Electromagnetic Field Exposure Feature of a High Resonant Wireless Power Transfer System in Each Mode

Size: px
Start display at page:

Download "Electromagnetic Field Exposure Feature of a High Resonant Wireless Power Transfer System in Each Mode"

Transcription

1 , pp Electromagnetic Field Exposure Feature of a High Resonant Wireless Power Transfer System in Each Mode SangWook Park 1, ByeongWoo Kim 2, BeomJin Choi 1 1 EMI/EMC R&D Center, Reliability & Safety R&D Division, Korea Automotive Technology Institute, Korea {parksw, bjchoi}@katech.re.kr 2 Department of Electrical Engineering, University of Ulsan, Korea bywokim@ulsan.ac.kr Abstract. This paper presents the dosimetry of a high resonant wireless power transfer (WPT) system under the conditions of a single resonant mode and two resonant modes: even and odd modes, which occur when the two transmitting and receiving resonators are very close to each other. The specific absorption rates (SARs) are calculated with simplified head-size and body-size human models placed at various distances from the WPT system and in each mode. Results show that the electric and magnetic fields of the odd mode distributes stronger than those of the odd mode in the area near to the WPT system, while the opposite results are found in the far area. Keywords: dosimetry, specific absorption rate, two resonant modes, wireless power transfer. 1 Introduction Nicola Tesla proposed the concept of wireless power transfer (WPT) in the late 19 th century. The idea of wireless power distribution for bulbs was first promoted by him. As per Tesla, power is delivered through high frequency AC potentials between two plates or nodes [1]. However, the WPT technique could not be readily adopted for power distribution at the time, because the technique s power transfer efficiency decreased as the distance increased, thus making it infeasible. A MIT research team proposed a WPT technique based on the highly electromagnetic resonance phenomenon [2]. The high resonant (HR) WPT technique is based on the magnetic induction phenomenon. However, the power transfer efficiency can only be increased by as much as the level of the resonance, i.e., a high quality factor at the relatively long distance compared to the magnetic induction with low quality factor. Thus, the technique would need high quality factor coils as resonators. High quality factor can enable high efficiency. However, power transfer efficiency, depending on the resonant frequency, is very sensitive because a high quality factor represents a narrow bandwidth. Thus, for the HR-WPT technique, the matching condition needs to be carefully considered when aiming to deliver power to the load with high efficiency. One of the considerations for the technique is that two ISSN: ASTL Copyright 2015 SERSC

2 resonance modes occur at close distance between the two resonant coils [3]. The two resonance modes represent the two resonant frequencies, i.e., two split resonant frequencies. This phenomenon should also be considered to maintain high power transfer efficiency. The HR-WPT technique has attracted considerable attention in many fields and for various commercial product categories. Developing mobile electronic products, such as cell phones and PDAs, that are not dependent on physical power cords would be a natural progression towards achieving the ultimate mobility of those products. The WPT technique would be key in this regard. The application of the WPT technique to electric vehicles (EVs) would also be a convenient advantage, as it would enable automatic charging of the battery after parking of the vehicle without the need for any power cord. In addition, the safety advantages from avoiding contact with electrical components that cause shocks can also be realized. Nevertheless, for EVs, the WPT technique would need to be capable of providing high electrical power of up to hundreds of kilowatts and over a large area which implies a wide electromagnetic field of exposure. Therefore, the application of WPT to EVs requires a comprehensive analysis to ensure consumer safety. This paper focuses on the electric and magnetic field exposure hazards of WPT, especially in single mode and two resonance modes condition. The electric and magnetic field distribution of a HR-WPT system for each mode are calculated and compared for compliance to international guidelines [4]-[7]. The dosimetry for the HR-WPT system with a simplified cylindrical human model is conducted for various distances between the model and the WPT system in each mode condition. 2 WPT system and mode feature Fig. 1. WPT system specification operating in a single mode and two resonance modes Copyright 2015 SERSC 159

3 The HR-WPT system designed in this work is shown in Fig. 1. The system consists of two resonant coils and two loops placed inside the coils. The coils have 5 turns and a pitch of 5 mm and are the high efficiency resonators. The inner loop plays the role of a matching circuit. The coil radius of the WPT system is designed to be 150 mm, and the power transfer distance is set at 150 mm. A copper wire with a radius of 2 mm is used for the system. The coupling coefficient between the resonant coil and the inner loop changes the input impedance at each port. The matching condition to obtain maximum power transfer efficiency can be achieved by adjusting the size of the inner loop, which is related to the coupling coefficient. In the HR-WPT system, frequency splitting is clearly confirmed as the distance between the two transmitting and receiving resonant coils decreases. However, for the proper coupling coefficient, the two splitting resonant frequencies become a single frequency. In this work, by properly adjusting the size of the inner loop, the HR-WPT system is designed to contain a single frequency of MHz at a loop radius of 107 mm, and two resonant frequencies of MHz and MHz at a loop radius of 96 mm, as shown in Fig. 1 and. The two resonant modes at MHz and MHz are called even mode and odd mode in this paper, respectively. The power transfer efficiencies ( S 21 2 ) for a single mode, even mode, and odd mode are 98.2%, 98.0%, and 96.6%, respectively. 3 Dosimetry Fig. 2. Simplified cylindrical human model position with respect to the WPT system: headsize cylindrical model, body-size cylindrical model. Fig. 2 shows the cylindrical model position with respect to the WPT system. The specific absorption rates (SARs) are calculated for each simplified head- and bodysize human models at various distances (d) between the WPT system and the simplified human model. The sphere model is more appropriate compared to a cylindrical shape for the human head. However, to compare two simplified human models at the same distance and exposure shape, the cylindrical shape is chosen for the head-size model. The dielectric properties of the cylindrical model were set to be 160 Copyright 2015 SERSC

