Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

Size: px
Start display at page:

Download "Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks"

Transcription

1 Supporting Information Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks Aaron R. Rathmell, Minh Nguyen, Miaofang Chi, and Benjamin J. Wiley * Department of Chemistry, Duke University, 124 Science Drive, Box Durham, NC (USA) benjamin.wiley@duke.edu Microscopy Group, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 4515, MS 6064 Oak Ridge, TN 37831, (USA) KEYWORDS: nickel, copper, nanowires, transparent conductor

2 Materials and Methods: Materials: 35 wt % hydrazine in water (309400), polyvinylpyrrolidone MW = 10,000 (PVP10), ethyl acetate (270989), pentyl acetate (109584), and toluene (244511) were purchased from Sigma-Aldrich. Nitrocellulose was purchased from Scientific Polymer (712), and ethanol and isopropanol were purchased from VWR. Polyethylene Terephthalate was purchased from McMaster-Carr and ITO on PET was purchased from VisonTek Systems. Caution should be used when dealing with these chemicals as some are corrosive, flammable, or dangerous if ingested or put in contact with skin. Coating copper nanowires with nickel: The copper nanowires, donated from NanoForge, were synthesized in a manner similar to that previously reported. 1 The copper nanowires were stored at a copper nanowire concentration of 1.4 mg ml -1 in an aqueous solution containing polyvinylpyrrolidone (PVP, 1 wt %) and diethylhyroxylamine (1 wt %). Cupronickel nanowires were synthesized by adding the copper nanowire stock solution (0.732 ml) to a 20 ml scintillation vial containing a solution (1.32 ml) of PVP (2 wt %) in ethylene glycol, a given amount of a solution containing Ni(NO 3 ) 2 6H 2 O (0.1M) in water (157, 78.7, 39.3, or 15.7 µl for nanowires containing 54, 34, 20, 10% Ni, respectively), and hydrazine (132 µl, 35 wt%). This mixture was vortexed for 15 seconds and heated at 120 C for 10 minutes without any stirring. During the heating step, the dispersed copper nanowires became aggregated, floated to the top of the solution, and changed from a copper color to a dark copper or black color (depending on Ni concentration) due to Ni reducing onto the surface of the copper nanowires. After heating for 10 minutes the solution was removed with a pipette, and the nanowires were dispersed in a solution of PVP (1 wt %) and hydrazine (3 wt %). This solution was then centrifuged at 2000 rpm for 5 minutes, and the supernate was removed. The wires were then dispersed in a fresh wash solution (containing 3 wt % hydrazine and 1 wt % PVP) by vortexing for 30 seconds. These steps of centrifugation and redispersion were repeated once more with the same PVP/hydrazine solution, and then repeated two additional times with a solution that contained only hydrazine (3 wt %). Preparation of Transparent Electrodes: Transparent electrodes were made in a manner similar to that which was previously reported. 1 The cupronickel solution was put into a 1.5 ml centrifuge tube after the initial washing steps. This suspension was centrifuged at ~2000 rpm for 1 minute. The cupronickel nanowires were washed 3 times using a solution of hydrazine (3 wt

3 %) containing no PVP to ensure PVP was removed. After the PVP was removed, the cupronickel nanowires were washed with ethanol to remove the majority of the water and then washed once more with the ink formulation. The ink formulation was made by dissolving nitrocellulose (0.06 g) in acetone (2.94 g) and then adding ethanol (3 g), ethyl acetate (0.5 g), pentyl acetate (1 g), isopropanol (1 g), and toluene (1.7 g). After the cupronickel nanowires (~3 mg) were washed with the ink formulation, the ink formulation (0.3 ml) was added to the cupronickel nanowires, and this suspension was vortexed. If significant amounts of aggregates were present, the ink was briefly sonicated (up to 5 seconds) and centrifuged at a low speed (~500 rpm) so that a well-dispersed cupronickel nanowire ink could be pippetted off the solution. To prepare a transparent nanowire electrode, glass microscope slides were placed onto a clipboard to hold them down while the nanowire ink (25 µl) was pippetted in a line at the top of the slide. A Meyer rod (Gardco #13, 33.3 µm wet film thickness) was then quickly (< 1 second) pulled down over the nanowire ink by hand, spreading it across the glass into a thin, uniform film. Different densities of nanowires on the surface of the substrate were obtained by varying the concentration of the nanowires in the ink. The film was dry after approximately 60 seconds. To remove the film former and other organic material from the nanowire network, the films were cleaned in a plasma cleaner (Harrick Plasma PDC- 001) for 15 minutes in an atmosphere of 95% nitrogen and 5% hydrogen at a pressure of mtorr. The nanowire films were then heated at 175 C in a tube furnace for 30 minutes under a constant flow of hydrogen (600 ml min -1 ) to anneal the wires together and decrease the sheet resistance to below 200 Ω sq -1. The transmittance and sheet resistance of each nanowire film was measured using a UV/vis spectrophotometer (Cary 6000i) and a four-point probe (Signatone SP TBS). Each data point in Figure 2 is the average of 5 measurements. Each data point also shows error bars that indicate one standard deviation. SEM, TEM, and EDS Preparation: To prepare the samples for SEM (FEI XL30 SEM- FEG), a small chip of a silicon (Si) wafer (5 mm X 5 mm) was cut for each sample and placed on a piece of double sided tape in a Petri dish. Clean nanowires were dispersed in the hydrazine (3 wt %) solution with vortexing and sonication before 5 µl of the suspension was placed on a Si chip. The Petri dish was then covered with parafilm and nitrogen gas was gently blown into it to

