Experimental Verification and Analysis of AC-DC Converter with an Input Impedance Matching for Wireless Power Transfer Systems

Size: px
Start display at page:

Download "Experimental Verification and Analysis of AC-DC Converter with an Input Impedance Matching for Wireless Power Transfer Systems"

Transcription

1 Experimental Verification and Analysis of AC-DC Converter with an nput mpedance Matchg for Wireless Power Transfer Systems Keisuke Kusaka, Jun-ichi toh Nagaoka University of Technology 63- Kamitomioka-machi Nagaoka Niigata, JAPAN Tel.: 8 / (58) Fax: 8 / (58) kusaka@stn.nagaokaut.ac.jp, itoh@vos.nagaokaut.ac.jp URL: This work was supported by Japan Society for the Promotion of Science; Grant--Aid for Scientific Research (B), Keywords «Wireless power transmission», «Power converters for EV», «High frequency power converter» Abstract This paper discusses the performance of an AC-DC converter which converts power from MHz AC to DC a receivg side of wireless power transfer systems. The wireless power transfer systems are required to operate high-frequency such as 3.56 MHz order to achieve a high power density of transmission coils. Thus the AC-DC converter the receivg side is demanded to operate at high-frequency. n such high-frequency region, the reflected power occurs when the put impedance is not matched to the characteristic impedance of the transmission le. n other words, the put impedance of the AC-DC converter needs to have the same impedance to the characteristic impedance of the transmission le. n order to overcome the problem, the AC-DC converter with an put impedance matchg is proposed this paper. The proposed AD-DC converter achieves the put impedance matchg with a simple circuit configuration. t means that the converter can obta susoidal put current and unity put power factor without a high-frequency switchg except the diodes. n this paper, the impedance matchg characteristics and the analysis of the operational modes of the proposed circuit are presented. The experimental results confirmed that the proposed converter enables a conversion from 3.56-MHz AC to DC with the susoidal put current. n this operation condition, the put impedance is 9.6 j.5. Because the design value of the put impedance is 5 j, there is a non-negligible error on the real part. This is attributed to the parasitic capacitances on the diodes. n order to solve this problem, an improved AC-DC converter is proposed newly. From experimental results, it achieves the put impedance of 5.7 j. Besides, the reflection coefficient is suppressed by up to 94.5% compared with that of the conventional capacitor put-type diode bridge rectifier (C-DBR).. ntroduction n recent years, wireless power transfer methods have been attracted the community [-]. n particular, the wireless power transfer with magnetic resonance couplg (MRC) which is reported by A. Karalis et al. 7 is heavily studied [3-4]. The MRC shows better features compared with the conventional wireless power transfer methods such as an electromagnetic duction and a microwave transmission. First, the MRC allows a wireless power transfer a middle-range transmission distance such as a few dozen of centimeters at high efficiency of over 9% [5]. Such high transmission efficiency cannot be achieved with an electromagnetic duction. On the other hand, the transmission efficiency of a microwave transmission is greater than the others. However, the conversion efficiency between microwaves from electrical power is mere 84.4% [6].

2 Second, the declation of the transmission efficiency caused by a position gap of the transmittg devices is relatively small. These advantages are featured by the characteristic constructions of the transmittg coils. The transmission efficiency at a resonance frequency is expressed by (). t represents the transmission efficiency is determed by an only product of the quality factor of the transmittg coil Q and the couplg coefficient k. The transmittg coils have a high quality factor Q owg to the low parasitic resistance of the coils. The high quality factor allows an efficient wireless power transfer a middle-range transmission distance even when the couplg coefficient is small [7-8]. () kq Considerg to apply the wireless power transfer with MRC to the battery chargers for electrical vehicles (EVs), the coils for the transmittg side and receivg side are planted on the ground parkg areas, and underneath of EVs, respectively. This technology brgs convenience to users because users are not required to charge the battery with electrical cables [9]. n the wireless power transfer system with the MRC, the size of the transmittg coils depends on the transmittg frequency []. Thus, the wireless power transfer systems are expected to operate high-frequency order to achieve a high power density. Moreover, MRC should be operated dustrial scientific medical (SM) band such as 3.56 MHz and 7. MHz because noise from the wireless power transfer systems is prohibited to fluence the operation of neither the electronic devices nor the radio communication equipment. On the receivg side of wireless power transfer systems, the AC-DC converter, which converts the power from 3.56 MHz to DC, is necessary. The previous studies have reported that the use of the diode bridge rectifier on the receivg side []. The diode bridge rectifier has a distorted put current and low put power factor. Furthermore a diode bridge rectifier is connected to a DC load, the put impedance of the diode bridge rectifier depends on a load on a DC side. n such high-frequency region, an impedance matchg is very important order to suppress the reflected power []. Eventually, the reflected power which is generated by the put impedance mismatchg decreases the transmission efficiency []. Besides, the characteristic impedance of the transmission le such as a coaxial cable is set to 5 j. Although, the matchg function is required the AC-DC converter, a method of an put impedance matchg for the AC-DC converters has not been reported. This paper proposes and demonstrates an put impedance of the AC-DC converter which can be matched to the characteristic impedance of 5 j. First, the configuration of the proposed AC-DC converter is described. The AC-DC converter achieves the put impedance matchg without highfrequency switchg devices except the diodes. Then, the operation modes of the proposed converter are analyzed. n particular, the formulas for the put current are derived. Fally, the AC-DC converter is tested experimentally.. Proposed AC-DC Converter with nput mpedance Matchg.. Requirements for nput mpedance Matchg Generally, high-frequency circuits are constructed with an impedance matchg order to suppress reflected power []. The impedance matchg can be described as; the output impedance of the power supply and the put impedance have equal impedances to the characteristic impedance of the transmission le. n particular, the characteristic impedance of a 5 is used widely. For this reason, 5 is used as the characteristic impedance and also the put impedance of the AC-DC converter this paper. Besides, the put impedance of AC-DC converters with a battery as a load is required to match an put impedance regardless of the load conditions. n general, the characteristic impedance of transmission les, which is the reference value of the put impedance of the AC-DC converter, does not clude an imagary part. Thus, an put voltage and current of the AC-DC converter are required to fulfill the followg requirements, where Ż is the put impedance, V is the fundamental put voltage of the AC-DC converter, İ is the fundamental put current and is the phase angle between the put voltage and the put current. (a) Z V 5