4 2/3 of that of muscle tissue, which represents the average dielectric properties of the human body. The electrical properties of the muscle tissue are taken from Gabriel s Cole Cole models [8]. The ratio of odd mode field intensity to even mode field intensity is shown in Fig. 3. The results show that the field intensity of the odd mode is stronger than that of the even mode in the area very near to the WPT system while the contrary result is observed in the area far from the WPT system. Thus, the SARs of the even mode are larger than those of the odd mode in the area near to the WPT, while contrary results are observed in the area far from the WPT. The maximum allowable powers (MAPs) referring to guideline limits can be calculated from the SARs of 1 W input power. The MAPs for the head-size and body-size human models are shown in Fig. 4. As shown in Fig. 4, MAP results for body-size human model indicate that the single mode and the odd mode have advantages in near and far area from the WPT, respectively. The lowest MAP, i.e., the worst exposure, depends on the mode and distance between the WPT system and the human body. This result suggests that we should consider both localized SAR and whole-body SAR. Fig. 3. Ratio of even model field intensity to odd mode field intensity for electric field and magnetic field Fig. 4. Maximum allowable powers at various distances between the WPT and the human model for head-size model and body-size model Copyright 2015 SERSC 161

5 4 Conclusion The dosimetry was conducted for the HR-WPT system when operating in the single mode and two resonant modes. The SARs were calculated using simplified head-size and body-size human models at various distances between the WPT system and the human model. The field intensity of odd mode was stronger than that of the even mode in the area near to the WPT, while contrary results were observed in the area far from the system. The worst exposure scenario was found at the localized SAR of odd mode in the near area and the whole-body SAR of even mode in the far area from the WPT system. The MAP results suggested that we should consider both the localized SAR and the whole-body SAR. In future work, the dosimetry will be conducted with a precise whole-body voxel human model based on anatomical structures. Acknowledgments. This work was supported by a grant Development of Induction/magnetic resonance type 6.6kW, 90% EV Wireless Charger (No ) from the Ministry of Trade, Industry and Energy. References 1. N. Tesla.: Apparatus for transmitting electrical energy. US patent number 1,119,732, issued in December A. Kurs, A. Karalis, R. Moffatt, J. D. Joannpoulos, P. Fisher, and M. Soljacic.: Wireless power transfer via strongly coupled magnetic resonances. Science, 317, (2007) 3. A. P. Sample, D. A. Meyer, and J. R. Smith.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron., 58(2), (2011) 4. ICNIRP.: Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys., 74, (1998) 5. ICNIRP.: Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 khz). Health Phys., 99, (2010) 6. IEEE Standard for Safety Levels With Respect to Human Exposure to Electromagnetic Fields, 0 3 khz, IEEE Standard C95.6 (2002) 7. IEEE Standard for Safety Levels With Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 khz to 300 GHz, IEEE Standard C95.1 (2005) 8. C. Gabriel and S. Gabriel.: Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Brooks AFB, San Antonio, TX, USA (2006) [Online] Available: Copyright 2015 SERSC

Mechanism of Two Resonant Modes for Highly Resonant Wireless Power Transfer and Specific Absorption Rate

Mechanism of Two Resonant Modes for Highly Resonant Wireless Power Transfer and Specific Absorption Rate Progress In Electromagnetics Research C, Vol. 69, 181 19, 216 Mechanism of Two Resonant Modes for Highly Resonant Wireless Power Transfer and Specific Absorption Rate Sangwook Park* Abstract In this work,

More information

Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects

Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects Progress In Electromagnetics Research M, Vol. 37, 183 189, 14 Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects Durga P. Kar 1, *, Praveen P. Nayak

More information

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Progress In Electromagnetics Research Letters, Vol. 80, 53 59, 2018 A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Keke Ding 1, 2, *, Ying Yu 1, 2, and Hong Lin 1, 2 Abstract In

More information

Interaction between Human and Near-Field of Wireless Power Transfer System

Interaction between Human and Near-Field of Wireless Power Transfer System Progress In Electromagnetics Research C, Vol. 67, 1 1, 216 Interaction between Human and Near-Field of Wireless Power Transfer System Maja Škiljo *,ZoranBlažević,andDraganPoljak Abstract In this paper

More information

Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System

Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System Progress In Electromagnetics Research Letters, Vol. 57, 111 116, 2015 Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System Keke Ding 1, 2, *, Ying

More information

Optimization of Wireless Power Transmission through Resonant Coupling

Optimization of Wireless Power Transmission through Resonant Coupling 426 29 COMPATIBILITY AND POWER ELECTRONICS CPE29 6TH INTERNATIONAL CONFERENCE-WORKSHOP Optimization of Wireless Power Transmission through Resonant Coupling Yong-Hae Kim, Seung-Youl Kang, Myung-Lae Lee,