4 dry the sample, creating a balloon out of the parafilm. After drying overnight, the nanowires were rinsed with a gentle flow of water (~150 ml min -1 ) for seconds and dried again. For TEM, a copper grid was used to hold the nanowires instead of a Si chip. The grid was placed on top of a Whatman filter, and 3 µl of the nanowire solution was pipetted onto the grid. The solution was absorbed into the filter paper underneath the grid, leaving the majority of the nanowires on the grid. The sample was then allowed to completely dry under a flow of nitrogen gas. The same sample preparation was done for the EDS samples except a nickel grid was used in place of a copper grid. Also, as soon as the sample was placed on the grid, the grid was placed in the TEM and a vacuum was drawn to completely remove the solution before it was placed in the column. The nanowires were analyzed using a FEI XL30 scanning electron microscope (SEM), a FEI Tecnai G² Twin transmission electron microscope (TEM), and a JEOL 2200FS Aberration- Corrected scanning transmission electron microscope (STEM) with an energy dispersive x-ray spectrometer (EDS). The diameters and lengths of the wires were determined by comparing the pixel diameter/length of the wires with the pixel length of the scale bar. Concentration of cupronickel nanowires: To measure the concentration of the cupronickel nanowires, a set volume of the solution (usually 1 ml) was dissolved in concentrated nitric acid (1 ml). The dissolved nickel and copper was then diluted to a set volume (usually 10 ml). An atomic absorption spectrometer (AAS, Perkin Elmer 3100) was then used to measure the concentration. Number Density Calculation: This section describes how we made films of copper and cupronickel nanowires with a desired number density. First we found the number of nanowires in a given volume of solution (N S ) by equation SI-1, where C Cu is the concentration of copper in the N s = C CuV T ρ Cu V Cu (SI-1) solution (as measured by AAS), V T is the total volume of the solution, ρ Cu is the bulk density of copper, and V Cu is the average volume of the copper nanowires. Next, we filtered out a given amount of solution to achieve a desired nanowire number density on the filter. To match the number densities of the cupronickel nanowires to those of the copper nanowires, we converted the volume of nanowire solution necessary to obtain the same number density (N) of nanowires on the filter with equation SI-2, where V CuNi, is the average volume of one cupronickel nanowire,

5 V T = N(V CuNi V Cu )ρ Ni C Ni (SI-2) ρ Ni is the bulk density of nickel, and C Ni is the concentration of nickel in the solution (as measured by AAS). Set volumes of the copper and cupronickel nanowire solutions were diluted in 200 ml of water and filtered onto 0.6 µm Isopore membrane filters (Millipore 0.6 µm, DTTP04700). As soon as the solutions were through the membrane, the filtrate was immediately put into contact, by hand, with polydimethylsiloxane (PDMS). The membrane filter was gently pressed against the PDMS to ensure transfer of the nanowires before the membrane was peeled away, leaving behind the nanowire film. The transmittance of the films was measured with a UV/vis spectrophotometer (Cary 6000i). The baseline on the UV/vis spectrophotometer was corrected using a piece of PDMS, free of any nanowires. Testing the Flexibility of Nanowire Films: To test the flexibility of the copper-nickel nanowire films, we attached one end of the film to a tabletop and the other end to a ruler which was on top of a spring. The set-up was designed so that the initial radius of curvature was 10 mm (no force applied to the ruler) and after a downward force was applied to the ruler the final radius of curvature was 2.5 mm. The ruler was then allowed to spring back to the starting position and the entire cycle was counted as 1. The sheet resistance was measured every 200 cycles. REFERENCES 1. Rathmell, A. R.; Wiley, B. J. Adv. Mater. 2011, 23, (41),

6 Figure SI-1: Plot of sheet resistance vs. the inverse of the effective nanowire thickness. The slope gives the resistivity of the nanowire networks. Error bars show one standard deviation for five measurements.

7 SI-2: Plot of ΔR/R 0 vs. time for copper nanowire films.

8 SI-3: Plot of ΔR/R 0 vs. time for silver nanowire films.

9 SI-4: Plot of ΔR/R 0 vs. time for 4:1 Cu:Ni nanowire films.

10 SI-5: Plot of ΔR/R 0 vs. time for 1:1 Cu:Ni nanowire films.

11 SI-6: Plot of sheet resistance vs. number of bends for copper nanowires, 4:1 Cu:Ni nanowires, 1:1 Cu:Ni nanowires, and ITO films on PET. Error bars show one standard deviation for five measurements.

Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze

Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze Supporting Information Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze Zhiqiang Niu,, Fan Cui,, Elisabeth

More information

Inkjet Printing of Ag Nanoparticles using Dimatix Inkjet Printer, No 1

Inkjet Printing of Ag Nanoparticles using Dimatix Inkjet Printer, No 1 University of Pennsylvania ScholarlyCommons Protocols and Reports Browse by Type 1-13-2017 using Dimatix Inkjet Printer, No 1 Amal Abbas amalabb@seas.upenn.edu Inayat Bajwa inabajwa@seas.upenn.edu Follow

More information

Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu*

Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu* Supporting Information Ultrathin 18 O 49 Nanowire Assemblies for Electrochromic Devices Jian-ei Liu, Jing Zheng, Jin-Long ang, Jie Xu, Hui-Hui Li, Shu-Hong Yu* Experimental Section Synthesis and Assembly

More information

Electrical and Optical Tunability in All-Inorganic Halide. Perovskite Alloy Nanowires

Electrical and Optical Tunability in All-Inorganic Halide. Perovskite Alloy Nanowires Supporting Information for: Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires Teng Lei, 1 Minliang Lai, 1 Qiao Kong, 1 Dylan Lu, 1 Woochul Lee, 2 Letian Dou, 3 Vincent

More information

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires Electronic Supplementary Material Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires Minliang Lai 1, Qiao Kong 1, Connor G. Bischak 1, Yi Yu 1,2, Letian Dou

More information

Monitoring of Galvanic Replacement Reaction. between Silver Nanowires and HAuCl 4 by In-Situ. Transmission X-Ray Microscopy

Monitoring of Galvanic Replacement Reaction. between Silver Nanowires and HAuCl 4 by In-Situ. Transmission X-Ray Microscopy Supporting Information Monitoring of Galvanic Replacement Reaction between Silver Nanowires and HAuCl 4 by In-Situ Transmission X-Ray Microscopy Yugang Sun *, and Yuxin Wang Center for Nanoscale Materials

More information

Supplementary Information. Phase-selective cation-exchange chemistry in sulfide nanowire systems

Supplementary Information. Phase-selective cation-exchange chemistry in sulfide nanowire systems Supplementary Information Phase-selective cation-exchange chemistry in sulfide nanowire systems Dandan Zhang,, Andrew B. Wong,, Yi Yu,, Sarah Brittman,, Jianwei Sun,, Anthony Fu,, Brandon Beberwyck,,,

More information

Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance

Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces

Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41928-018-0056-6 In the format provided by the authors and unedited. Low-power carbon nanotube-based integrated circuits that can be transferred

More information

Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device Integration

Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device Integration Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device Integration by Hadi Hosseinzadeh Khaligh A thesis presented to the University of Waterloo in fulfillment of the thesis

More information

OPTOFLUIDIC ULTRAHIGH-THROUGHPUT DETECTION OF FLUORESCENT DROPS. Electronic Supplementary Information

OPTOFLUIDIC ULTRAHIGH-THROUGHPUT DETECTION OF FLUORESCENT DROPS. Electronic Supplementary Information Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2015 OPTOFLUIDIC ULTRAHIGH-THROUGHPUT DETECTION OF FLUORESCENT DROPS Minkyu Kim 1, Ming Pan 2,

More information

Supporting Information

Supporting Information Supporting Information Ag nanowire synthesis All the chemicals were purchased from Sigma Aldrich and used without further purification. The synthesis of Ag nanowires was performed according to the polyol

More information

Spray-assisted Alignment of Layer-by-Layer Assembled Silver. Nanowires: A General Approach for the Preparation of Highly

Spray-assisted Alignment of Layer-by-Layer Assembled Silver. Nanowires: A General Approach for the Preparation of Highly Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting information Spray-assisted Alignment of Layer-by-Layer Assembled Silver Nanowires:

More information

Supporting Information

Supporting Information Supporting Information Single-walled carbon nanotubes spontaneous loading into exponentially-grown LBL films** Materials used: Sudhanshu Srivastava, Paul Podsiadlo, Kevin Critchley, Jian Zhu, Ming Qin,

More information

Supplementary Information. Zn doped p type Gallium Phosphide Nanowire Photocathodes from a. Surfactant free Solution Synthesis

Supplementary Information. Zn doped p type Gallium Phosphide Nanowire Photocathodes from a. Surfactant free Solution Synthesis Supplementary Information Zn doped p type Gallium Phosphide Nanowire Photocathodes from a Surfactant free Solution Synthesis Chong Liu,, Jianwei Sun, Jinyao Tang, Peidong Yang *,,, Department of Chemistry,

More information

Supporting Information. High-Resolution Organic Light Emitting Diodes Patterned via Contact Printing

Supporting Information. High-Resolution Organic Light Emitting Diodes Patterned via Contact Printing Supporting Information High-Resolution Organic Light Emitting Diodes Patterned via Contact Printing Jinhai Li, Lisong Xu, Ching W. Tang and Alexander A. Shestopalov* Department of Chemical Engineering,

More information

Improving Organic Solar Cells

Improving Organic Solar Cells Improving Organic Solar Cells Mike McGehee, Alex Mayer, Jack Parmer, Mike Rowell, Mark Topinka, George Burkhardt Stanford University Goals 15 % efficiency $30/m 2 20 year lifetime i Cover 1 % of the country

More information

Supporting Information. A Tough and High-Performance Transparent Electrode from a. Scalable Transfer-Free Method

Supporting Information. A Tough and High-Performance Transparent Electrode from a. Scalable Transfer-Free Method Supporting Information A Tough and High-Performance Transparent Electrode from a Scalable Transfer-Free Method Tianda He, Aozhen Xie, Darrell H. Reneker and Yu Zhu * Department of Polymer Science, College