3 (b) nput power factor is (cos = ) n a low-frequency region, power factor correction (PFC) circuits with a PWM control are used widely [3]. The PFC circuits with a PWM can satisfy the above-mentioned conditions easily due to the put current control with the PWM a low-frequency region. However, the switchg frequency for the PWM requires higher frequency than an put frequency. Thus, it is difficult to operate the conventional PFC circuits when the put frequency is constraed a high-frequency such as 3.56 MHz. n conclusion, an AC-DC converter with a simple circuit configuration which can achieve the put impedance matchg is required on the receivg side of the wireless power transfer system... Circuit configuration Fig. presents the circuit configuration of the proposed AC-DC converter. The proposed converter consists of the resonant-type rectifier which is reported by K. Matsui et al. [4] and the bidirectional boost chopper. The resonant-type rectifier achieves a PFC operation usg a resonance between the ductor which is connected series to the put termal and the capacitors parallel to the upper arm. The resonant-type rectifier has been demonstrated a commercial frequency [4]. However, this converter causes a low power density the low-frequency operation because a bulky ductor and capacitors as resonance components are required. Additionally, the possibility of the put impedance matchg is not discussed. n this paper, the resonant-type rectifier is operated at high-frequency. Furthermore the function of the put impedance matchg is evaluated. The high-frequency operation improves the power density owg to the downsizg of the passive components. n addition, Ref. [4] poted out that the amplitude of the put current and the put power factor hge upon a load condition when a resistance load is connected directly to the resonant-type rectifier. t means that the put impedance of the stand-alone resonant-type rectifier depends on the load conditions. n order to overcome this problem, the bidirectional boost chopper is connected at the output side of the resonant-type rectifier Fig.. The bidirectional boost chopper is operated purpose to fix the operatg pot which is decided by the rectifier output voltage of the resonanttype rectifier. The MOSFET S is used for an itial charge of the C 4 stead of a diode because the put power factor closes to zero when the rectifier outputs voltage is around zero. The control for the chopper circuit does not need a high dynamic response. Thus, the chopper circuit does not need either a high-speed or a high-frequency switchg. Thus, the chopper may be operated at a low switchg frequency such as khz. However, a switchg frequency of khz is selected this paper with the objective of the downsizg of the ductor L. f sw = khz S Resonant-type rectifier i ch Ż v i 3.56 MHz D D C C L C 3 C 4 i c L S C 5 v conv V B D 3 D 4 Fig.. The proposed AC-DC converter..3. Control method of bidirectional boost chopper Fig. shows the control block diagram of the bidirectional boost chopper. The voltage control is composed by an automatic voltage regulator (AVR) with a P control and an automatic current regulator (ACR) as an ner loop of the AVR, where the natural angular frequencies of the AVR and ACR are 4 rad/s and 4 rad/s respectively. Note that T ic and T iv are the tegral time of the ACR and AVR, respectively. The put impedance is determed by the relation among the voltage ratio V, the ductance L and the capacitances C and C where the voltage ratio is the ratio of the rectifier output voltage to the put maximum voltage V m. The voltage ratio should be stabilized constant

4 order to obta the tended put impedance when the put power is constant. Thus, the voltage ratio is controlled through the rectifier output voltage control, where the reference value of the rectifier output voltage is obtaed by (). * * vch V m V () n the proposed circuit, a fast dynamic response of the bidirectional boost chopper is not necessary because the put maximum voltage is not changed fast. For this reason, an expensive generalpurpose controller can be used. Note that, the capacitance C 3 is negligible the AVR because the capacitance C 3 is enough smaller than C 4 the control block diagram. V * * st iv P i ch * st ic P v conv sl i ch sc 4 V m Fig.. The control block diagram for the proposed AC-DC converter.. Operation modes of the proposed AC-DC converter Fig. 3 shows the operation modes of the proposed converter. Note that the bidirectional boost chopper with AVR is illustrated as an ideal DC voltage source. Fig. 4 illustrates the simplified operation waveforms when the proposed converter is operated at the unity put power factor. n this chapter, the forward voltage drop of the diodes is ignored for simplicity. The circuit operations each four operation are described the followg statements. 3.. Operation mode nput current i flows through the ductor L, capacitors C and C. The capacitors C and C are discharged and charged respectively by the put current. The put current a mode i _ is derived from a circuit equation as CVm Cv ch i t t t t _ cos cos s (3), where C=C =C, L is the ductance of the ductor L, V m is the maximum put voltage, is the put angular frequency and is the resonance angular frequency which is expressed as (4). Note that the resonance angular frequency is obtaed as a series resonance of the ductance L and the two capacitances C. (4) LC V v D C i i L du i cu v D C vcv i dv i cv i v D i L du C D C i cu i dv i cv vcv i Mode Mode v cv D C i i L du i cu v D C v cv i dv i cv i v D i L du C D i cu i dv C vcv i cv i du i cu i dv i cv Mode Mode V Fig. 3. Operation modes of the proposed circuit. T T Fig. 4. Simplified waveforms of the proposed AC-DC converter.

5 From (3), the put current cludes both the frequency components; resonance angular frequency and put angular frequency. Thereby, the put current is not a complete susoidal waveform. The capacitor C, which had charged operation mode, is discharged by the put current. n contrast, the capacitor C is charged gradually. After the capacitor voltage v cv reaches to the DC voltage, the next operation mode will start. ncidentally, the period of the operation mode T is equal to the dischargg time of the capacitor C. Thus, this period T can be derived from (5) with the numerical analytical approach. vch V m cos s s T T T (5) 3.. Operation mode The put current commutates to the diodes D from the capacitor C because the diodes D and D 4 become a turn-on. The put current flows to the path that is formed by ductor L, diodes D and D 4. n this mode, the smoothg capacitor is charged by the put current, which is expressed by vch i_ t i_ cos t T t T tt s L V cos T V cos t T cos t T m (6), L s T t T t T m s s L where i _ (T ) is the itial value of the put current which is also expressed as i _ (T ), is the resonance angular frequency which is expressed by (7). Also, the put current the mode is not a complete susoidal. (7). LC 3 Besides, (6) can be simplified as (8), when the resonance angular frequency is enough small to be ignored. Generally, the capacitance C 4 has a large capacitance because it should compensate the voltage fluctuation which is caused by the bidirectional boost chopper. vch Vm i_ t i_ t T t T cost cost (8) L L Besides, the capacitor voltages and v cv are not changed this mode. The mode contues until the put voltage polarity is changed from positive to negative Operation mode n this mode, the put current flows the opposite direction to the mode via C, C and L. n this mode, the put current is expressed by i _ (t) = -i _ (t-t/) where T is the put period. The capacitors C and C are discharged and charged respectively by the put current. The mode contues until the capacitor voltage reaches to the DC voltage. The period of the mode is same to the one of mode Operation mode V The put current commutates to the diodes D and D 3 from the capacitors C and C. The put current is expressed by i _V (t) = -i _ (t-t/). The amplitude of the put current and the put power factor are determed by the parameters that are used for the resonance; capacitors C, C and ductor L and voltage ratio V. Hence the tended put impedance of the AC-DC converter can be obtaed by a designg these parameters properly. However, the design method is omitted this paper because of space limitation.