More information

Overview of Wireless Power Transfer

Overview of Wireless Power Transfer Overview of Wireless Power Transfer CHAPTER 1: Overview of Wireless Power Transfer What is Wireless Power Transfer? The transfer of electrical energy without using conductors as the transport medium Examples

More information

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems 97 Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems Paulo J. Abatti, Sérgio F. Pichorim, and Caio M. de Miranda Graduate School of Electrical Engineering and Applied

More information

Flexibility of Contactless Power Transfer using Magnetic Resonance

Flexibility of Contactless Power Transfer using Magnetic Resonance Flexibility of Contactless Power Transfer using Magnetic Resonance Coupling to Air Gap and Misalignment for EV Takehiro Imura, Toshiyuki Uchida and Yoichi Hori Department of Electrical Engineering, the

More information

Equivalent Circuits for Repeater Antennas Used in Wireless Power Transfer via Magnetic Resonance Coupling

Equivalent Circuits for Repeater Antennas Used in Wireless Power Transfer via Magnetic Resonance Coupling Electrical Engineering in Japan, Vol. 183, No. 1, 2013 Translated from Denki Gakkai Ronbunshi, Vol. 131-D, No. 12, December 2011, pp. 1373 1382 Equivalent Circuits for Repeater Antennas Used in Wireless

More information

Hybrid Impedance Matching Strategy for Wireless Charging System

Hybrid Impedance Matching Strategy for Wireless Charging System Hybrid Impedance Matching Strategy for Wireless Charging System Ting-En Lee Automotive Research and Testing Center Research and Development Division Changhua County, Taiwan(R.O.C) leetn@artc.org.tw Tzyy-Haw

More information

A New Low Radiation Wireless Transmission System in Mobile Phone Application Based on Magnetic Resonant Coupling

A New Low Radiation Wireless Transmission System in Mobile Phone Application Based on Magnetic Resonant Coupling Title A New Low Radiation Wireless Transmission System in Mobile Phone Application Based on Magnetic Resonant Coupling Author(s) Chen, Q; Ho, SL; Fu, WN Citation IEEE Transactions on Magnetics, 2013, v.

More information

FEM Analysis of a PCB Integrated Resonant Wireless Power Transfer

FEM Analysis of a PCB Integrated Resonant Wireless Power Transfer FEM Analysis of a PCB Integrated Resonant Wireless Power Transfer Žarko Martinović Danieli Systec d.o.o./vinež 601, Labin, Croatia e-mail: zmartinovic@systec.danieli.com Roman Malarić Faculty of Electrical

More information

Journal of Faculty of Engineering & Technology WIRELESS POWER TRANSMISSION THROUGH MAGNETIC RESONANCE COUPLING

Journal of Faculty of Engineering & Technology WIRELESS POWER TRANSMISSION THROUGH MAGNETIC RESONANCE COUPLING PAK BULLET TRAIN (PBT) JFET 23(1) (2016) 01-11 Journal of Faculty of Engineering & Technology journal homepage: www.pu.edu.pk/journals/index.php/jfet/index WIRELESS POWER TRANSMISSION THROUGH MAGNETIC

More information

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 5, MAY X/$ IEEE

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 5, MAY X/$ IEEE IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 5, MAY 2010 1751 Numerical Analysis on Transmission Efficiency of Evanescent Resonant Coupling Wireless Power Transfer System Qiaowei Yuan, Qiang

More information

This is a preview - click here to buy the full publication. Exposure assessment methods for wireless power transfer systems

This is a preview - click here to buy the full publication. Exposure assessment methods for wireless power transfer systems TECHNICAL REPORT IEC TR 62905 Edition 1.0 2018-02 colour inside Exposure assessment methods for wireless power transfer systems INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 17.220.20 ISBN 978-2-8322-5350-2

More information

Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance

Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance Mr.Kishor P. Jadhav 1, Mr.Santosh G. Bari 2, Mr.Vishal P. Jagtap 3 Abstrat- Wireless power feeding was examined with

More information

Optimized shield design for reduction of EMF from wireless power transfer systems

Optimized shield design for reduction of EMF from wireless power transfer systems This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.*, No.*, 1 9 Optimized shield design for reduction of EMF

More information

A Large Air Gap 3 kw Wireless Power Transfer System for Electric Vehicles

A Large Air Gap 3 kw Wireless Power Transfer System for Electric Vehicles A Large Air Gap 3 W Wireless Power Transfer System for Electric Vehicles Hiroya Taanashi*, Yuiya Sato*, Yasuyoshi Kaneo*, Shigeru Abe*, Tomio Yasuda** *Saitama University, Saitama, Japan ** Technova Inc.,

More information

Wireless Power Transfer with Metamaterials

Wireless Power Transfer with Metamaterials MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Wireless Power Transfer with Metamaterials Wang, B.; Teo, K.H.; Nishino, T.; Yerazunis, W.; Barnwell, J.; Zhang, J. TR2011-052 April 2011 Abstract

More information

WIRELESS power transfer through coupled antennas

WIRELESS power transfer through coupled antennas 3442 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 11, NOVEMBER 2010 Fundamental Aspects of Near-Field Coupling Small Antennas for Wireless Power Transfer Jaechun Lee, Member, IEEE, and Sangwook

More information

Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits

Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits Björn Thors, Lovisa Nord, Davide Colombi, and Christer Törnevik 1 Ericsson Research,

