

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours)

3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours) UNIVERSITY OF TECHNOLOGY ELECROMECHNICAL DEPARTMANT SYSTEMS BRANCH Dr. Sameir Abd Alkhalik Aziez FIRST YEAR ELECTROMECHNICAL ENGINEERING BASICS ELECRICAL ENGINEERING Question Sheet (1) 1.Give the dimensions

More information

Lecture 3.10 ELECTRICITY Alternating current Electrical safety

Lecture 3.10 ELECTRICITY Alternating current Electrical safety Lecture 3.1 ELECTRCTY Alternating current Electrical safety Alternating Current (ac) Batteries are a source of steady or direct voltage. Current in a circuit powered by a battery is also steady and is

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information