6 V. Simulation Results of the Proposed AC-DC Converter n this chapter, the simulation result of the proposed AC-DC converter is shown. Table presents the simulation conditions. n the simulation, the rated power is assumed as kva because the wireless power transmission systems are expected to apply to the EV charger. Fig. 5 presents the simulation waveforms of the proposed AC-DC converter. t is confirmed that the rectifier output voltage and chopper current i ch track to the each reference value. Thus, the bidirectional boost chopper is operated normally accordg to the P control. Moreover, a susoidal put current and unity put power factor are achieved. n this simulation, the put impedance is calculated from the fundamental component of the put voltage and put current as 5 j. with usg (9), where V _st is the fundamental component of the put voltage, _st is the fundamental component of the put current and is the phase angle between the put voltage and put current of the fundamental component. V_ st V_st Z cos j s (9) _st _st t means that the proposed converter is capable of the put impedance matchg to the 5 j at a reflection coefficient of.% which is defed by Z Z PR Z Z P (), F where Ż is the characteristic impedance, P F is supplied travellg power to the AC-DC converter, P R is the reflected power which occurs at the put termal of the AC-DC converter. Note that the reflection coefficient is used widely a research field of high-frequency circuits to evaluate the circuit performance. The squared reflection coefficient means the ratio of reflected power to the travelg power. n this paper, the put impedance is matched to a 5 j because it is most common impedance, although the put impedance of the proposed circuit can be matched to other tended impedances. Table : Simulacion conditions. tems nductors Capacitors L L C, C C 3 C 4 C 5 Value 55 nh.3 mh 38 pf 94 nf mf mf nput voltage v 4-4 nput current i - Chopper voltage Chopper current i ch -.4 V. Experimental Results of the Proposed AC-DC Converter Experimental verifications are shown this chapter. Table provides the circuit parameters for the experimental setup. Note that, the silicon carbide schottky barrier diodes (SiC-SBDs) are used the rectifier because rectifyg diodes are required to have a performance to rectify the 3.56 MHz AC. Besides, the design method of the resonance parameters, which affects the put impedance, is omitted this paper due to the page limitation Time t [msec] Fig. 5. Simulation result of the proposed AC-DC converter. vch ich vch * ich *.3

7 Table : Parameters of the circuit components. tems Manufactures Model number Value MOSFET S, S Vishay RFBN5APBF 5 V, A Diode D- Cree D86A 6 V, 8 A nductor L TDK VLF4T-R5N8R9 (Remodeled) 95 nh L mh C, C TDK 6CGJ5JT 5 pf Capacitor TDK CKG57NX7RJ474M C4 nichicon UPWVMRD 47 nf ( parallel) mf ( parallel) C5 BHC Components ALS3ADB45 mf 5.. Fundamental characteristics Fig. 6 shows the experimental waveforms of the proposed AC-DC converter. t is clear that power conversion from 3.56 MHz to DC is achieved by the proposed converter with the susoidal put current and unity put power factor. Fig. 7 presents the harmonics analysis results of the put voltage and current which is conducted order to derive the put impedance from the experimental waveforms shown Fig. 6. Note that, the probes; a differential probe (Tektronix, P55) and a current probe (Tektronix, TCP3), which are used these experiments provide a limitation to the frequency bandwidth at MHz. For this reason, the harmonics components over 7 th are considered as reference values. From the calculation with (9), the put impedance is calculated as 9.6 j.5. The put impedance cludes the non-negligible error on the real part. This is attributed to the parasitic capacitances of the SiC-SBDs. n the next subsection, the proposed circuit is improved order to achieve tended put impedance. Fig. 8 shows the reason of the error on the put impedance. n a high frequency region, the parasitic capacitances C p-4 of the diodes cannot be ignored. Especially, an effect of the parasitic capacitance creases when a reverse voltage of the diodes is high. The parasitic capacitances make a leakage current path durg the operation modes and. Owg to the leakage current path, the put current is separated to the primary current path and the leakage current path. Thus the relation between the resonance capacitance C and the put impedance is different from the tended one. The combed capacitance on the upper arm is composed by the parasitic capacitances and additional capacitors. By contrast, the lower arm has only parasitic capacitances. Thus the current flowg through the upper and lower arms becomes unbalanced. t means that the design procedure of the nput voltage v [5V/div] nput current i [A/div] nput voltage [p.u.] Rectifier output voltage [5V/div] Output voltage V B [V/div] 4[nsec/div] Fig. 6. Experimental waveforms of the proposed AC-DC converter. nput current [p.u.] Number of harmonics Fig. 7. Harmonics analysis of the put voltage and put current of the proposed AC-DC converter.

8 resonance capacitance C is complicated. n order to solve the above-mentioned problem, the improved AC-DC converter is newly proposed the next subsection. 5.. mprovement of impedance matchg characteristics Fig. 9 shows the improved AC-DC converter with an put impedance matchg. Additionally, Table provides the circuit parameters for the experimental setup with the improved AC-DC converter. The two resonance capacitors; C 6 and C 7 are added to the lower arm the purpose of balancg the impedances between the upper arm and lower arm. Owg to these additional capacitors, the put impedance can be designed by considerg the parasitic capacitances easily because the put current is shunted equally to the each arm the mode. Fig. presents the operation modes of the improved AC-DC converter. The operation modes of the improved AC-DC converter are similar to the one of the AC-DC converter without an improvement. The difference between the Fig. 3 and Fig. is the resonance current path the modes and. The put current is divided to the path through an upper arm (L, C, C ) and the path through a lower arm (L, C 6, C 7 ). For this reason, the relationship between the circuit parameters and put impedance has changed. n this paper, the parasitic capacitances of the diodes are used as the capacitors C, C, C 6 and C 7. Thus, the resonance ductance is changed from 95 nh to.5 mh. Fig. presents the operation waveforms when the parasitic capacitance is used as a resonance capacitor. The DC output is obtaed from an 3.56-MHz AC. Additionally, it is clarified that the susoidal put current and unity put power factor are obtaed. Fig. shows the harmonic analysis results with the improved AC-DC converter. The put current total harmonic distortion (THD) of 8.% is achieved with the bandwidth up to th. A THD with the improvement is suppressed by 7.7% compared with the one without improvement. n addition, the put impedance is calculated S D C C p D C C p v i L D 3 i cu C p3 D 4 i cv C p4 v cv C 3 Ż v i D D i c C C L C 3 C 4 i ch L S C 5 v conv V B 3.56 MHz C 6 C 7 D 4 Leakage current path Fig. 8. Effect of the parasitic capacitances the mode. D 3 D 4 Fig. 9. mproved AC-DC converter with put impedance matchg. Table : Parameters of the circuit components the improved AC-DC converter. MOSFET Diode nductor tems Manufactures Model number Value S, S L Vishay RFBN5APBF 5 V, A Cree D86A 6 V, 8 A TDK D- VLF4T- R5N8R9.5 mh L mh D C i i L du i cu v D C vcv i dv i cv C6 C7 Mode i v D i L du C D C vcv i cu i dv i cv C6 C7 Mode C-, C6-7 - (Parasitic capacitances of the diodes) (34.3 pf) i D C i L du i cu D C v cv i dv i cv i v D i L du C D i cu i dv C vcv i cv Capacitor TDK CKG57NX7RJ474M C4 nichicon UPWVMRD C5 BHC Components ALS3ADB45 47 nf ( parallel) mf ( parallel) mf v C6 Mode C7 C6 Mode V Fig.. Operation modes of the improved AC- DC converter. C7