More information

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 6, NO. 4, 9~4, OCT. 06 http://dx.doi.org/0.555/jkiees.06.6.4.9 ISSN 34-8395 (Online) ISSN 34-8409 (Print) Time-Domain Analysis of Wireless Power

More information

2. Measurement Setup. 3. Measurement Results

2. Measurement Setup. 3. Measurement Results THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Characteristic Analysis on Double Side Spiral Resonator s Thickness Effect on Transmission Efficiency for Wireless Power Transmission

More information

WIRELESS POWER TRANSFER(ELECTRICITY OUT OF THIN AIR)

WIRELESS POWER TRANSFER(ELECTRICITY OUT OF THIN AIR) WIRELESS POWER TRANSFER(ELECTRICITY OUT OF THIN AIR) PROJECT REFERENCE NO. : 37S1336 COLLEGE : JAIN COLLEGE OF ENGINEERING BELGAUM BRANCH : ELECTRONICS AND COMMUNICATION ENGINEERING GUIDE : PRAVEEN CHITTI

More information

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control Efficiency Maximization of Wireless Power Transfer Based on Simultaneous Estimation of Primary Voltage and Mutual Inductance Using Secondary-Side Information Katsuhiro Hata, Takehiro Imura, and Yoichi

More information

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Sukjin Kim 1, Hongseok Kim, Jonghoon J. Kim, Bumhee

More information

Wireless Power Transfer Devices (Wireless Chargers)

Wireless Power Transfer Devices (Wireless Chargers) Issue 1 August 2014 Spectrum Management and Telecommunications Radio Standards Specification Wireless Power Transfer Devices (Wireless Chargers) Aussi disponible en français CNR-216 Preface Radio Standards

More information

COMMON REGULATORY OBJECTIVES FOR WIRELESS LOCAL AREA NETWORK (WLAN) EQUIPMENT PART 2 SPECIFIC ASPECTS OF WLAN EQUIPMENT

COMMON REGULATORY OBJECTIVES FOR WIRELESS LOCAL AREA NETWORK (WLAN) EQUIPMENT PART 2 SPECIFIC ASPECTS OF WLAN EQUIPMENT COMMON REGULATORY OBJECTIVES FOR WIRELESS LOCAL AREA NETWORK (WLAN) EQUIPMENT PART 2 SPECIFIC ASPECTS OF WLAN EQUIPMENT 1. SCOPE This Common Regulatory Objective, CRO, is applicable to Wireless Local Area

More information

doi: / /59/14/3721(

doi: / /59/14/3721( doi: 10.1088/0031-9155/59/14/3721(http://doi.org/10.1088/0031-9155/59/14/3721) Analysis of In-situ Electric Field and Specific Absorption Rate in Human Models for Wireless Power Transfer System with Induction

More information

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance

More information

Simple electrical circuit to light up a gas discharge lamp

Simple electrical circuit to light up a gas discharge lamp TECHNICS AND INFORMATICS IN EDUCATION 6 th International Conference, Faculty of Technical Sciences, Čačak, Serbia, 8 9th May 016 TEHNIKA I INFORMATIKA U OBRAZOVANJU 6. međunarodna konferencija, Fakultet

More information

Effects of Mobile Phone Radiation onto Human Head with Variation of Holding Cheek and Tilt Positions

Effects of Mobile Phone Radiation onto Human Head with Variation of Holding Cheek and Tilt Positions Effects of Mobile Phone Radiation onto Human Head with Variation of Holding Cheek and Tilt Positions M. R. Iqbal-Faruque* 1, N. Aisyah-Husni 2, Md. Ikbal-Hossain 1, M. Tariqul-Islam 2 and N. Misran 2 1

More information

Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching

Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching EVS-5 Shenzhen, China, Nov. 5-9, Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching TeckChuan Beh, Masaki Kato,

More information

Safe Wireless Power Transfer to Moving Vehicles

Safe Wireless Power Transfer to Moving Vehicles Safe Wireless Power Transfer to Moving Vehicles Investigators Prof. Shanhui Fan, Electrical Engineering, Stanford; Dr. Sven Beiker, Center for Automotive Research, Stanford; Dr. Richard Sassoon, Global

More information

PIERS 2013 Stockholm. Progress In Electromagnetics Research Symposium. Proceedings

PIERS 2013 Stockholm. Progress In Electromagnetics Research Symposium. Proceedings PIERS 2013 Stockholm Progress In Electromagnetics Research Symposium Proceedings August 12 15, 2013 Stockholm, SWEDEN www.emacademy.org www.piers.org PIERS 2013 Stockholm Proceedings Copyright 2013 The

More information

Harmful Effects of Mobile Phone Tower Radiations on Muscle and Bone Tissues of Human Body at Frequencies 800, 900, 1800 and 2450 MHz

Harmful Effects of Mobile Phone Tower Radiations on Muscle and Bone Tissues of Human Body at Frequencies 800, 900, 1800 and 2450 MHz American Journal of Physics and Applications 2015; 3(6): 226-237 Published online January 8, 2016 (http://www.sciencepublishinggroup.com/j/ajpa) doi: 10.11648/j.ajpa.20150306.17 ISSN: 2330-4286 (Print);

More information

Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System

Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System Vissuta Jiwariyavej#, Takehiro Imura*, and Yoichi Hori*