More information

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Supporting Information Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices Ping Hu, Mengyu Yan, Xuanpeng Wang, Chunhua Han,*

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION SrTaO2N Nanowire Photoanode Modified with a Ferrihydrite Hole- Storage Layer for Photoelectrochemical Water Oxidation Martin Davi, Felix Schrader, Tanja Scholz, Zili Ma, Anna Rokicinska,

More information

Supporting Information for. Electrostatic Self-Assembly of Polystyrene Microspheres. Using Chemically-Directed Contact Electrification

Supporting Information for. Electrostatic Self-Assembly of Polystyrene Microspheres. Using Chemically-Directed Contact Electrification Supporting Information for Electrostatic Self-Assembly of Polystyrene Microspheres Using Chemically-Directed Contact Electrification Logan S. McCarty, Adam Winkleman, and George M. Whitesides* Figure S1.

More information

Density-Based Diamagnetic Separation: Devices for Detecting Binding Events and for

Density-Based Diamagnetic Separation: Devices for Detecting Binding Events and for Density-Based Diamagnetic Separation: Devices for Detecting Binding Events and for Collecting Unlabeled Diamagnetic Particles in Paramagnetic Solutions SUPPORTING INFORMATION Adam Winkleman 1, Raquel Perez-Castillejos

More information

Supporting Information 1. Experimental

Supporting Information 1. Experimental Supporting Information 1. Experimental The position markers were fabricated by electron-beam lithography. To improve the nanoparticle distribution when depositing aqueous Ag nanoparticles onto the window,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Supporting Information Sulfur Copolymer Nanowires with Enhanced Visible-Light Photoresponse

More information

3 MATERIALS 4 3D PRINTING

3 MATERIALS 4 3D PRINTING 1 TABLE OF CONTENT 2 Introduction... 3 3 Materials... 4 4 3D printing... 4 5 Mixing of PDMS... 5 6 Degassing... 5 7 Baking... 6 8 Taking out the chip and making the holes... 6 9 Assembly & cleaning...

More information

Integrated into Nanowire Waveguides

Integrated into Nanowire Waveguides Supporting Information Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides Anthony Fu, 1,3 Hanwei Gao, 1,3,4 Petar Petrov, 1, Peidong Yang 1,2,3* 1 Department of Chemistry,

More information

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Supporting Information Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Sarah Brittman, 1,2 Youngdong Yoo, 1 Neil P. Dasgupta, 1,3 Si-in Kim, 4 Bongsoo Kim, 4 and Peidong

More information

Chemical Machining of Monel

Chemical Machining of Monel Chemical Machining of Monel D. Patil 1, R. Dugad 2*, S. Farakte 2, M. Sadaiah 3 1 Research Scholar, 2 PG Student, 3 Associate professor Dr Babasaheb Ambedkar Technological University, Lonere, 2 103, India

More information

STUDENT LABORATORY WORKSHEET EXPERIMENT B: NANOSCALE THIN FILMS

STUDENT LABORATORY WORKSHEET EXPERIMENT B: NANOSCALE THIN FILMS STUDENT LABORATORY WORKSHEET EXPERIMENT B: NANOSCALE THIN FILMS Student name: Date:.. AIM: Thin films with nanoscale thickness are interesting novel materials that are being investigated in smart windows

More information

True Three-Dimensional Interconnections

True Three-Dimensional Interconnections True Three-Dimensional Interconnections Satoshi Yamamoto, 1 Hiroyuki Wakioka, 1 Osamu Nukaga, 1 Takanao Suzuki, 2 and Tatsuo Suemasu 1 As one of the next-generation through-hole interconnection (THI) technologies,

More information

Supporting Information for. Thin, Lightweight, Foldable Thermochromic Displays on Paper

Supporting Information for. Thin, Lightweight, Foldable Thermochromic Displays on Paper Supporting Information for Thin, Lightweight, Foldable Thermochromic Displays on Paper Adam C. Siegel, Scott T. Phillips, Benjamin Wiley, and George M. Whitesides Department of Chemistry and Chemical Biology,

More information

Metal Nanowire Networks: The Next Generation of Transparent Conductors

Metal Nanowire Networks: The Next Generation of Transparent Conductors www.materialsviews.com Metal Nanowire Networks: The Next Generation of Transparent Conductors Shengrong Ye, Aaron R. Rathmell, Zuofeng Chen, Ian E. Stewart, and Benjamin J. Wiley* There is an ongoing drive

More information

Facile Synthesis of Sub-20 nm Silver Nanowires Through a Bromide-Mediated Polyol Method

Facile Synthesis of Sub-20 nm Silver Nanowires Through a Bromide-Mediated Polyol Method Supporting Information for Facile Synthesis of Sub-20 nm Silver Nanowires Through a Bromide-Mediated Polyol Method Robson Rosa de Silva,, Miaoxin Yang, Sang-Il Choi, Miaofang Chi, Ming Luo, Chao Zhang,

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/science.1234855/dc1 Supplementary Materials for Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active/Adaptive Tactile Imaging Wenzhuo Wu,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Low boiling point solvent additive

More information

*Corresponding author.