9 nput voltage v [5V/div] nput current i [A/div] Rectifier output voltage [5V/div] Chopper current i ch [.5A/div] nput current [p.u.] nput voltage [p.u.] as j.. The reflection coefficient, which is calculated by (9), is =.6%. The reflection coefficient is used to evaluate a matchg characteristic of the high-frequency circuit the research field related to high-frequency circuit. f the impedance matchg is completely held, the reflection coefficient is zero. t means that the ratio of the reflected power which occurs at the put of the circuit to the travellg power is lesser than.%. t is clarified that the proposed AC-DC converter suppresses the reflected power from the above experiments. Thus, the proposed circuit can be applied to the receivg side of the wireless power transfer system Comparison of the reflection coefficient n this subsection, the reflection coefficients are compared among the conventional C-DBR, proposed converter without the improvement and the proposed converter with the improvement. Generally, the put impedance matchg of the C-DBR is not achieved the reason of the distorted put current and low put power factor. Moreover, the reflection coefficient of the conventional C-DBR depends on the load conditions and a smoothg capacitor widely. n contrast, the reflection coefficient of the proposed circuit does not depend on the load condition and a value of the smoothg capacitor. Fig. 3 shows the comparison result of the reflection coefficient which is calculated from () among the conventional C-DBR and the proposed AC-DC converters. Note that the conventional C- DBR has a smoothg capacitor of.47 mf. The proposed converter with the improvement and one without the improvement achieve the put impedance matchg with the reflection coefficients of.6% and 9.3% respectively. t is clear that the reflection coefficient can be suppressed compared to the conventional C-DBR. n particular, the reflection coefficient with the improved AC-DC 5 Without improvement converter suppresses the reflection coefficient by (Fig. ) % compared with the conventional C-DBR With improvement (Fig. 9) with a load of 5. 3 V. Conclusion 4[nsec/div] Fig.. Operation waveforms of the improved AC-DC converter. This paper discussed the AC-DC converter which converts power from 3.56-MHz AC to DC for a receivg side of a wireless power transfer system with a susoidal put current. The wireless power transfer systems are required Reflection coefficient [%] Number of harmonics Fig.. Harmonics components of the put voltage and put current the improved AC- DC converter Proposed circuit Conventional C-DBR Fig. 3. Comparison of the reflection coefficient between the conventional C-DBR and proposed circuit.

10 to operate high-frequency such as 3.56 MHz order to achieve a high power density of transmittg coils. Thus, the AC-DC converter the receivg side is required to operate at highfrequency. n such high-frequency region, the reflected power occurs when the put impedance is not matched to the characteristic impedance of the transmission le. n other words, the put impedance of the AC-DC converter needs to have the same impedance to the characteristic impedance of transmission les. n order to overcome the above-mentioned problem, two AC-DC converters are proposed and experimentally tested. The both AC-DC converters achieve the put impedance matchg without high-frequency switchg devices except the diodes with a simple configuration. The experimental results confirmed that the proposed converter with the improvement enable a conversion from MHz AC to DC with the susoidal put current. From the experimental results, one of the proposed converters has an error on the real part of the put impedance. n order to improve this problem, the second converter is proposed. The proposed converter has two additional capacitors compared to the AC-DC converter without the improvement. The experimental results confirmed that the put impedance of j. is achieved. t means that the reflection coefficient is suppressed by up to 94.5 % comparison with the conventional diode bridge rectifier with a load of 5. References [] J. J. Casanova, Z. N. Low, J. L: A Loosely Coupled Planar Wireless Power System for Multiple Receivers, EEE Trans. On ndustrial Electronics, Vol. 56, No. 8, pp (9) [] S. A. Adnan, M. Am, F. Kamran: Wireless power transfer usg microwaves at.45 GHz SM band, BCAST 9, pp. 99- (9) [3] A. Karalis, J. D. Joannopoulos, M. Soljacic: Efficient Wireless non-radiative mid-range energy transfer, Annals of Physics, Vol. 33, No., pp (8) [4] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, M. Soljacic: Wireless Power Transfer via Strongly Coupled Magnetic Resonances, Science, Vol. 37, pp (7) [5] S. Lee, R. D. Lorenz: Development and Validation of Model for 95%-Efficiency -W Wireless Power Transfer Over a 3-cm Air-gap, EEE Trans. On ndustry Applications, Vol. 47, No. 6, pp () [6] Y. Suh, K. Chang: A High-Efficiency Dual-Frequency Rectenna for.45- and 5.8-GHz Wireless Power Transmission, EEE Trans. On Microwave Theory and Techniques, Vol. 5, No. 7, pp () [7] L. Chen, S. Liu, Y. C. Zhou, T. J. Cui: An Optimizable Circuit Structure for High-Efficiency Wireless Power Transfer, EEE Trans. On ndustrial Electronics, Vol. 6, No., pp (3) [8] A. P. Sample, D. A. Meyer, J. R. Smith: Analysis, Experimental results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer, EEE Trans. On ndustrial Electronics, Vol. 58, No., pp () [9] Y. Hori: Future Vehicle Society based on Electric Motor, Capacitor and Wireless Power Supply, PEC, pp () [] S. Cheon, Y. Kim, S. Kang, M. L. Lee, J. Lee, T. Zyung: Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances, EEE Trans. On ndustrial Electronics, Vol. 58, No. 7, pp () [] J. R. Long: Monolithic Transformers for Silicon RF C Design, EEE Trans. On Solid-state Circuits, Vol. 35, No. 9, pp () [] K. Kusaka, J. toh: Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Usg a Magnetic Resonance Couplg, EEE 9th PEDS, pp () [3] B. Sgh, B. N. Sgh, A. Chandra, K. Al-Haddad, A. Pandey, D. P. Kothari: A Review of Sgle-Phase mproved Power Quality AC-DC Converters, EEE Trans. On ndustrial Electronics, Vol. 5, No. 5, pp (3) [4] K. Matsui,. Yamamoto, K. Ando, G. Erdong: A Novel High DC Voltage Generator by LC Resonance Supply Frequency, EPE7, pp. -8 (7)

Input Impedance Matched AC-DC Converter in Wireless Power Transfer for EV Charger

Input Impedance Matched AC-DC Converter in Wireless Power Transfer for EV Charger Input Impedance Matched AC-DC Converter in Wireless Power Transfer for EV Charger Keisuke Kusaka*, Jun-ichi Itoh* * Nagaoka University of Technology, 603- Kamitomioka Nagaoka Niigata, Japan Abstract This

More information

Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Using a Magnetic Resonance Coupling

Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Using a Magnetic Resonance Coupling Experimental Verification of Rectifiers with Si/GaN for Wireless Power Transfer Using a Magnetic Resonance oupling Keisuke Kusaka Nagaoka University of Technology kusaka@stn.nagaokaut.ac.jp Jun-ichi Itoh

More information

Multi-Modular Isolated Three-Phase AC-DC Converter for Rapid Charging with Autonomous Distributed Control

Multi-Modular Isolated Three-Phase AC-DC Converter for Rapid Charging with Autonomous Distributed Control Multi-Modular Isolated Three-Phase AC-DC Converter for Rapid Charging with Autonomous Distributed Control Masakazu Adachi ) Keisuke Kusaka ) Jun-ichi Itoh ) ) Nagaoka University of Technology, Electrical,

