IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):

Size: px
Start display at page:

Download "IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):"

Transcription

1 IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online): Design and Analysis of Wide Swing Folded-Cascode OTA using 180nm Technology Priyanka Patel 1 Kehul Shah 2 1,2 Sankalchand Patel College of Engineering, Visnagar, India Abstract This paper deals withthe design of Wide Swing Folded-Cascode OTA. An optimum OTA topology is done in order to optimize MOS transistor sizing. Also, the design of Folded Cascode OTA, which works for frequencies that lead to a baseband circuit design for RF application, is based on transistor sizing methodology. This paper deals an effective OTA design for good PSRR, low-voltage, lowpower and wide output voltage swing operational amplifier. Trying to combine an alternative technique of voltage driven- Bulk CMOS with a folded cascade OTA design to improve PSRR and output voltage swing in that circuit by reducing its supply voltage and power consumption. The simulation of the cascode and folded cascode circuits is done using TSPICE simulation tool and the LEVEL 2, 180nm parameters are used. A complete analysis of the circuit is presented in this paper which shows how this circuit leads to a high gain and resistance at output. A comparison between the cascode and Folded-Cascode op amps is described. We have also described their simulated and calculated results comparison individually. The Wide Swing Folded-Cascode OTA is designed using 180 nm CMOS technology. Key words: Power Supply Rejection Ratio (PSRR), Common Mode Rejection Ratio (CMRR), Operational Trans Conductance Amplifier (OTA), Capacitance Load (CL) I. INTRODUCTION The operational transconductance amplifier (OTA) is used as basic building block in many switched capacitor filters OTA is basically an op-amp without an output buffer and can only drive capacitive loads. The Operational Transconductance Amplifier (OTA) is a basic element in this type of circuit whether switched capacitors technique is kept for ADC design. Our target was to design a folded cascode OTA circuit insight of Sigma Delta analog-to-digital converter design using for wide band radio applications. Wide-swing OTA means that the input CMR is close to the supply voltages. The output voltage swing of the OTA is limited by the supply voltages. The name folded-cascode comes from folding down p-channel cascode active loads of a diff-pair and changing the MOSFETs to n-channels. This OTA, like all OTAs, has good PSRR compared to the two-stage op-amp since the OTA is compensated with the load capacitance. This paper summarizes the detailed study of Wide Swing Folded-Cascode OTA with its individual blocks using Tanner Tool(S-edit, T-Spice, W-edit) in 180nm CMOS technology. The basics of Wide Swing Folded- Cascode OTA are described in Section-II. The implementation of Wide Swing Folded-Cascode OTA circuits and the calculative procedures are shown in Section- III. Section IV describes simulation results. Finally the conclusion and future scope is given in Section V. II. BASICS OF WIDE SWING FOLDED-CASCODE OTA The Operational Transconductance Amplifier (OTA) is a basic element in this type of circuit whether switched capacitors technique is kept for ADC design. Our target was to design a folded cascode OTA circuit insight of Sigma Delta analog-to-digital converter design using for wide band radio applications. Fig. 1: Block Diagram of Two Stage Folded-Cascode OTA[5] The input signal of a common-gate stage may be a current and also that in the common-source arrangement a transistor converts a voltage signal to a current signal. The cascade of a CS stage and a CG stage is called a cascode topology, which provides many useful properties. Fig.2.1 shows the basic configuration: M1 generates a small signal drain current that is proportional to V in and M2 simply routes the current to R D. We call M1 the input device and M2 the cascode device. Note that in this example, M1 and M2 carry equal currents. As we describe the attributes of the circuit in this section, many advantages of the cascode topology over a simple Common-Source stage become evident. [Razavi, design of Analog CMOS Integrated Circuits] III. WHOLE IMPLEMENTATION OF WIDE SWING FOLDED- CASCODE OTA Parameters Specifications Slew rate 10V μs Technology 180nm CL 10pf Gain bandwidth 10MHz Gain 60dB Min. and max. output voltages are ± 2.5V Table 1: Design Specifications of Wide Swing Folded- Cascode OTA A. Single Stage OTA Single stage OTA is as shown in fig 2. This single stage OTA is less complex compare to other types of OTA topology. Because of its less complex property its speed is higher compare to other topology. The drawback of this type All rights reserved by 632