*Corresponding author. Supporting Information for: Ligand-Free, Quantum-Confined Cs 2 SnI 6 Perovskite Nanocrystals Dmitriy S. Dolzhnikov, Chen Wang, Yadong Xu, Mercouri G. Kanatzidis, and Emily A. Weiss * Department of Chemistry,

More information

kg per litre

kg per litre AS Physics - Experiment Questions for Unit 2 1. Explain what is meant by the term polarisation when referring to light............. Sugar is produced from plants such as sugar cane. The stems are crushed

More information

Enameled Wire Having Polyimide-silica Hybrid Insulation Layer Prepared by Sol-gel Process

Enameled Wire Having Polyimide-silica Hybrid Insulation Layer Prepared by Sol-gel Process Journal of Photopolymer Science and Technology Volume 28, Number 2 (2015) 151 155 2015SPST Enameled Wire Having Polyimide-silica Hybrid Insulation Layer Prepared by Sol-gel Process Atsushi Morikawa 1,

More information

Supplementary Information for: Programmable Diagnostic Devices Made from Paper and Tape

Supplementary Information for: Programmable Diagnostic Devices Made from Paper and Tape Supplementary Information for: Programmable Diagnostic Devices Made from Paper and Tape Andres W. Martinez, a Scott T. Phillips, a Zhihong Nie, a Chao-Min Cheng, a Emanuel Carrilho, b Benjamin J. Wiley,

More information

Rapid and inexpensive fabrication of polymeric microfluidic devices via toner transfer masking

Rapid and inexpensive fabrication of polymeric microfluidic devices via toner transfer masking Easley et al. Toner Transfer Masking Page -1- B816575K_supplementary_revd.doc December 3, 2008 Supplementary Information for Rapid and inexpensive fabrication of polymeric microfluidic devices via toner

More information

KMPR 1010 Process for Glass Wafers

KMPR 1010 Process for Glass Wafers KMPR 1010 Process for Glass Wafers KMPR 1010 Steps Protocol Step System Condition Note Plasma Cleaning PVA Tepla Ion 10 5 mins Run OmniCoat Receipt Dehydration Any Heat Plate 150 C, 5 mins HMDS Coating

More information

Whole-Mount Electron Microscopy of the Cytoskeleton: Negative Staining Methods

Whole-Mount Electron Microscopy of the Cytoskeleton: Negative Staining Methods Whole-Mount Electron Microscopy of the Cytoskeleton: Negative Staining Methods J. Victor Small and Antonio Sechi I. INTRODUCTION Various techniques may be used for observing the cytoskeleton of whole cultured

More information

MICROBUMP CREATION SYSTEM FOR ADVANCED PACKAGING APPLICATIONS

MICROBUMP CREATION SYSTEM FOR ADVANCED PACKAGING APPLICATIONS MICROBUMP CREATION SYSTEM FOR ADVANCED PACKAGING APPLICATIONS Andrew Ahr, EKC Technology, & Chester E. Balut, DuPont Electronic Technologies Alan Huffman, RTI International Abstract Today, the electronics

More information

A Parallel Radial Mirror Energy Analyzer Attachment for the Scanning Electron Microscope

A Parallel Radial Mirror Energy Analyzer Attachment for the Scanning Electron Microscope 142 doi:10.1017/s1431927615013288 Microscopy Society of America 2015 A Parallel Radial Mirror Energy Analyzer Attachment for the Scanning Electron Microscope Kang Hao Cheong, Weiding Han, Anjam Khursheed

More information

Supporting Information. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor based on Porous Vanadium Nitride Nanowire Anode

Supporting Information. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor based on Porous Vanadium Nitride Nanowire Anode Supporting Information High Energy Density Asymmetric Quasi-Solid-State Supercapacitor based on Porous Vanadium Nitride Nanowire Anode Xihong Lu,, Minghao Yu, Teng Zhai, Gongming Wang, Shilei Xie, Tianyu

More information

TEM SAMPLE-PREPARATION PROCEDURES FOR THIN-FILM MATERIALS

TEM SAMPLE-PREPARATION PROCEDURES FOR THIN-FILM MATERIALS TEM SAMPLE-PREPARATION PROCEDURES FOR THIN-FILM MATERIALS Initial Set-Up: Heat up a hot plate to around 150-200 C Plan view Mounting/Grinding/Dimpling/Polishing: 1) Cleave a square-ish piece of sample.

More information

Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training Supplementary Information Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training Yongkuk Lee 1,+, Benjamin Nicholls 2,+, Dong Sup Lee 1, Yanfei Chen 3, Youngjae Chun 3,4,

More information

Supporting Information

Supporting Information Supporting Information Skin-Like Disposable Tattoo on Elastic Rubber Adhesive with Silver Particles Penetrated Electrode for Multi-Purpose Applications Seoungwoong Park, Mingyeong Kim, Dain Kwak, GaHyeon

More information

Vivek Subramanian * Department of Electrical Engineering and Computer Sciences. University of California, Berkeley

Vivek Subramanian * Department of Electrical Engineering and Computer Sciences. University of California, Berkeley Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Supporting Information for A Robust, Gravure-Printed, Silver Nanowire/Metal