More information

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 216963 Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 16mm Keisuke Kusaka 1) Kent Inoue 2) Jun-ichi Itoh 3) 1) Nagaoka University of Technology, Energy and

More information

Highly-Reliable Fly-back-based PV Micro-inverter Applying Power Decoupling Capability without Additional Components

Highly-Reliable Fly-back-based PV Micro-inverter Applying Power Decoupling Capability without Additional Components Highly-Reliable Fly-back-based P Micro-inverter Applying Power Decoupling Capability without Additional Components Hiroki Watanabe, Nagaoka University of technology, Japan, hwatanabe@stn.nagaopkaut.ac.jp

More information

Digital-Controlled Power Factor Corrector with Transition Current Mode Control without Zero Current Detection

Digital-Controlled Power Factor Corrector with Transition Current Mode Control without Zero Current Detection PEDS009 Digital-Controlled Power Factor Corrector wi Transition Current Mode Control wi Zero Current Detection Chia-An Yeh, Kung-M Ho, Yen-Sh ai Center for Power Electronics Technology, National Taipei

More information

An Experimental Verification and Analysis of a Single-phase to Three-phase Matrix Converter using PDM Control Method for High-frequency Applications

An Experimental Verification and Analysis of a Single-phase to Three-phase Matrix Converter using PDM Control Method for High-frequency Applications An Experimental Verification and Analysis of a Single-phase to Three-phase Matrix Converter using PDM Control Method for High-frequency Applications Yuki Nakata Nagaoka University of Technology nakata@stn.nagaokaut.ac.jp

More information

Experimental Verification of Wireless Charging System for Vehicle Application using EDLCs

Experimental Verification of Wireless Charging System for Vehicle Application using EDLCs Experimental Verification of Wireless Charging System for Vehicle Application using Jun-ichi Itoh, Kenji Noguchi and Koji Orikawa Department of Electrical, Electronics and Information Engineering Nagaoka

More information

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control Efficiency Maximization of Wireless Power Transfer Based on Simultaneous Estimation of Primary Voltage and Mutual Inductance Using Secondary-Side Information Katsuhiro Hata, Takehiro Imura, and Yoichi

More information

Verification of Effectiveness of a Matrix Converter with Boost-up AC Chopper by Using an IPM Motor

Verification of Effectiveness of a Matrix Converter with Boost-up AC Chopper by Using an IPM Motor Verification of Effectiveness of a Matrix Converter with Boost-up AC Chopper by Using an PM Motor azuhiro oiwa Electrical, Electronics and nformation Engineering Nagaoka University of Technology Nagaoka,

More information

Recent Approaches to Develop High Frequency Power Converters

Recent Approaches to Develop High Frequency Power Converters The 1 st Symposium on SPC (S 2 PC) 17/1/214 Recent Approaches to Develop High Frequency Power Converters Location Fireworks Much snow Tokyo Nagaoka University of Technology, Japan Prof. Jun-ichi Itoh Dr.

More information

Development of Inductive Power Transfer System for Excavator under Large Load Fluctuation

Development of Inductive Power Transfer System for Excavator under Large Load Fluctuation Development of Inductive Power Transfer System for Excavator under Large Load Fluctuation -Consideration of relationship between load voltage and resonance parameter- Jun-ichi Itoh, Kent Inoue * and Keisuke

More information

Flexibility of Contactless Power Transfer using Magnetic Resonance

Flexibility of Contactless Power Transfer using Magnetic Resonance Flexibility of Contactless Power Transfer using Magnetic Resonance Coupling to Air Gap and Misalignment for EV Takehiro Imura, Toshiyuki Uchida and Yoichi Hori Department of Electrical Engineering, the

More information

Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Load

Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Load Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Daisuke Gunji The University of Tokyo / NSK Ltd. 5--5, Kashiwanoha, Kashiwa, Chiba, 77-856, Japan / -5-5, Kugenumashinmei,

More information

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Progress In Electromagnetics Research Letters, Vol. 80, 53 59, 2018 A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Keke Ding 1, 2, *, Ying Yu 1, 2, and Hong Lin 1, 2 Abstract In

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

Pulse Density Modulation Control using Space Vector Modulation for a Single-phase to Three-phase Indirect Matrix Converter

Pulse Density Modulation Control using Space Vector Modulation for a Single-phase to Three-phase Indirect Matrix Converter Pulse Density Modulation Control using Space Vector Modulation for a Single-phase to Three-phase Indirect Matrix Converter Yuki Nakata Energy and Environmental Science Nagaoka University of Technology

More information

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Sukjin Kim 1, Hongseok Kim, Jonghoon J. Kim, Bumhee

More information

Single-Stage PFC Topology Employs Two-Transformer Approach For Improved Efficiency, Reliability, And Cost

Single-Stage PFC Topology Employs Two-Transformer Approach For Improved Efficiency, Reliability, And Cost Sgle-Stage PFC opology Employs wo-ransformer Approach For Improved Efficiency, Reliability, And Cost ISSUE: December 2013 by Fuxiang L, Independent Researcher, Sydney, Australia and Fuyong L, Hua Qiao

More information

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems 97 Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems Paulo J. Abatti, Sérgio F. Pichorim, and Caio M. de Miranda Graduate School of Electrical Engineering and Applied

More information

Experimental Verification of High Frequency Link DC-AC Converter using Pulse Density Modulation at Secondary Matrix Converter.

Experimental Verification of High Frequency Link DC-AC Converter using Pulse Density Modulation at Secondary Matrix Converter. Experimental erification of High Frequency Link DC-AC Converter using Pulse Density Modulation at Secondary Matrix Converter. Jun-ichi Itoh, Ryo Oshima and Hiroki Takahashi Dept. of Electrical, Electronics

More information

System Design of Electric Assisted Bicycle using EDLCs and Wireless Charger

System Design of Electric Assisted Bicycle using EDLCs and Wireless Charger System Design of Electric Assisted Bicycle using EDLCs and Wireless Charger Jun-ichi Itoh, Kenji Noguchi and Koji Orikawa Department of Electrical, Electronics and Information Engineering Nagaoka University

More information

Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects

Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects Progress In Electromagnetics Research M, Vol. 37, 183 189, 14 Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects Durga P. Kar 1, *, Praveen P. Nayak

More information

A Comparison of the Series-Parallel Compensation Type DC-DC Converters using both a Fuel Cell and a Battery

A Comparison of the Series-Parallel Compensation Type DC-DC Converters using both a Fuel Cell and a Battery A Comparison of the SeriesParallel Compensation Type DCDC Converters using both a Fuel Cell and a Battery Koji Orikawa Junichi toh Student Member, EEE Member, EEE Nagaoka University of Technology Nagaoka

More information

RECENTLY, the harmonics current in a power grid can

RECENTLY, the harmonics current in a power grid can IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 715 A Novel Three-Phase PFC Rectifier Using a Harmonic Current Injection Method Jun-Ichi Itoh, Member, IEEE, and Itsuki Ashida Abstract