2 of OTA is lower gain due to the fact that output impedance of this type configuration is relatively low. Fig. 2: Block Diagram of Single Stage OTA[5] B. Two Stage OTA As shown in fig.3 that is basic circuit diagram of two stage OTA. In which M1and M2 use for differential input pair, M3 and M4 forms current mirror. The drawback of having limited gain of the single stage OTA is overcome by two stages OTA. In this type of configuration two stages are used. One of them provides high gain followed by second stage which provides high voltage swing. This modification increases the gain up to some certain extent compared to single stage OTA. But this addition of extra stage also increases complexity and the increased complexity will reduce the speed in comparison to a single stage amplifier. Transistors are stacked on top of each other. The transistors are called "cascode", and will increase the output impedance and thereby increase the gain. It provides higher speed. It has lower power consumption. D. Folded Cascode OTA The folded cascode amplifier is in a way some sort of a compromise between the two-stage amplifier and the telescopic cascode amplifier. It permits low supply voltage, still having a rather high output voltage swing and the input and output common mode levels can be designed to be equal. Its gain is lower than for the two-stage and its speed is lower than for the telescopic cascode, which makes it a good compromise between these two amplifiers. Fig. 5: Block Diagram of Folded Cascode OTA Fig. 3: Block Diagram of Two Stage OTA[5] C. Telescopic OTA The Telescopic OTA configuration is as shown in fig 4. Single Stage OTA have low gain due to fact that it has low output impedance, One way of increasing the impedance is to add some transistors at the output including using an active load. Fig. 4: Block Diagram of Telescopic OTA[5] Fig. 6: Schematic of Folded-Cascode OTA in S-edit E. Equations 1) Slew rate 2) Positive CMR Slew rate= I out V in (max)=v DD -[ I 5 β 3 ] V TO3 (max)+v T1 (max) 3) Negative CMR 4) Slew rate V in (min)=v ss +V DS5 (sat)+[ I 5 1 ] β 1 2 +V T1 (max) Slew rate= I 3 5) Bias currents I 4 = I 5 = 1.2I 3 to1.5i 3 = 125μA All rights reserved by 633

3 6) Using max output voltage S 5 = 2I 5 = 80, S P V 7 = 2I 7 SD5 = 47 P V SD7 7) Using minimum output voltage V DS9 (sat)=v DS11 (sat)= V out (min)+ V SS = S 11 = 2I 11 = 24, S N V 9 = 2I 9 DS11 = 24 N V DS9 Let S 10 = S 11 and S 8 = S 9 8) Self-bias current R 1 = V SD14(sat) = 2000and R I 2 = V SD8(sat) = I 6 9) Gain bandwidth GB = g m1 S 1 = S 2 = g2 ml K N I 3 10) Using maximum input CM S 4 = S 5 = 11) Using minimum input CM = GB2 C 2 L K N I 3 = I 4 K P (V DD V in (max) + V T1 ) = 10.2 S 3 = 2I 3 K N [V in(min) V SS I 3 K N S 1 ] F. Parameters Values I bias 1 20μA I bias 2 20μA CL 1pf Table 2: Parameter Values Transistor W (μm) L(μm) M M M3 7 1 M4 7 1 M5 7 1 M6 7 1 M M M M M M Table 3: Parameter Values IV. SIMULATED RESULTS 2 = 140 The output waveform and simulation results of various components of Wide Swing Folded-Cascode OTA is shown in figure 7, 8, 9, 10, 11, 12, 13, 14 and 15 and Table1 respectively. Fig. 7: Simulation Result of Gain margine Gain=62 db Fig. 8: Simulation Result of Phase margine Phase margine=45 degree Fig. 9: Simulation Result of Common mode gain CMRR(dB) = differential gain common mode gain = 62dB-(-72dB)= 134dB All rights reserved by 634