More information

Supporting Information. Novel Onion-Like Graphene Aerogel Beads for Efficient Solar Vapor Generation. under Non-concentrated Illumination

Supporting Information. Novel Onion-Like Graphene Aerogel Beads for Efficient Solar Vapor Generation. under Non-concentrated Illumination Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information Novel Onion-Like Graphene Aerogel Beads for Efficient

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Submitted to Electronic Supplementary Information Scalable Fabrication of

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 The diameter and length of AgNWs. (a) SEM image and (b) AFM image of AgNWs coated on a SiO2/Si wafer at 500 rpm for 30 sec. The diameter and length of the AgNWs

More information

Preparation of a Liquid Crystal Pixel

Preparation of a Liquid Crystal Pixel Preparation of a Liquid Crystal Pixel This procedure for a liquid crystal pixel is modified by George Lisensky and the Materials Research Science and Engineering Center (MRSEC) at the University of Wisconsin-Madison

More information

POLYMER MICROSTRUCTURE WITH TILTED MICROPILLAR ARRAY AND METHOD OF FABRICATING THE SAME

POLYMER MICROSTRUCTURE WITH TILTED MICROPILLAR ARRAY AND METHOD OF FABRICATING THE SAME POLYMER MICROSTRUCTURE WITH TILTED MICROPILLAR ARRAY AND METHOD OF FABRICATING THE SAME Field of the Invention The present invention relates to a polymer microstructure. In particular, the present invention

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Three-dimensional TiO 2 /CeO 2 Nanowire composite for Efficient Formaldehyde

More information

NOCOLOK Technical Brazing Center and Technical Service

NOCOLOK Technical Brazing Center and Technical Service NOCOLOK Technical Brazing Center and Technical Service The NOCOLOK Brazing Technical Center NOCOLOK flux brazing technology is the industry standard for brazing aluminum heat exchangers and other components.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A transparent bending-insensitive pressure sensor Sungwon Lee 1,2, Amir Reuveny 1,2, Jonathan Reeder 1#, Sunghoon Lee 1,2, Hanbit Jin 1,2, Qihan Liu 5, Tomoyuki Yokota 1,2, Tsuyoshi Sekitani 1,2,3, Takashi

More information

Chihyun Hwang, Tae-Hee Kim, Yoon-Gyo Cho, Jieun Kim and Hyun-Kon Song*

Chihyun Hwang, Tae-Hee Kim, Yoon-Gyo Cho, Jieun Kim and Hyun-Kon Song* Supporting Information All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries Chihyun Hwang, Tae-Hee Kim, Yoon-Gyo Cho, Jieun Kim and

More information

IGPG Car Wash Round Robin Test Procedure

IGPG Car Wash Round Robin Test Procedure 1. Scope The intension of this round robin test is to investigate whether the car wash test described in ISO 20566 and used to validate the abrasion performance of exterior car body parts is suitable as

More information

Accumulation of Sulfur Compounds. Following Exposure to Sulfurous Acid

Accumulation of Sulfur Compounds. Following Exposure to Sulfurous Acid Accumulation of Sulfur Compounds At the Interface of Paint and Wood Following Exposure to Sulfurous Acid R. Sam Williams and Thomas A. Kuster U.S. Department of Agriculture* John Spence U.S. Environmental

More information

Fabrication of Probes for High Resolution Optical Microscopy

Fabrication of Probes for High Resolution Optical Microscopy Fabrication of Probes for High Resolution Optical Microscopy Physics 564 Applied Optics Professor Andrès La Rosa David Logan May 27, 2010 Abstract Near Field Scanning Optical Microscopy (NSOM) is a technique

More information

Optimization of Reverse Offset Roll to Plate (RO-R2P) Through Contact Angle

Optimization of Reverse Offset Roll to Plate (RO-R2P) Through Contact Angle Optimization of Reverse Offset Roll to Plate (RO-R2P) Through Contact Angle Ji-Hyun Hwang, Kayna Lee Mendoza, Kyungdeok Jang, Seyeon Hwang, Namsoo Kim * Department of Metallurgy and Materials Engineering,

More information

30 Plex Human Luminex (Invitrogen Kit, Single Plate)

30 Plex Human Luminex (Invitrogen Kit, Single Plate) 30 Plex Human Luminex (Invitrogen Kit, Single Plate) 1. Defrost samples and bring to room temperature. 2. Bring Kit components to room temperature: Wash solution 20x. Assay Diluent. Incubation buffer.

More information

-www.radicesolutions.com

-www.radicesolutions.com Radice Class - X Summative assessment - II Science Time allowed : 3 Hours Maximum Marks : 80 General Instructions. 1. The question paper comprises of two sections, A and B. You have to attempt both the

More information

Nanodrawing of Aligned Single Carbon. Nanotubes with a Nanopen

Nanodrawing of Aligned Single Carbon. Nanotubes with a Nanopen Supporting Information Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen Talia Yeshua, 1,2 Christian Lehmann, 3 Uwe Hübner, 4 Suzanna Azoubel, 2,5 Shlomo Magdassi, 2,5 Eleanor E. B. Campbell,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Aloe Vera Mucilage Derived Highly Tolerant Underwater

More information

Conformal Electronics Wrapped Around Daily-life Objects. Using Original Method: Water Transfer Printing.