More information

Modified Bridgeless Rectifier for PFC with Minimized Stress

Modified Bridgeless Rectifier for PFC with Minimized Stress Modified Bridgeless Rectifier for PFC with Mimized Stress *1 aya Sagar Kommukuri, 2 Kanungo Barada Mohanty, 3 Kishor Thakre, 4 Aditi Chatterjee, 5 Ashwi Kumar Nayak 12345 Department of Electrical Engeerg

More information

Power Factor Correction for Chopper Fed BLDC Motor

Power Factor Correction for Chopper Fed BLDC Motor ISSN No: 2454-9614 Power Factor Correction for Chopper Fed BLDC Motor S.Dhamodharan, D.Dharini, S.Esakki Raja, S.Steffy Minerva *Corresponding Author: S.Dhamodharan E-mail: esakkirajas@yahoo.com Department

More information

Electromagnetic Field Exposure Feature of a High Resonant Wireless Power Transfer System in Each Mode

Electromagnetic Field Exposure Feature of a High Resonant Wireless Power Transfer System in Each Mode , pp.158-162 http://dx.doi.org/10.14257/astl.2015.116.32 Electromagnetic Field Exposure Feature of a High Resonant Wireless Power Transfer System in Each Mode SangWook Park 1, ByeongWoo Kim 2, BeomJin

More information

Optimization of Wireless Power Transmission through Resonant Coupling

Optimization of Wireless Power Transmission through Resonant Coupling 426 29 COMPATIBILITY AND POWER ELECTRONICS CPE29 6TH INTERNATIONAL CONFERENCE-WORKSHOP Optimization of Wireless Power Transmission through Resonant Coupling Yong-Hae Kim, Seung-Youl Kang, Myung-Lae Lee,

More information

Equivalent Circuits for Repeater Antennas Used in Wireless Power Transfer via Magnetic Resonance Coupling

Equivalent Circuits for Repeater Antennas Used in Wireless Power Transfer via Magnetic Resonance Coupling Electrical Engineering in Japan, Vol. 183, No. 1, 2013 Translated from Denki Gakkai Ronbunshi, Vol. 131-D, No. 12, December 2011, pp. 1373 1382 Equivalent Circuits for Repeater Antennas Used in Wireless

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

A Novel Power Factor Correction Rectifier for Enhancing Power Quality

A Novel Power Factor Correction Rectifier for Enhancing Power Quality International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 772~780 ISSN: 2088-8694 772 A Novel Power Factor Correction Rectifier for Enhancing Power Quality

More information

SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS

SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS SUMAN TOLANUR 1 & S.N KESHAVA MURTHY 2 1,2 EEE Dept., SSIT Tumkur E-mail : sumantolanur@gmail.com Abstract - The paper presents a single-stage

More information

Improvement of Light Load Efficiency for Buck- Boost DC-DC converter with ZVS using Switched Auxiliary Inductors

Improvement of Light Load Efficiency for Buck- Boost DC-DC converter with ZVS using Switched Auxiliary Inductors Improvement of ight oad Efficiency for Buck- Boost DC-DC converter with ZVS using Switched Auxiliary Inductors Hayato Higa Dept. of Energy Environment Science Engineering Nagaoka University of Technology

More information

A New Approach for High Efficiency Buck-Boost DC/DC Converters Using Series Compensation

A New Approach for High Efficiency Buck-Boost DC/DC Converters Using Series Compensation A New Approach for High Efficiency Buck-Boost DC/DC ConvertersUsing Series Compensation Jun-ichi Itoh Takashi Fujii Nagaoka University of Technology 163-1 Kamitomioka-cho Nagaoka City Niigata, Japan itoh@vos.nagaokaut.ac.jp

More information

Output Voltage Correction of an Induction Motor Drive Using a Disturbance Observer with Speed Sensor-less Vector Control Method

Output Voltage Correction of an Induction Motor Drive Using a Disturbance Observer with Speed Sensor-less Vector Control Method Output Voltage Correction of an Induction Motor Drive Using a Disturbance Observer with Speed Sensor-less Vector Control Method Tetsuma Hoshino and Jun-ichi Itoh Nagaoka University of Technology/Department

More information

Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance

Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance Mr.Kishor P. Jadhav 1, Mr.Santosh G. Bari 2, Mr.Vishal P. Jagtap 3 Abstrat- Wireless power feeding was examined with

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1 Module 3 DC to DC Converters ersion EE IIT, Kharagpur Lesson 4 C uk and Sepic Converter ersion EE IIT, Kharagpur Instructional objective On completion the student will be able to Compare the advantages

More information

Radiation Noise Reduction using Spread Spectrum for Inductive Power Transfer Systems considering Misalignment of Coils

Radiation Noise Reduction using Spread Spectrum for Inductive Power Transfer Systems considering Misalignment of Coils Radiation Noise Reduction using Spread Spectrum for Inductive Power Transfer Systems considering Misalignment of Coils Keisuke Kusaka, Kent Inoue, Jun-ichi Itoh Department of Electrical, Electronics and

More information

Australian Journal of Basic and Applied Sciences. Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application

Australian Journal of Basic and Applied Sciences. Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application K. Prabu and A.Ruby

More information

Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching

Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching EVS-5 Shenzhen, China, Nov. 5-9, Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching TeckChuan Beh, Masaki Kato,

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

High Boost Hybrid Transformer DC DC Converter for Photovoltaic Module Applications

High Boost Hybrid Transformer DC DC Converter for Photovoltaic Module Applications High Boost Hybrid Transformer DC DC Converter for Photovoltaic Module Applications K.Umadevi,Associate Professor umaraj2000@gmail.com Abstract This paper presents a nonisolated, high boost ratio hy-brid

More information

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES 29 CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES A simple equivalent circuit modeling approach to describe Conducted EMI coupling system for the SPC is described

More information

Wireless Energy Transfer Using Zero Bias Schottky Diodes Rectenna Structures

Wireless Energy Transfer Using Zero Bias Schottky Diodes Rectenna Structures Wireless Energy Transfer Using Zero Bias Schottky Diodes Rectenna Structures Vlad Marian, Salah-Eddine Adami, Christian Vollaire, Bruno Allard, Jacques Verdier To cite this version: Vlad Marian, Salah-Eddine

More information

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency Yasuyuki Nishida & Takeshi Kondou Nihon University Tokusada, Tamura-cho, Kouriyama, JAPAN

More information

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE S M SHOWYBUL ISLAM SHAKIB ELECTRICAL ENGINEERING UNIVERSITI OF MALAYA KUALA LUMPUR,

More information

Comparison between the Performance of Basic SEPIC Converter and modified SEPIC Converter with PI Controller

Comparison between the Performance of Basic SEPIC Converter and modified SEPIC Converter with PI Controller Research Paper American Journal of Engineering Research (AJER) 2014 American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-08, pp-180-186 www.ajer.org Open

More information

P. Sivakumar* 1 and V. Rajasekaran 2

P. Sivakumar* 1 and V. Rajasekaran 2 IJESC: Vol. 4, No. 1, January-June 2012, pp. 1 5 P. Sivakumar* 1 and V. Rajasekaran 2 Abstract: This project describes the design a controller for PWM boost Rectifier. This regulates the output voltage