4 Fig. 10: Simulation Result of PSRR PSRR = 80dB Fig. 13: Simulation Result of DC Analysis Fig. 11: Simulation Result of DC Analysis Fig. 14: Simulation Result of Power dissipation Fig. 12: Simulation Result of DC Analysis Fig. 15: Simulation Result of Noise Analysis Parameters Paper-1 Paper-2 Paper-3 Paper-4 Paper-5 Proposed Work Gain (db) 80.5dB 74.6 db 92dB db - 62dB Gain bandwidth (GBW) 452 MHz MHz 69 MHz MHz 10 MHz 10 MHz Slew Rate (V/μs) 5 V/μS 1.93 V/μS 16.5 V/μS - 10 V/μS - PSRR(dB) db db 2 db - 60 db 80 db Power dissipation nm (nm) nm Table 2: Comparison of Results with Specification V. CONCLUSION designed with 62 db Gain smargine, 45 degree Phase margine, 80 db PSRR and 0.096nm Power dissipation. In this paper Wide Swing Folded-Cascode OTA has been designed and simulated using 180 nm CMOS technology of tanner tool. Thus Wide Swing Folded-Cascode OTA is All rights reserved by 635

5 REFERENCES [1] RaghuwarSharan Gautam1, P. K. Jain2, D. S. Ajnar3, Design of Low Voltage Folded Cascode Operational Transconductance Amplifier with Optimum Range of Gain and GBW in 0.18μm Technology International Journal of Engineering Research and Applications (IJERA) ISSN: Vol. 2, Issue 1,Jan-Feb [2] I. Toihria and T. Tixier, Improved PSRR and Output Voltage Swing Characteristics of Folded Cascode OTA International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015 Engineering and Technology Publishing doi: /ijeee. [3] H. DaoudDammak, S. Bensalem, S. Zouari, and M. Loulou, Design of Folded Cascode OTA in Different Regions of Operation Through gm/id Methodology International Journal of Electrical and Electronics Engineering 1: [4] Tapsi Singh1, Manjit Kaur2, Gurmohan Singh3, Design and Analysis of CMOS Folded Cascode OTA Using Gm/ID Technique International Journal of Electronics and Computer Science Engineering ISSN ISSN [5] Er. Rajni, Design of High Gain Folded-Cascode Operational Amplifier Using 1.25 um CMOS Technology International Journal of Scientific & Engineering Research Volume 2, Issue 11, November [6] SanjeevSharma, PawandeepKaur, Tapsi Singh, Design and Analysis of Gain Boosted Recycling Folded Cascode OTA International Journal of Computer Applications ( ) Volume 76 No.7, August [7] P.E. Allen, D.R. Holberg, A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Projsect Report. [8] SUDHIR M. MALLYA, MEMRER, IEEE, AND JOSEPH H. NEVIN, MEMBER, IEEE, Design Procedures for a Fully Differential Folded-Cascode CMOS Operational Amplifier IEEEJOURNAL OF SOLID-STATE CIRCUJTS, VOL. 24, NO. 6, DECEMBER1989. All rights reserved by 636

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 2321-0613 Design & Analysis of CMOS Telescopic Operational Transconductance Amplifier (OTA) with

More information

Design and Implementation of High Gain, High Bandwidth CMOS Folded cascode Operational Transconductance Amplifier

Design and Implementation of High Gain, High Bandwidth CMOS Folded cascode Operational Transconductance Amplifier Design and Implementation of High Gain, High Bandwidth CMOS Folded cascode Operational Transconductance Amplifier Jalpa solanki, P.G Student, Electronics and communication, SPCE Visnagar, India jalpa5737@gmail.com

More information

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 ISSN(Online): 2348-4470 ISSN(Print) : 2348-6406 International Journal of Advance Engineering and Research Development Volume 1, Issue 11, November -2014

More information

Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier

Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier Kalpesh B. Pandya 1, Kehul A. shah 2 1 Gujarat Technological University, Department of Electronics & Communication,