More information

HAZARDS OF NON-IONIZING RADIOFREQUENCY (RF) RADIATION

HAZARDS OF NON-IONIZING RADIOFREQUENCY (RF) RADIATION HAZARDS OF NON-IONIZING RADIOFREQUENCY (RF) RADIATION IS IT SAFE TO USE A CELL PHONE, BLUE TOOTH, AND WIFI HOTSPOTS??? Learning Objectives Non-Ionizing RF Radiation vs. Ionizing Radiation Biological effects

More information

Numerical Assessment of Specific Absorption Rate in the Human Body Caused by NFC Devices

Numerical Assessment of Specific Absorption Rate in the Human Body Caused by NFC Devices Second International Workshop on Near Field Communication Numerical Assessment of Specific Absorption Rate in the Human Body Caused by NFC Devices S. Cecil, G. Schmid, K. Lamedschwandner EMC&Optics Seibersdorf

More information

The Retarded Phase Factor in Wireless Power Transmission

The Retarded Phase Factor in Wireless Power Transmission The Retarded Phase Factor in Wireless Power Transmission Xiaodong Liu 1 *, Qichang Liang 1, Yu Liang 2 1. Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413,

More information

Health Issues. Introduction. Ionizing vs. Non-Ionizing Radiation. Health Issues 18.1

Health Issues. Introduction. Ionizing vs. Non-Ionizing Radiation. Health Issues 18.1 Health Issues 18.1 Health Issues Introduction Let s face it - radio waves are mysterious things. Especially when referred to as electromagnetic radiation the concept makes many people nervous. In this

More information

Shaft power measurement for marine propulsion system based on magnetic resonances

Shaft power measurement for marine propulsion system based on magnetic resonances Shaft power measurement for marine propulsion system based on magnetic resonances Li Qin 1,2a),XincongZhou 1,YanGao 2, Pengju Cao 2, Jianzhou Quan 2, and Zhixiong Li 1 1 School of Energy and Power Engineering,

More information

Area Network Applications] Notice: This document has been prepared to assist the IEEE P It is

Area Network Applications] Notice: This document has been prepared to assist the IEEE P It is Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Submission Title: [RF Safety Considerations for Body Area Network Applications] Date Submitted: [] Source: [Kamya Yekeh

More information

Wireless Power Transmission: A Simulation Study

Wireless Power Transmission: A Simulation Study International Journal of Control Theory and Applications ISSN : 0974-5572 International Science Press Volume 10 Number 29 2017 Wireless Power Transmission: A Simulation Study M. Likhith a, P. Naveen Kumar

More information

Analysis of magnetic and electromagnetic field emissions produced by a MRI device

Analysis of magnetic and electromagnetic field emissions produced by a MRI device Sept. 8-1, 21, Kosice, Slovakia Analysis of magnetic and electromagnetic field emissions produced by a MRI device D. Giordano, M. Borsero, G. Crotti, M. ucca INRIM Istituto Nazionale di Ricerca Metrologica,

More information

Wireless Transfer of Solar Power for Charging Mobile Devices in a Vehicle

Wireless Transfer of Solar Power for Charging Mobile Devices in a Vehicle Wireless Transfer of Solar Power for Charging Mobile Devices in a Vehicle M. Bhagat and S. Nalbalwar Dept. of E & Tc, Dr. B. A. Tech. University, Lonere - 402103, MH, India {milindpb@gmail.com; nalbalwar_sanjayan@yahoo.com

More information

Wireless Power Transfer Devices

Wireless Power Transfer Devices Issue 2 Month 2015 Spectrum Management and Telecommunications Radio Standards Specification Wireless Power Transfer Devices Aussi disponible en français CNR-216 Preface This Radio Standards Specification,

More information

Analysis and Optimization of Strongly Coupled Magnetic Resonance for Wireless Power Transfer Applications

Analysis and Optimization of Strongly Coupled Magnetic Resonance for Wireless Power Transfer Applications Analysis and Optimization of Strongly Coupled Magnetic Resonance for Wireless Power Transfer Applications Binaya Basant Sahoo and Kuldeep Singh Department of Electronics and Communication Engineering,

More information

Investigation of Wireless Power Transfer Using Planarized, Capacitor-Loaded Coupled Loops

Investigation of Wireless Power Transfer Using Planarized, Capacitor-Loaded Coupled Loops Progress In Electromagnetics Research, Vol. 148, 223 231, 14 Investigation of Wireless Power Transfer Using Planarized, Capacitor-Loaded Coupled Loops Chenchen Jimmy Li * and Hao Ling Abstract A capacitor-loaded

More information

Input Impedance Matched AC-DC Converter in Wireless Power Transfer for EV Charger

Input Impedance Matched AC-DC Converter in Wireless Power Transfer for EV Charger Input Impedance Matched AC-DC Converter in Wireless Power Transfer for EV Charger Keisuke Kusaka*, Jun-ichi Itoh* * Nagaoka University of Technology, 603- Kamitomioka Nagaoka Niigata, Japan Abstract This

More information

ENGLISH TRANSLATION WIRELESS POWER TRANSMISSION SYSTEMS. ARIB STD-T113 Version 1. 1

ENGLISH TRANSLATION WIRELESS POWER TRANSMISSION SYSTEMS. ARIB STD-T113 Version 1. 1 ENGLISH TRANSLATION WIRELESS POWER TRANSMISSION SYSTEMS ARIB STANDARD ARIB STD-T113 Version 1. 1 Version 1.0 July 3rd 2015 Version 1.1 December 3rd 2015 Association of Radio Industries and Businesses General