Conformal Electronics Wrapped Around Daily-life Objects. Using Original Method: Water Transfer Printing. Supporting Information Conformal Electronics Wrapped Around Daily-life Objects Using Original Method: Water Transfer Printing. Brice Le Borgne, Olivier De Sagazan, Samuel Crand, Emmanuel Jacques, Maxime

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Surface-Guided CsPbBr 3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response Eitan Oksenberg, Ella Sanders, Ronit

More information

Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, , India.

Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, , India. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Discretely distributed 1D V 2 O 5 nanowires over 2D MoS 2 nanoflakes for

More information

Silver nanowire transparent electrodes. for device applications

Silver nanowire transparent electrodes. for device applications Silver nanowire transparent electrodes for device applications by Hadi Hosseinzadeh Khaligh A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor

More information

Highly Clear and Transparent Nanoemulsion Preparation under Surfactant-Free Conditions Using Tandem Acoustic Emulsification

Highly Clear and Transparent Nanoemulsion Preparation under Surfactant-Free Conditions Using Tandem Acoustic Emulsification Supplementary Information Highly Clear and Transparent Nanoemulsion Preparation under Surfactant-Free Conditions Using Tandem Acoustic Emulsification Koji Nakabayashi, a Fumihiro Amemiya, a Toshio Fuchigami,

More information

Microlens formation using heavily dyed photoresist in a single step

Microlens formation using heavily dyed photoresist in a single step Microlens formation using heavily dyed photoresist in a single step Chris Cox, Curtis Planje, Nick Brakensiek, Zhimin Zhu, Jonathan Mayo Brewer Science, Inc., 2401 Brewer Drive, Rolla, MO 65401, USA ABSTRACT

More information

Chapter 3 Fabrication

Chapter 3 Fabrication Chapter 3 Fabrication The total structure of MO pick-up contains four parts: 1. A sub-micro aperture underneath the SIL The sub-micro aperture is used to limit the final spot size from 300nm to 600nm for

More information

Coating of Si Nanowire Array by Flexible Polymer

Coating of Si Nanowire Array by Flexible Polymer , pp.422-426 http://dx.doi.org/10.14257/astl.2016.139.84 Coating of Si Nanowire Array by Flexible Polymer Hee- Jo An 1, Seung-jin Lee 2, Taek-soo Ji 3* 1,2.3 Department of Electronics and Computer Engineering,

More information

Procedure & Checklist - 20 kb Template Preparation Using BluePippin Size-Selection System

Procedure & Checklist - 20 kb Template Preparation Using BluePippin Size-Selection System Procedure & Checklist - 20 kb Template Preparation Using BluePippin Size-Selection System Before You Begin To perform this procedure, you must have the PacBio DNA Template Prep Kit 2.0 (3 kb to 10 kb)

More information

Student Sheet. P003S: Making Paint with Minerals

Student Sheet. P003S: Making Paint with Minerals Student Sheet In this practical I will be: Creating egg tempera paints and oil paints from different types of minerals. Evaluating the different paints, looking at various aspects, including: o what colours

More information

Institute for Chemical Education

Institute for Chemical Education ICE Devices Rod-climbing Liquid This apparatus shows the chain-like structure of polymers. If used in combination with a setup of a rotating rod in a bowl of water and a second rotating rod in a bowl of

More information

Material analysis by infrared mapping: A case study using a multilayer

Material analysis by infrared mapping: A case study using a multilayer Material analysis by infrared mapping: A case study using a multilayer paint sample Application Note Author Dr. Jonah Kirkwood, Dr. John Wilson and Dr. Mustafa Kansiz Agilent Technologies, Inc. Introduction

More information

Formaldehyde Cross-linking of Chromatin from Drosophila

Formaldehyde Cross-linking of Chromatin from Drosophila 2 Formaldehyde Cross-linking of Chromatin from Drosophila Protocol from modencode IGSB University of Chicago originally written by Alex Crofts and Sasha Ostapenko and updated by Matt Kirkey. 1. Set centrifuge

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/9/eaau0920/dc1 Supplementary Materials for 2D titanium carbide (MXene) for wireless communication Asia Sarycheva, Alessia Polemi, Yuqiao Liu, Kapil Dandekar,

More information

Caution: For Laboratory Use. A product for research purposes only. YSi (2 5 μm) Copper His-Tag SPA Beads. Product Numbers: RPNQ0096

Caution: For Laboratory Use. A product for research purposes only. YSi (2 5 μm) Copper His-Tag SPA Beads. Product Numbers: RPNQ0096 TECHNICAL DATA SHEET SPA Beads Caution: For Laboratory Use. A product for research purposes only. YSi (2 5 μm) Copper His-Tag SPA Beads Product Numbers: RPNQ0096 WARNING For research use only. Not recommended

More information

Supplementary Information

Supplementary Information Supplementary Information Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes M. M. Shaijumon, F. S. Ou, L. Ci, and P. M. Ajayan * Department of Mechanical

More information

Caterpillar Locomotion inspired Valveless Pneumatic Micropump using Single Teardrop-shaped Elastomeric Membrane

Caterpillar Locomotion inspired Valveless Pneumatic Micropump using Single Teardrop-shaped Elastomeric Membrane Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supporting Information Caterpillar Locomotion inspired Valveless Pneumatic Micropump using