More information

Design and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters

Design and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 1 Ver. II (Jan. Feb. 2016), PP 47-53 www.iosrjournals.org Design and Simulation

More information

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

ISSN:

ISSN: 1722 Design and Analysis of High Gain CMOS Telescopic OTA in 180nm Technology Arti R. Pandya 1, Dr. Kehul A. Shah 2 1,2 Department of Electronics & Communication, Sankalchand Patel University, Visnagar,

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Improved PSRR and Output Voltage Swing Characteristics of Folded Cascode OTA

Improved PSRR and Output Voltage Swing Characteristics of Folded Cascode OTA International Journal of Electronics Electrical Engineering ol. 3, No. 4, August 2015 Improved PSRR Output oltage Swing Characteristics of Folded Cascode I. Toihria T. Tixier Laboratory of Electronics-Telecommunications-Computer

More information

Abstract :In this paper a low voltage two stage Cc. 1. Introduction. 2.Block diagram of proposed two stage operational amplifier and operation

Abstract :In this paper a low voltage two stage Cc. 1. Introduction. 2.Block diagram of proposed two stage operational amplifier and operation Small signal analysis of two stage operational amplifier on TSMC 180nm CMOS technology with low power dissipation Jahid khan 1 Ravi pandit 1, 1 Department of Electronics & Communication Engineering, 1

More information

Enhancing the Slew rate and Gain Bandwidth of Single ended CMOS Operational Transconductance Amplifier using LCMFB Technique

Enhancing the Slew rate and Gain Bandwidth of Single ended CMOS Operational Transconductance Amplifier using LCMFB Technique ISSN: 2278 1323 Enhancing the Slew rate and Gain Bandwidth of Single ended CMOS Operational Transconductance Amplifier using LCMFB Technique 1 Abhishek Singh, 2 Sunil Kumar Shah, 3 Pankaj Sahu 1 abhi16.2007@gmail.com,

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

DESIGN AND SIMULATION OF CURRENT FEEDBACK OPERATIONAL AMPLIFIER IN 180nm AND 90nm CMOS PROCESSES

DESIGN AND SIMULATION OF CURRENT FEEDBACK OPERATIONAL AMPLIFIER IN 180nm AND 90nm CMOS PROCESSES ISSN: 95-1680 (ONINE) ICTACT JOURNA ON MICROEECTRONICS, JUY 017, VOUME: 0, ISSUE: 0 DOI: 10.1917/ijme.017.0069 DESIGN AND SIMUATION OF CURRENT FEEDBACK OPERATIONA AMPIFIER IN 180nm AND 90nm CMOS PROCESSES

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA) Circuits and Systems, 2013, 4, 11-15 http://dx.doi.org/10.4236/cs.2013.41003 Published Online January 2013 (http://www.scirp.org/journal/cs) A New Design Technique of CMOS Current Feed Back Operational

More information

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Performance analysis of Low power CMOS Op-Amp Anand Kumar Singh *1, Anuradha 2, Dr. Vijay Nath 3 *1,2 Department of

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1

Lecture 200 Cascode Op Amps - II (2/18/02) Page 200-1 Lecture 200 Cascode Op Amps II (2/18/02) Page 2001 LECTURE 200 CASCODE OP AMPS II (READING: GHLM 443453, AH 293309) Objective The objective of this presentation is: 1.) Develop cascode op amp architectures

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

Sensors & Transducers Published by IFSA Publishing, S. L.,

Sensors & Transducers Published by IFSA Publishing, S. L., Sensors & Transducers Published by IFSA Publishing, S. L., 208 http://www.sensorsportal.com Fully Differential Operation Amplifier Using Self Cascode MOSFET Structure for High Slew Rate Applications Kalpraj

More information

G m /I D based Three stage Operational Amplifier Design

G m /I D based Three stage Operational Amplifier Design G m /I D based Three stage Operational Amplifier Design Rishabh Shukla SVNIT, Surat shuklarishabh31081988@gmail.com Abstract A nested Gm-C compensated three stage Operational Amplifier is reviewed using