More information

Improvement of 85 khz Self-resonant Open End Coil for Capacitor-less Wireless Power Transfer System

Improvement of 85 khz Self-resonant Open End Coil for Capacitor-less Wireless Power Transfer System 216 Asian Wireless Power Transfer Workshop Improvement of 8 khz Self-resonant Open End Coil for Capacitor-less Wireless Power Transfer System Koichi FURUSATO, Takehiro IMURA, and Yoichi HORI The University

More information

Wireless Energy Transfer in a Medium-Range Charging Area

Wireless Energy Transfer in a Medium-Range Charging Area Wireless Energy Transfer in a Medium-Range Charging Area Corneliu URSACHI, Elena HELEREA Transilvania University, 29 Eroilor Bd., Brasov, helerea@unitbv.ro Abstract. The upward spiral of knowledge brings

More information

Ileana-Diana Nicolae ICMET CRAIOVA UNIVERSITY OF CRAIOVA MAIN BUILDING FACULTY OF ELECTROTECHNICS

Ileana-Diana Nicolae ICMET CRAIOVA UNIVERSITY OF CRAIOVA MAIN BUILDING FACULTY OF ELECTROTECHNICS The Designing, Realization and Testing of a Network Filter used to Reduce Electromagnetic Disturbances and to Improve the EMI for Static Switching Equipment Petre-Marian Nicolae Ileana-Diana Nicolae George

More information

Wireless powering of single-chip systems with integrated coil and external wire-loop resonator.

Wireless powering of single-chip systems with integrated coil and external wire-loop resonator. Wireless powering of single-chip systems with integrated coil and external wire-loop resonator. Fredy Segura-Quijano, Jesús García-Cantón, Jordi Sacristán, Teresa Osés, Antonio Baldi. Centro Nacional de

More information

Accurate Design of Deep Sub-Wavelength Metamaterials for Wireless Power Transfer Enhancement

Accurate Design of Deep Sub-Wavelength Metamaterials for Wireless Power Transfer Enhancement Progress In Electromagnetics Research C, Vol. 83, 195 203, 2018 Accurate Design of Deep Sub-Wavelength Metamaterials for Wireless Power Transfer Enhancement Chunyu Zhao *, 1,SenlinZhu 1,HuiZhu 1, Zhenyu

More information

Increasing efficiency of a wireless energy transfer system by. spatial translational transformation

Increasing efficiency of a wireless energy transfer system by. spatial translational transformation Increasing efficiency of a wireless energy transfer system by spatial translational transformation Shichao Li 1, Fei Sun 1, *, Di An 1 1, 2, *, and Sailing He 1 Centre for Optical and Electromagnetic Research,

More information

Design of Miniaturized Printed Antenna for Mobile Phones

Design of Miniaturized Printed Antenna for Mobile Phones IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 4, Ver. IV (Jul.-Aug.2016), PP 23-27 www.iosrjournals.org Design of Miniaturized

More information

Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Using a Magnetic Resonance Coupling

Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Using a Magnetic Resonance Coupling Experimental Verification of Rectifiers with Si/GaN for Wireless Power Transfer Using a Magnetic Resonance oupling Keisuke Kusaka Nagaoka University of Technology kusaka@stn.nagaokaut.ac.jp Jun-ichi Itoh

More information

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Progress In Electromagnetics Research Letters, Vol. 34, 83 90, 2012 K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Y. C. Du *, Z. X. Tang, B. Zhang, and P. Su School

More information

Human Exposure Requirements for R&TTE and FCC Approval

Human Exposure Requirements for R&TTE and FCC Approval Human Exposure Requirements for R&TTE and FCC Approval Derek Y. W. LEUNG Founding and Committee Member of EMC Chapter- IEEE-HK Requirements of Non-Specific Short Range Device (SRD) for CE Marking Radio

More information

Measurement of Wireless Power Transfer

Measurement of Wireless Power Transfer Measurement of Wireless Power Transfer Andi Sudjana Putra #1, Sriharsha Vishnu Bhat #2, Vinithra Raveendran #3 # Engineering Design and Innovation Centre (EDIC), ational University of Singapore (US) Block

More information

Spherical Mode-Based Analysis of Wireless Power Transfer Between Two Antennas

Spherical Mode-Based Analysis of Wireless Power Transfer Between Two Antennas 3054 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 62, NO. 6, JUNE 2014 Spherical Mode-Based Analysis of Wireless Power Transfer Between Two Antennas Yoon Goo Kim and Sangwook Nam, Senior Member,

More information

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications , pp.34-41 http://dx.doi.org/10.14257/astl.2017.147.05 High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications Dr.K.Srinivasa Naik 1, Darimisetti Sai

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] Integrated miniaturized antennas for automotive applications Original Citation: Vietti G., Dassano G., Orefice M. (2010). Integrated miniaturized

More information

Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm.

Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. 2. Calculate the resistances of following equipment: using 220V AC a) a 1000 W electric heater b)

More information

Multiband Compact Low SAR Mobile Hand Held Antenna

Multiband Compact Low SAR Mobile Hand Held Antenna Progress In Electromagnetics Research Letters, Vol. 49, 65 71, 2014 Multiband Compact Low SAR Mobile Hand Held Antenna Haythem H. Abdullah * and Kamel S. Sultan Abstract With the vast emergence of new

More information

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Impedance Inverter based Analysis of Wireless Power Transfer Consists of Abstract Repeaters via Magnetic Resonant Coupling

More information

Technical Committee106 Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure

Technical Committee106 Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure Technical Committee106 Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure International Electrotechnical Commission Michel Bourdages Secretary International

More information

Analysis of SAR in Human Blood, Bones and Muscles due to Mobile Waves at 900MHz,1800MHz and 2400MHz

Analysis of SAR in Human Blood, Bones and Muscles due to Mobile Waves at 900MHz,1800MHz and 2400MHz International Journal of Applied Engineering Research ISSN 973-4562 Volume 3, Number 5 (28) pp. 225-229 Analysis of SAR in Human Blood, Bones and Muscles due to Mobile Waves at 9MHz,8MHz and 24MHz M.Usha

More information

Tunable Metamaterial-Inspired Resonators for Optimal Wireless Power Transfer Schemes

Tunable Metamaterial-Inspired Resonators for Optimal Wireless Power Transfer Schemes Tunable Metamaterial-Inspired Resonators for Optimal Wireless Power Transfer Schemes A. X. Lalas 1, N. V. Kantartzis 1, T. T. Zygiridis 2, T. P. Theodoulidis 3 1. Dept. of Electrical & Comp. Engineering,

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

Wireless Power Transfer Devices (Wireless Chargers)

Wireless Power Transfer Devices (Wireless Chargers) Issue 1 DRAFT March 2014 Spectrum Management and Telecommunications Radio Standards Specification Wireless Power Transfer Devices (Wireless Chargers) Aussi disponible en français - CNR-216 Preface Radio

More information

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications Antennas and Propagation Volume 216, Article ID 474327, 8 pages http://dx.doi.org/1.1155/216/474327 Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

More information

International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXIII No

International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXIII No International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXIII No 3 2017 MOBILE PHONE USER EXPOSURE ASSESSMENT TO UMTS AND LTE SIGNALS AT MOBILE DATA TURN ON BY APPLYING AN ORIGINAL METHOD Annamaria

More information

Power Delivery Optimization for a Mobile Power Transfer System based on Resonator Arrays

Power Delivery Optimization for a Mobile Power Transfer System based on Resonator Arrays MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Power Delivery Optimization for a Mobile Power Transfer System based on Resonator Arrays Yerazunis, W.; Wang, B.; Teo, K.H. TR2012-085 October

More information

SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and

SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and classified as Occupational Use Only, meaning it must

More information

IEEE ICES Exposure Limits Above 6 GHz

IEEE ICES Exposure Limits Above 6 GHz Mobile Manufacturers Forum Workshop EMF Exposure Limits and Compliance Assessment of Future Wireless Devices Above 6 GHz Exposure Limits Above 6 GHz Dr. C-K. Chou* TC95 Chairman International Committee

More information

IEEE Electromagnetic Compatibility Standards (Active & Archive) Collection: VuSpec

IEEE Electromagnetic Compatibility Standards (Active & Archive) Collection: VuSpec IEEE Electromagnetic Compatibility Standards (Active & Archive) Collection: VuSpec This value-packed VuSpec represents the most complete resource available for professional engineers looking for best practices

More information

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 216963 Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 16mm Keisuke Kusaka 1) Kent Inoue 2) Jun-ichi Itoh 3) 1) Nagaoka University of Technology, Energy and

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN ISSN 2229-5518 1102 Resonant Inductive Power Transfer for Wireless Sensor Network Nodes Rohith R, Dr. Susan R J Abstract This paper presents the experimental study of Wireless Power Transfer through resonant

More information

Vibration Analysis Due to Load Delivered to Automotive Seat and Motor Position

Vibration Analysis Due to Load Delivered to Automotive Seat and Motor Position , pp.14-18 http://dx.doi.org/10.14257/astl.2015.108.04 Vibration Analysis Due to Load Delivered to Automotive Seat and Motor Position Jae Ung Cho 1 1 Division of Mechanical & Automotive Engineering, Kongju

More information

Frequency ranges for operation of non-beam wireless power transmission systems

Frequency ranges for operation of non-beam wireless power transmission systems Recommendation ITU-R SM.2110-0 (09/2017) Frequency ranges for operation of non-beam wireless power transmission systems SM Series Spectrum management ii Rec. ITU-R SM.2110-0 Foreword The role of the Radiocommunication

More information

Frequency Splitting Analysis of Wireless Power Transfer System Based on T-type Transformer Model

Frequency Splitting Analysis of Wireless Power Transfer System Based on T-type Transformer Model http://dxdoiorg/05755/j0eee905455 ELEKTRONIKA IR ELEKTROTECHNIKA ISSN 39-5 VOL 9 NO 0 03 Frequency Splitting Analysis of Wireless Power Transfer System Based on T-type Transformer Model Lan Jianyu Tang

More information

ITU-T activities on Human Exposure to Electromagnetic Fields (EMFs)