More information

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER Kanimozhi G. and Sreedevi V. T. School of Electrical Engineering, VIT University, Chennai, India E-Mail: kanimozhi.g@vit.ac.in ABSTRACT This paper presents

More information

Hybrid Commutation Method with Current Direction Estimation for Three-phase-to-single-phase Matrix Converter

Hybrid Commutation Method with Current Direction Estimation for Three-phase-to-single-phase Matrix Converter Hybrid Commutation Method with Current Direction Estimation for Three-phase-to-single-phase Matrix Converter Shunsuke Takuma and Jun-ichi Itoh Department of Electrical, Electronics and Information Engineering

More information

[Mojlish, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Mojlish, 3(2): February, 2014] ISSN: Impact Factor: 1.852 JESRT NTERNATONAL JOURNAL OF ENGNEERNG SENES & RESEARH TEHNOLOGY Design of a Photovoltaic Grid-Tied nverter Employg a Dual-Stage Boost onverter and a Transformer-Less Step-Down ircuit Sameer Ahmed Khan

More information

Hybrid Impedance Matching Strategy for Wireless Charging System

Hybrid Impedance Matching Strategy for Wireless Charging System Hybrid Impedance Matching Strategy for Wireless Charging System Ting-En Lee Automotive Research and Testing Center Research and Development Division Changhua County, Taiwan(R.O.C) leetn@artc.org.tw Tzyy-Haw

More information

Investigation on Maximizing Power Transfer Efficiency of Wireless In-wheel Motor by Primary and Load-Side Voltage Control

Investigation on Maximizing Power Transfer Efficiency of Wireless In-wheel Motor by Primary and Load-Side Voltage Control IEEJ International Workshop on Sensing, Actuation, and Motion Control Investigation on Maximizing Power Transfer Efficiency of Wireless In-wheel Motor by Primary and Load-Side oltage Control Gaku Yamamoto

More information

Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery charging application

Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery charging application ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 13 (2017) No. 2, pp. 143-150 Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery

More information

Using SP6652 For a Positive to Negative Buck Boost Converter

Using SP6652 For a Positive to Negative Buck Boost Converter Solved by APPCATON NOTE ANP9 TM Usg SP665 For a Positive to Negative Buck Boost Converter ntroduction The SP665 is an tegrated FET synchronous PWM buck regulator ideal for low put voltage applications.

More information

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011 A New Active Snubber Circuit for PFC Converter Burak Akýn Yildiz Technical University/Electrical Engineering Department Istanbul TURKEY Email: bakin@yildizedutr ABSTRACT In this paper a new active snubber

More information

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator IEEE PEDS 27, Honolulu, USA 2-5 December 27 Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator Jun Osawa Graduate School of Pure

More information

Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors

Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors Small Signal mplifiers BJT Defitions Small Signal mplifiers Dimensiong of capacitors 1 Defitions (1) Small signal condition When the put signal (v and, i ) is small so that output signal (v out and, i

More information

A Bi-directional Z-source Inverter for Electric Vehicles

A Bi-directional Z-source Inverter for Electric Vehicles A Bi-directional Z-source Inverter for Electric Vehicles Makoto Yamanaka and Hirotaka Koizumi Tokyo University of Science 1-14-6 Kudankita, Chiyoda-ku Tokyo 102-0073 Japan Email: hosukenigou@ieee.org littlespring@ieee.org

More information

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter IEEE PEDS 2015, Sydney, Australia 9 12 June 2015 New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter Koki Ogura Kawasaki Heavy Industries,

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

BOOST PFC WITH 100 HZ SWITCHING FREQUENCY PROVIDING OUTPUT VOLTAGE STABILIZATION AND COMPLIANCE WITH EMC STANDARDS

BOOST PFC WITH 100 HZ SWITCHING FREQUENCY PROVIDING OUTPUT VOLTAGE STABILIZATION AND COMPLIANCE WITH EMC STANDARDS BOOST PFC WITH 1 HZ SWITCHING FREQUENCY PROVIDING OUTPUT VOLTAGE STABILIZATION AND COMPLIANCE WITH EMC STANDARDS Leopoldo Rossetto*, Giorgio Spiazzi** and Paolo Tenti** *Department of Electrical Engineering,

More information

Modeling of Conduction EMI Noise and Technology for Noise Reduction

Modeling of Conduction EMI Noise and Technology for Noise Reduction Modeling of Conduction EMI Noise and Technology for Noise Reduction Shuangching Chen Taku Takaku Seiki Igarashi 1. Introduction With the recent advances in high-speed power se miconductor devices, the

More information

High Efficiency Isolated DC/DC Converter using Series Voltage Compensation. Abstract. 1. Introduction. 2. Proposed Converter

High Efficiency Isolated DC/DC Converter using Series Voltage Compensation. Abstract. 1. Introduction. 2. Proposed Converter High Efficiency Isolated DC/DC Converter using Series Voltage Compensation Jun-ichi Itoh, Satoshi Miyawaki, Nagaoka University of Technology, Japan Kazuki Iwaya, TDK-Lambda Corporation, Japan Abstract

More information

Novel Control Strategy for Single-Phase to Three-Phase Power Converter Using an Active Buffer

Novel Control Strategy for Single-Phase to Three-Phase Power Converter Using an Active Buffer Novel Control Strategy for Single-Phase to Three-Phase Power Converter Using an Active Buffer Keywords Yoshiya Ohnuma and Jun-ichi Itoh Nagaoka University of Technology 63- Kamitomioka-cho Nagaoka city

More information

Combination of Input/Output Control using Matrix Converter for Islanded Operation for AC generator

Combination of Input/Output Control using Matrix Converter for Islanded Operation for AC generator Combination of Input/Output Control using Matrix Converter for Islanded Operation for AC generator Jun-ichi Itoh Dept. of Electrical Engineering Nagaoka University of Technology Nagaoka, Niigata, Japan

More information

High Power Factor Correction Circuit using Valley Charge-Pumping for Low Cost Electronic Ballasts

High Power Factor Correction Circuit using Valley Charge-Pumping for Low Cost Electronic Ballasts High Power Factor Correction Circuit using Valley Charge-Pumping for Low Cost Electronic Ballasts Gyun Chae, Yong-Sik Youn and Gyu-Hyeong Cho Department of Electrical Engineering Korea Advanced Institute

More information

Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System

Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System Progress In Electromagnetics Research Letters, Vol. 57, 111 116, 2015 Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System Keke Ding 1, 2, *, Ying

More information

Wireless Power Transmission: A Simulation Study

Wireless Power Transmission: A Simulation Study International Journal of Control Theory and Applications ISSN : 0974-5572 International Science Press Volume 10 Number 29 2017 Wireless Power Transmission: A Simulation Study M. Likhith a, P. Naveen Kumar

More information

A Color LED Driver Implemented by the Active Clamp Forward Converter

A Color LED Driver Implemented by the Active Clamp Forward Converter A Color LED Driver Implemented by the Active Clamp Forward Converter C. H. Chang, H. L. Cheng, C. A. Cheng, E. C. Chang * Power Electronics Laboratory, Department of Electrical Engineering I-Shou University,