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

Design and Analysis of Two-Stage Op-Amp in 0.25µm CMOS Technology

Design and Analysis of Two-Stage Op-Amp in 0.25µm CMOS Technology Design and Analysis of Two-Stage Op-Amp in 0.25µm CMOS Technology 1 SagarChetani 1, JagveerVerma 2 Department of Electronics and Tele-communication Engineering, Choukasey Engineering College, Bilaspur

More information

High Gain Amplifier Design for Switched-Capacitor Circuit Applications

High Gain Amplifier Design for Switched-Capacitor Circuit Applications IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 7, Issue 5, Ver. I (Sep.-Oct. 2017), PP 62-68 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org High Gain Amplifier Design for

More information

Design and Simulation of Low Dropout Regulator

Design and Simulation of Low Dropout Regulator Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,

More information

Design of High Gain Low Voltage CMOS Comparator

Design of High Gain Low Voltage CMOS Comparator Design of High Gain Low Voltage CMOS Comparator Shahid Khan 1 1 Rustomjee Academy for Global Careers Abstract: Comparators used in most of the analog circuits like analog to digital converters, switching

More information

REVIEW OF FOLDED CASCODE & TELESCOPIC OP-AMP

REVIEW OF FOLDED CASCODE & TELESCOPIC OP-AMP REVIEW OF FOLDED CASCODE & TELESCOPIC OP-AMP Achala Shukla 1, Ankur Girolkar 1, Jagveer Verma 2 M.Tech Scholar [DE], Dept. of ECE, Chouksey Engineering College, Bilaspur, Chhattisgarh, India 1 Assistant

More information

Design and Analysis of High Gain CMOS Telescopic OTA in 180nm Technology for Biomedical and RF Applications

Design and Analysis of High Gain CMOS Telescopic OTA in 180nm Technology for Biomedical and RF Applications Design and Analysis of High Gain CMOS Telescopic OTA in 180nm Technology for Biomedical and RF Applications Sarin V Mythry 1, P.Nitheesha Reddy 2, Syed Riyazuddin 3, T.Snehitha4, M.Shamili 5 1 Faculty,

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2 ISSN 2277-2685 IJESR/October 2014/ Vol-4/Issue-10/682-687 Thota Keerthi et al./ International Journal of Engineering & Science Research DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Low power OTA 1 Two-Stage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1

More information

Analysis of Two Stage Folded Cascode Operational Amplifier in 90nm Technology

Analysis of Two Stage Folded Cascode Operational Amplifier in 90nm Technology Analysis of Two Stage Folded Cascode Operational Amplifier in 90nm Technology Jasbir Kaur 1, Neha Shukla 2 Assistant Professor, P.E.C University of Technology, Chandigarh, India 1 P.G Scholar, P.E.C University

More information

Design and implementation of two stage operational amplifier

Design and implementation of two stage operational amplifier Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru

More information

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida An Ultra Low-Voltage CMOS Self-Biased OTA Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida simransinghh386@gmail.com Priyanka Goyal Faculty Associate, School Of ICT Gautam Buddha

More information

Design of High Gain Two stage Op-Amp using 90nm Technology

Design of High Gain Two stage Op-Amp using 90nm Technology Design of High Gain Two stage Op-Amp using 90nm Technology Shaik Aqeel 1, P. Krishna Deva 2, C. Mahesh Babu 3 and R.Ganesh 4 1 CVR College of Engineering/UG Student, Hyderabad, India 2 CVR College of Engineering/UG

More information

A CMOS Low-Voltage, High-Gain Op-Amp

A CMOS Low-Voltage, High-Gain Op-Amp A CMOS Low-Voltage, High-Gain Op-Amp G N Lu and G Sou LEAM, Université Pierre et Marie Curie Case 203, 4 place Jussieu, 75252 Paris Cedex 05, France Telephone: (33 1) 44 27 75 11 Fax: (33 1) 44 27 48 37