ITU-T activities on Human Exposure to Electromagnetic Fields (EMFs) ITU-T activities on Human Exposure to Electromagnetic Fields (EMFs) 8th Green Standards Week 9-12 April 2018, Zanzibar, Tanzania Dr. Fryderyk Lewicki Chairman of Working Party 1, ITU-T SG5 Orange Polska,

More information

Efficient Metasurface Rectenna for Electromagnetic Wireless Power Transfer and Energy Harvesting

Efficient Metasurface Rectenna for Electromagnetic Wireless Power Transfer and Energy Harvesting Progress In Electromagnetics Research, Vol. 161, 35 40, 2018 Efficient Metasurface Rectenna for Electromagnetic Wireless Power Transfer and Energy Harvesting Mohamed El Badawe and Omar M. Ramahi * Abstract

More information

Regulatory Guidance and Safety Standards

Regulatory Guidance and Safety Standards Regulatory Guidance and Safety Standards Andrew H. Thatcher, MSHP, CHP Thatcher.drew@comcast.net March 19, 2018 University of Washington Overview 60 Hz power frequency exposure standards Static Fields

More information

A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS. Neuroscience, CIN, University of Tuebingen, Tuebingen, Germany

A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS. Neuroscience, CIN, University of Tuebingen, Tuebingen, Germany Progress In Electromagnetics Research, Vol. 139, 121 131, 213 A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS Irena Zivkovic 1, * and Klaus Scheffler 1, 2 1 Max Planck Institute

More information

Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges

Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 74, NUMBER 2 FEBRUARY 2003 Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency

More information

II. COMPUTATIONAL METHODS AND MODELS

II. COMPUTATIONAL METHODS AND MODELS Mikrotalasna revija Septembar 2014. A Study of Specific Absorption Rate in Coconut Exposed to RF Radiation Ardhendu Kundu, Bhaskar Gupta, Sudhabindu Ray Abstract Now-a-days researchers are very much concerned

More information

ENGLISH TRANSLATION GUIDELINES FOR THE USE OF WIRELESS POWER TRANSMISSION/TRANSFER TECHNOLOGIES TECHNICAL REPORT. BWF TR-01 Edition 2.

ENGLISH TRANSLATION GUIDELINES FOR THE USE OF WIRELESS POWER TRANSMISSION/TRANSFER TECHNOLOGIES TECHNICAL REPORT. BWF TR-01 Edition 2. ENGLISH TRANSLATION GUIDELINES FOR THE USE OF WIRELESS POWER TRANSMISSION/TRANSFER TECHNOLOGIES TECHNICAL REPORT BWF TR-01 Edition 2.0 Published in April 26, 2011 Revised in April 25, 2013 Broadband Wireless

More information

Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core

Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core Progress In Electromagnetics Research M, Vol. 74, 137 145, 2018 Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core Meng Wang 1, Jing Feng 1, Minghui Shen 2, and Yanyan Shi

More information

INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS

INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS Progress In Electromagnetics Research C, Vol. 18, 87 101, 2011 INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS D. Ramaccia and A. Toscano Department of Applied Electronics University of Rome

More information

Research and Design of Coupled Magnetic Resonant Power Transfer. System

Research and Design of Coupled Magnetic Resonant Power Transfer. System EA TANACTION on CICUIT and YTEM huai Zhong, Chen Yao, Hou-Jun Tang, Kai-Xiong Ma esearch and esign of Coupled Magnetic esonant Power Transfer ystem HUAI ZHONG, CHEN YAO, HOU-JUN TANG, KAI-XIONG MA epartment

More information

Midrange Magnetically-Coupled Resonant Circuit Wireless Power Transfer

Midrange Magnetically-Coupled Resonant Circuit Wireless Power Transfer University of Texas at Tyler Scholar Works at UT Tyler Electrical Engineering Theses Electrical Engineering Spring 5-23-2014 Midrange Magnetically-Coupled Resonant Circuit Wireless Power Transfer Varun

More information

Design of an implanted compact antenna for an artificial cardiac pacemaker system

Design of an implanted compact antenna for an artificial cardiac pacemaker system Design of an implanted compact antenna for an artificial cardiac pacemaker system Soonyong Lee 1,WonbumSeo 1,KoichiIto 2, and Jaehoon Choi 1a) 1 Department of Electrical and Computer Engineering, Hanyang

More information

New Wireless Power Transfer via Magnetic Resonant Coupling for Charging Moving Electric Vehicle

New Wireless Power Transfer via Magnetic Resonant Coupling for Charging Moving Electric Vehicle 20144026 New Wireless Power Transfer via Magnetic Resonant Coupling for Charging Moving Electric Vehicle Koh Kim Ean 1) Takehiro Imura 2) Yoichi Hori 3) 1) The University of Tokyo, Graduate School of Engineering

More information

Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Load

Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Load Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Daisuke Gunji The University of Tokyo / NSK Ltd. 5--5, Kashiwanoha, Kashiwa, Chiba, 77-856, Japan / -5-5, Kugenumashinmei,

More information

Mid-range Wireless Energy Transfer Using Inductive Resonance for Wireless Sensors

Mid-range Wireless Energy Transfer Using Inductive Resonance for Wireless Sensors Mid-range Wireless Energy Transfer Using Inductive Resonance for Wireless Sensors Shahrzad Jalali Mazlouman, Alireza Mahanfar, Bozena Kaminska, Simon Fraser University {sja53, nima_mahanfar, kaminska}@sfu.ca

More information