More information

RayBio anti-mouse IgG Magnetic Beads

RayBio anti-mouse IgG Magnetic Beads RayBio anti-mouse IgG Magnetic Beads Catalog #: 801-103 User Manual Last revised January 4 th, 2017 Caution: Extraordinarily useful information enclosed ISO 1348 Certified 3607 Parkway Lane, Suite 100

More information

C.Vinothini, DKM College for Women. Abstract

C.Vinothini, DKM College for Women. Abstract (Impact Factor- 5.276) CHARACTERISTICS OF PULSE PLATED COPPER GALLIUM TELLURIDE FILMS C.Vinothini, DKM College for Women. Abstract Copper Gallium Telluride films were deposited for the first time by the

More information

MICROSTRUCTURING OF METALLIC LAYERS FOR SENSOR APPLICATIONS

MICROSTRUCTURING OF METALLIC LAYERS FOR SENSOR APPLICATIONS MICROSTRUCTURING OF METALLIC LAYERS FOR SENSOR APPLICATIONS Vladimír KOLAŘÍK, Stanislav KRÁTKÝ, Michal URBÁNEK, Milan MATĚJKA, Jana CHLUMSKÁ, Miroslav HORÁČEK, Institute of Scientific Instruments of the

More information

The Simulation, Design, and Fabrication of Optical Filters

The Simulation, Design, and Fabrication of Optical Filters Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Physics and Optical Engineering Graduate Theses 11-2017 The Simulation, Design, and Fabrication of Optical Filters John-Michael

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends.

Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. Marie-Beatrice Madec 1*, Patrick J. Smith 2, Andromachi Malandraki

More information

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors Supplementary Information Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors J. A. Caraveo-Frescas and H. N. Alshareef* Materials Science and Engineering, King

More information

Continuous Modification Treatment of Polyester Fabric by Dielectric Barrier Discharge

Continuous Modification Treatment of Polyester Fabric by Dielectric Barrier Discharge Continuous Modification Treatment of Polyester Fabric by Dielectric Barrier Discharge Ren Zhongfu 1, Qiu Gao 2, Ren Xiandong 1, Wang Zhonghua 1 (1. Jining Medical College, Jining, 272000 ; 2. College of

More information

Sensors & Transducers Published by IFSA Publishing, S. L., 2016

Sensors & Transducers Published by IFSA Publishing, S. L., 2016 Sensors & Transducers Published by IFSA Publishing, S. L., 2016 http://www.sensorsportal.com Development of a Novel High Reliable Si-Based Trace Humidity Sensor Array for Aerospace and Process Industry

More information

Surface Analysis of one Pound from the Egyptian Coins

Surface Analysis of one Pound from the Egyptian Coins Surface Analysis of one Pound from the Egyptian Coins S. A. Abd El Aal 1, N.Dawood 2, and A. I. Helal 1 1-Central Lab. for Elemental & Isotopic Analysis, NRC, AEA. 2-Taiba University Saudi Arabia. ABSTRACT

More information

Supporting Information. for. Visualization of Electrode-Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM

Supporting Information. for. Visualization of Electrode-Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM Supporting Information for Visualization of Electrode-Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM Zhiyuan Zeng 1, Wen-I Liang 1,2, Hong-Gang Liao, 1 Huolin

More information

Electronic Supplementary Information. Self-assembled Gold Nanorime Mesh Conductor for Invisible Stretchable Supercapacitor

Electronic Supplementary Information. Self-assembled Gold Nanorime Mesh Conductor for Invisible Stretchable Supercapacitor Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Self-assembled Gold Nanorime Mesh Conductor for Invisible

More information

Dependence of Binder and Photocatalyst in Photocatalytically Active Printing Ink

Dependence of Binder and Photocatalyst in Photocatalytically Active Printing Ink Dependence of Binder and Photocatalyst in Photocatalytically Active Printing Ink Andreja Pondelak 1, A. Sever Škapin 1, M. Klanjšek Gunde 2, O. Panák 3, M. Kaplanová 3 1 Slovenian National Building and

More information

High Performance Silver Nanowire based Transparent Electrodes Reinforced by Conductive Polymer Adhesive

High Performance Silver Nanowire based Transparent Electrodes Reinforced by Conductive Polymer Adhesive High Performance Silver Nanowire based Transparent Electrodes Reinforced by Conductive Polymer Adhesive Qisen Xie, Cheng Yang*, Zhexu Zhang, Ruobing Zhang Division of Energy and Environment, Graduate School

More information

Manufacture of Cast Products

Manufacture of Cast Products Manufacture of Cast Products When a layer of rubber is deposited on the interior surface of a hollow mould, it is known as casting. The latex products obtained by the casting process are hollow and toys,

More information

Direct Observation of Current-Induced Motion of a. 3D Vortex Domain Wall in Cylindrical Nanowires

Direct Observation of Current-Induced Motion of a. 3D Vortex Domain Wall in Cylindrical Nanowires Supporting Information Direct Observation of Current-Induced Motion of a 3D Vortex Domain Wall in Cylindrical Nanowires Yurii P. Ivanov,,, *, Andrey Chuvilin ǁ,, Sergey Lopatin, Hanan Mohammed, Jurgen

More information