More information

CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University

CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer

More information

Op-Amp Design Project EE 5333 Analog Integrated Circuits Prof. Ramesh Harjani Department of ECE University of Minnesota, Twin Cities Report prepared

Op-Amp Design Project EE 5333 Analog Integrated Circuits Prof. Ramesh Harjani Department of ECE University of Minnesota, Twin Cities Report prepared Op-Amp Design Project EE 5333 Analog Integrated Circuits Prof. Ramesh Harjani Department of ECE University of Minnesota, Twin Cities Report prepared by: Nirav Desai (4280229) 1 Contents: 1. Design Specifications

More information

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.

More information

ECEN 607 (ESS) Texas A&M University. Edgar Sánchez-Sinencio TI J. Kilby Chair Professor

ECEN 607 (ESS) Texas A&M University. Edgar Sánchez-Sinencio TI J. Kilby Chair Professor 1 ECEN 607 (ESS) Texas A&M University Edgar Sánchez-Sinencio TI J. Kilby Chair Professor Next we review the conventional Op Amp Design frequency response compensation techniques and also we introduced

More information

ISSN:

ISSN: 468 Modeling and Design of a CMOS Low Drop-out (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore-560064,

More information

Performance Evaluation of Different Types of CMOS Operational Transconductance

Performance Evaluation of Different Types of CMOS Operational Transconductance www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 10 October,2014 Page No.8839-8843 Performance Evaluation of Different Types of CMOS Operational Transconductance

More information

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL

More information

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating Analogue Integration AISC11 High Voltage and Temperature Auto Zero Op-Amp Cell Rev.1 12-1-5 Features High Voltage Operation: 4.5-3 V Precision, Auto-Zeroed Input Vos High Temperature Operation Low Quiescent

More information

LOW POWER FOLDED CASCODE OTA

LOW POWER FOLDED CASCODE OTA LOW POWER FOLDED CASCODE OTA Swati Kundra 1, Priyanka Soni 2 and Anshul Kundra 3 1,2 FET, Mody Institute of Technology & Science, Lakshmangarh, Sikar-322331, INDIA swati.kundra87@gmail.com, priyankamec@gmail.com

More information

Performance Enhanced Op- Amp for 65nm CMOS Technologies and Below

Performance Enhanced Op- Amp for 65nm CMOS Technologies and Below Aldo Pena Perez and F. Maloberti, Performance Enhanced Op- Amp for 65nm CMOS Technologies and Below, IEEE Proceeding of the International Symposium on Circuits and Systems, pp. 21 24, May 212. 2xx IEEE.

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers ECEN 474/704 Lab 7: Operational Transconductance Amplifiers Objective Design, simulate and layout an operational transconductance amplifier. Introduction The operational transconductance amplifier (OTA)

More information

DESIGN AND ANALYSIS OF SECOND GENERATION CURRENT CONVEYOR BASED LOW POWER OPERATIONAL TRANSCONDUCTANCE AMPLIFIER

DESIGN AND ANALYSIS OF SECOND GENERATION CURRENT CONVEYOR BASED LOW POWER OPERATIONAL TRANSCONDUCTANCE AMPLIFIER INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 6545(Print), ISSN 0976 6545(Print) ISSN 0976 6553(Online)

More information

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,

More information

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department

More information

James Lunsford HW2 2/7/2017 ECEN 607

James Lunsford HW2 2/7/2017 ECEN 607 James Lunsford HW2 2/7/2017 ECEN 607 Problem 1 Part A Figure 1: Negative Impedance Converter To find the input impedance of the above NIC, we use the following equations: V + Z N V O Z N = I in, V O kr

More information

Low voltage, low power, bulk-driven amplifier

Low voltage, low power, bulk-driven amplifier University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2009 Low voltage, low power, bulk-driven amplifier Shama Huda University

More information

TWO AND ONE STAGES OTA

TWO AND ONE STAGES OTA TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +39-38-50505; fax. +39-038-505677 474 EE Department