More information

Harmonic Filtering in Variable Speed Drives

Harmonic Filtering in Variable Speed Drives Harmonic Filtering in Variable Speed Drives Luca Dalessandro, Xiaoya Tan, Andrzej Pietkiewicz, Martin Wüthrich, Norbert Häberle Schaffner EMV AG, Nordstrasse 11, 4542 Luterbach, Switzerland luca.dalessandro@schaffner.com

More information

Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System

Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System Vissuta Jiwariyavej#, Takehiro Imura*, and Yoichi Hori*

More information

Zero Voltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability

Zero Voltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability Zero oltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability Hiroki Watanabe 1*, Jun-ichi toh 1 1 Department of Electrical, Electronics and nformation

More information

A Novel Control Method Focusing on Reactive Power for A Dual Active Bridge Converter

A Novel Control Method Focusing on Reactive Power for A Dual Active Bridge Converter A Novel Control Method Focusing on Reactive Power for A Dual Active Bridge Converter Jun-ichi Itoh, Hayato Higa, Tsuyoshi Nagano Department of Electronics and Information Engineering Nagaoka University

More information

2. Measurement Setup. 3. Measurement Results

2. Measurement Setup. 3. Measurement Results THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Characteristic Analysis on Double Side Spiral Resonator s Thickness Effect on Transmission Efficiency for Wireless Power Transmission

More information

Experimental study of snubber circuit design for SiC power MOSFET devices

Experimental study of snubber circuit design for SiC power MOSFET devices Computer Applications in Electrical Engineering Vol. 13 2015 Experimental study of snubber circuit design for SiC power MOSFET devices Łukasz J. Niewiara, Michał Skiwski, Tomasz Tarczewski Nicolaus Copernicus

More information

Impact of the Flying Capacitor on the Boost converter

Impact of the Flying Capacitor on the Boost converter mpact of the Flying Capacitor on the Boost converter Diego Serrano, Víctor Cordón, Miroslav Vasić, Pedro Alou, Jesús A. Oliver, José A. Cobos Universidad Politécnica de Madrid, Centro de Electrónica ndustrial

More information

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis Helong Li, Stig Munk-Nielsen, Szymon Bęczkowski, Xiongfei Wang Department of Energy Technology

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs Y. Nishida* 1, J. Miniboeck* 2, S. D. Round* 2 and J. W. Kolar* 2 * 1 Nihon University Energy Electronics

More information

HARMONIC contamination, due to the increment of nonlinear

HARMONIC contamination, due to the increment of nonlinear 612 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 A Series Active Power Filter Based on a Sinusoidal Current-Controlled Voltage-Source Inverter Juan W. Dixon, Senior Member,

More information

Indirect Current Control of LCL Based Shunt Active Power Filter

Indirect Current Control of LCL Based Shunt Active Power Filter International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 3 (2013), pp. 221-230 International Research Publication House http://www.irphouse.com Indirect Current Control of LCL Based

More information

Comparison Between two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications

Comparison Between two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications Comparison Between two ingle-witch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications G. piazzi,. Buso Department of Electronics and Informatics - University of Padova Via

More information

Application Note AN- 1094

Application Note AN- 1094 Application Note AN- 194 High Frequency Common Mode Analysis of Drive Systems with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1 : Introduction...2 Section 2 : The Conducted EMI

More information

Comparing investigation for a Bi-directional Isolated DC/DC Converter using Series Voltage Compensation

Comparing investigation for a Bi-directional Isolated DC/DC Converter using Series Voltage Compensation Comparing investigation for a Bi-directional Isolated DC/DC Converter using Series Voltage Compensation Satoshi Miyawaki Nagaoka University of Technology Niigata, Japan miyawaki@stn.nagaokaut.ac.jp Jun-ichi

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Impedance Inverter based Analysis of Wireless Power Transfer Consists of Abstract Repeaters via Magnetic Resonant Coupling

More information

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Ajin Sebastian PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Benny

More information

Lab Assignment 3: Resonance and Diodes

Lab Assignment 3: Resonance and Diodes Physics 105, Analog Electronics Page 1 Lab Assignment 3: esonance and Diodes eadg: Meyer Chapter 4 (Semiconductors and Diodes) First lab day for the week: Parts 1, 2 Second lab day: Parts 3, 4 PELAB Part

More information

Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique

Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique Nasir *, Jon Cobb *Faculty of Science and Technology, Bournemouth University, Poole, UK, nasir@bournemouth.ac.uk, Faculty

More information

Electromagnetic Compatibility and Better Harmonic Performance with Seven Level CHB Converter Based PV-Battery Hybrid System

Electromagnetic Compatibility and Better Harmonic Performance with Seven Level CHB Converter Based PV-Battery Hybrid System Electromagnetic Compatibility and Better Harmonic Performance with Seven Level CHB Converter Based PV-Battery Hybrid System A. S. S. Veerendra Babu 1, G. Kiran Kumar 2 1 M.Tech Scholar, Department of EEE,

More information

NOWADAYS, it is not enough to increase the power

NOWADAYS, it is not enough to increase the power IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 597 An Integrated Battery Charger/Discharger with Power-Factor Correction Carlos Aguilar, Student Member, IEEE, Francisco Canales,

More information

SiC Power Schottky Diodes in Power Factor Correction Circuits

SiC Power Schottky Diodes in Power Factor Correction Circuits SiC Power Schottky Diodes in Power Factor Correction Circuits By Ranbir Singh and James Richmond Introduction Electronic systems operating in the -12 V range currently utilize silicon (Si) PiN diodes,

More information

The Retarded Phase Factor in Wireless Power Transmission

The Retarded Phase Factor in Wireless Power Transmission The Retarded Phase Factor in Wireless Power Transmission Xiaodong Liu 1 *, Qichang Liang 1, Yu Liang 2 1. Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413,

More information

ARTIFICAL INDUCTOR EFFECT ON MOS TRANSISTORS

ARTIFICAL INDUCTOR EFFECT ON MOS TRANSISTORS ATFCAL NDUCTO EFFECT ON MOS TANSSTOS V.V. Buniatyan, G.M. Travajyan, and A.H. Asatryan State Engeerg University of Armenia, Yerevan, E-mail: vbuniat@seua.am. ntroduction and state-of- the-art ecently the

More information

BLIL PFC Boost Converter for Plug in Hybrid Electric Vehicle Battery Charger

BLIL PFC Boost Converter for Plug in Hybrid Electric Vehicle Battery Charger BLIL PFC Boost Converter for Plug in Hybrid Electric Vehicle Battery Charger Vyshakh. A. P 1, Unni. M. R 2 1 M.Tech (Power Electronics & Drives), Department of EEE, Nehru College of Engineering & Research

More information

A Novel High-Performance Utility-Interactive Photovoltaic Inverter System

A Novel High-Performance Utility-Interactive Photovoltaic Inverter System 704 IEEE TRANSACTIONS ON POWER ELECTRONICS, OL. 18, NO. 2, MARCH 2003 A Novel High-Performance Utility-Interactive Photovoltaic Inverter System Toshihisa Shimizu, Senior Member, IEEE, Osamu Hashimoto,

More information