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

Design of Low Voltage, Low Power Rail to Rail Operational Transconductance Amplifier with enhanced Gain and Gain Bandwidth Product

Design of Low Voltage, Low Power Rail to Rail Operational Transconductance Amplifier with enhanced Gain and Gain Bandwidth Product Design of Low Voltage, Low Power Rail to Rail Operational Transconductance Amplifier with enhanced Gain and Gain Bandwidth Product Sakshi Dhuware 1, Mohammed Arif 2 1 M-Tech.4 th sem., GGITS Jabalpur,

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Revision History. Contents

Revision History. Contents Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe re-simulation, add supplement

More information

A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP

A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP Noushin Ghaderi 1, Khayrollah Hadidi 2 and Bahar Barani 3 1 Faculty of Engineering, Shahrekord University, Shahrekord, Iran

More information

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA Analog Integrated Circuits and Signal Processing, 43, 127 136, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA IVAN

More information

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures

More information

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology

More information

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,

More information

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1 Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu Gireeja D. Amin Assistant Professor L. C. Institute of

More information

University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier

University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim El-Saadi, Mohammed El-Tanani, University of Michigan Abstract This paper

More information

ISSN Page 32. Figure 1.1: Black box representation of the basic current conveyor.

ISSN Page 32. Figure 1.1: Black box representation of the basic current conveyor. DESIGN OF CURRENT CONVEYOR USING OPERATIONAL AMPLIFIER Nidhi 1, Narender kumar 2 1 M.tech scholar, 2 Assistant Professor, Deptt. of ECE BRCMCET, Bahal 1 nidhibajaj44@g mail.com Abstract-- The paper focuses

More information

CMOS Operational Amplifier

CMOS Operational Amplifier The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In

More information

PAD: Procedural Analog Design Tool D. Stefanovic, M. Kayal, M. Pastre

PAD: Procedural Analog Design Tool D. Stefanovic, M. Kayal, M. Pastre PAD: Procedural Analog Design Tool D. Stefanovic, M. Kayal, M. Pastre Swiss Federal Institute of Technology, Electronic Labs, STI/IMM/LEG, Lausanne, Switzerland Procedural Analog Design Tool Interactive

More information

A Low-Voltage, Low-Power, Two-Stage Amplifier for Switched-Capacitor Applications in 90 nm CMOS Process

A Low-Voltage, Low-Power, Two-Stage Amplifier for Switched-Capacitor Applications in 90 nm CMOS Process A Low-Voltage, Low-Power, Two-Stage Amplifier for Switched-Capacitor Applications in 90 nm CMOS Process S. H. Mirhosseini* and A. Ayatollahi* Downloaded from ijeee.iust.ac.ir at 16:45 IRDT on Tuesday April

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier RESEARCH ARTICLE OPEN ACCESS Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier Akshay Kumar Kansal 1, Asst Prof. Gayatri Sakya 2 Electronics and Communication Department, 1,2

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 9 Operational Amplifiers Analog IC Analysis and Design 9- Chih-Cheng Hsieh Outline. General Consideration. One-Stage Op Amps / Two-Stage Op Amps 3. Gain Boosting 4. Common-Mode Feedback 5. Input

More information

Comparative Analysis of Leakage Power Reduction in Low Power Bio Instrumentation Amplifier Using 130nm MOSFET

Comparative Analysis of Leakage Power Reduction in Low Power Bio Instrumentation Amplifier Using 130nm MOSFET I J C T A, 9(34) 2016, pp. 467-474 International Science Press Comparative Analysis of Leakage Power Reduction in Low Power Bio Instrumentation Amplifier Using 130nm MOSFET G. Sathiyabama 1 and S.Ranjith

More information

Pankaj Naik Electronic and Instrumentation Deptt. SGSITS, Indore, India. Priyanka Sharma Electronic and. SGSITS, Indore, India

Pankaj Naik Electronic and Instrumentation Deptt. SGSITS, Indore, India. Priyanka Sharma Electronic and. SGSITS, Indore, India Designing Of Current Mode Instrumentation Amplifier For Bio-Signal Using 180nm CMOS Technology Sonu Mourya Electronic and Instrumentation Deptt. SGSITS, Indore, India Pankaj Naik Electronic and Instrumentation

More information

AN OPERATIONAL AMPLIFIER WITH RECYCLING FOLDED CASCODE TOPOLOGY AND ADAPTIVE BIAISNG

AN OPERATIONAL AMPLIFIER WITH RECYCLING FOLDED CASCODE TOPOLOGY AND ADAPTIVE BIAISNG AN OPERATIONAL AMPLIFIER WITH RECYCLING FOLDED CASCODE TOPOLOGY AND ADAPTIVE BIAISNG Saumya Vij 1, Anu Gupta 2 and Alok Mittal 3 1,2 Electrical and Electronics Engineering, BITS-Pilani, Pilani, Rajasthan,

More information

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters Circuits and Systems, 2011, 2, 183-189 doi:10.4236/cs.2011.23026 Published Online July 2011 (http://www.scirp.org/journal/cs) An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application

More information

An Improved Recycling Folded Cascode OTA with positive feedback

An Improved Recycling Folded Cascode OTA with positive feedback An Improved Recycling Folded Cascode OTA with positive feedback S.KUMARAVEL, B.VENKATARAMANI Department of Electronics and Communication Engineering National Institute of Technology Trichy Tiruchirappalli

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM -v in /2 R 1 C L (a) (b) R 2 ECE415/EO

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

Design of Rail-to-Rail Op-Amp in 90nm Technology

Design of Rail-to-Rail Op-Amp in 90nm Technology IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349-784X Design of Rail-to-Rail Op-Amp in 90nm Technology P R Pournima M.Tech Electronics

More information

Design for MOSIS Education Program

Design for MOSIS Education Program Design for MOSIS Education Program (Research) T46C-AE Project Title Low Voltage Analog Building Block Prepared by: C. Durisety, S. Chen, B. Blalock, S. Islam Institution: Department of Electrical and Computer

More information

Rail to rail CMOS complementary input stage with only one active differential pair at a time

Rail to rail CMOS complementary input stage with only one active differential pair at a time LETTER IEICE Electronics Express, Vol.11, No.12, 1 5 Rail to rail CMOS complementary input stage with only one active differential pair at a time Maria Rodanas Valero 1a), Alejandro Roman-Loera 2, Jaime

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

Design of Low Voltage High Speed Operational Amplifier for Pipelined ADC in 90 nm Standard CMOS Process

Design of Low Voltage High Speed Operational Amplifier for Pipelined ADC in 90 nm Standard CMOS Process Design of Low Voltage High Speed Operational Amplifier for Pipelined ADC in 90 nm Standard CMOS Process Shri Kant M.Tech. (VLSI student), Department of electronics and communication engineering NIT Kurukshetra,

More information

Cascode Bulk Driven Operational Amplifier with Improved Gain

Cascode Bulk Driven Operational Amplifier with Improved Gain Cascode Bulk Driven Operational Amplifier with Improved Gain A.V.D. Sai Priyanka 1, S. Subba Rao 2 P.G. Student, Department of Electronics and Communication Engineering, VR Siddhartha Engineering College,

More information

Topology Selection: Input

Topology Selection: Input Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence

More information

EE Analog and Non-linear Integrated Circuit Design

EE Analog and Non-linear Integrated Circuit Design University of Southern California Viterbi School of Engineering Ming Hsieh Department of Electrical Engineering EE 479 - Analog and Non-linear Integrated Circuit Design Instructor: Ali Zadeh Email: prof.zadeh@yahoo.com

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

Class-AB Low-Voltage CMOS Unity-Gain Buffers

Class-AB Low-Voltage CMOS Unity-Gain Buffers Class-AB Low-Voltage CMOS Unity-Gain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. Ramírez-Angulo Abstract Class-AB circuits, which are able to deal with currents several orders of

More information