PHYSICS - CLUTCH CH 29: ALTERNATING CURRENT.

Size: px
Start display at page:

Download "PHYSICS - CLUTCH CH 29: ALTERNATING CURRENT."

Transcription

1 !!

2 CONCEPT: ALTERNATING VOLTAGES AND CURRENTS BEFORE, we only considered DIRECT CURRENTS, currents that only move in - NOW we consider ALTERNATING CURRENTS, currents that move in Alternating currents are produced by ALTERNATING VOLTAGES - ONLY alternating voltage we will consider is v(t) = V max cos (ωt) This alternating voltage produces an ALTERNATING CURRENT of - i(t) = (ω is the angular frequency of alternations) V I V max I max t t EXAMPLE: In North America, the frequency of AC voltage coming out of household outlets is 60 Hz. If the maximum voltage delivered by an outlet is 120 V, what is the voltage at 0.04 s? Page 2

3 PRACTICE: ALTERNATING CURRENT An AC source produces an alternating current in a circuit with the function i(t) = (1.5 A) cos[(250 s 1 )t]. What is the frequency of the source? What is the maximum current in the circuit? EXAMPLE: AC CIRCUIT GRAPHS Current and voltage in an AC circuit are graphed in the following figure. What are the functions that describe these values? I, V 11 V A t 0.05 s Page 3

4 PRACTICE: ANGULAR FREQUENCY OF ALTERNATING CURRENT The current in an AC circuit takes 0.02 s to change direction. What is the angular frequency of the AC source? Page 4

5 CONCEPT: RMS CURRENT AND VOLTAGE In alternating current circuits, what is the average of the voltage and the current? V I V max I max t t - The average of the voltage and the current is A better average value is the RMS VALUE, the To find the RMS value, you take the square, then the average, then the square root X X 2 (X 2 ) av (X 2 ) av The RMS CURRENT and VOLTAGE are defined by - I RMS = I max 2 - V RMS = V max 2 or or I max = 2I RMS V max = 2V RMS EXAMPLE: If the RMS voltage of an outlet in the US is 120 V, what is the maximum voltage of an outlet? If you complete a simple circuit with this AC source by connecting a 12 Ω resistor, what is the RMS and maximum current in this circuit? Page 5

6 PRACTICE: RMS CURRENT IN AN AC CIRCUIT An AC source operates with a 0.05 s period s after the current is at a maximum, the current is measured to be 1.4 A. What is the RMS current of this AC circuit? Page 6

7 CONCEPT: PHASORS A PHASOR is just a rotating vector, whose information lies in its X-COMPONENT. - Phasors make representing oscillating information, like voltage and current, easy: V t EXAMPLE 1: For the following voltage phasor, is the voltage positive or negative? ω Phasors obey all the same rules as vectors, such as addition, subtraction, etc. - To find the magnitude of a phasor, you can sum its components using the Pythagorean theorem, as with vectors. EXAMPLE 2: In the following phasor diagram, find the direction of the net phasor for the three phasors shown. Is the resulting quantity the phasor describes positive or negative? Page 7

8 PRACTICE: ANGULAR FREQUENCY OF A PHASOR The following phasor diagram shows an arbitrary phasor during its first rotation. Assuming that it begins with an angle of 0 o, if the phasor took s to get to its current position, what is the angular frequency of the phasor? 30 o EXAMPLE: CONVERTING BETWEEN A FUNCTION AND A PHASOR The current in an AC circuit is given by i(t) = (1.5 A) cos[(377 s 1 )t]. Draw the phasor that corresponds to this current at t = 15 ms, assuming the phasor begins at 0 o. Page 8

9 PRACTICE: DRAWING A VOLTAGE PHASOR An AC source oscillates with an angular frequency of 120 s -1. If the initial voltage phasor is shown in the following phasor diagram, draw the voltage phasor after 0.01 s. V PRACTICE: INSTANTANEOUS VALUE FROM A PHASOR A phasor of length 4 begins at 0 o. If it is rotating at ω = 250 s 1, what is the value of the phasor after s? Page 9

10 CONCEPT: RESISTORS IN AC CIRCUITS Remember! In an AC circuit, the current produced by the AC source is - i(t) = i MAX cos (ωt) Ohm s Law will give us the voltage across the resistor at any point in time: - v R (t) = i(t)r The VOLTAGE ACROSS THE RESISTOR is - v R (t) = EXAMPLE: A 10 Ω resistor is plugged into an outlet with an RMS voltage of 120 V. What is the maximum current in the circuit? What about the RMS current? For MULTIPLE resistors in an AC circuit, you would just combine them into a single, equivalent resistor, as before. Page 10

11 PRACTICE: OSCILLATING VOLTAGE ACROSS A RESISTOR The voltage across a resistor is found to be given by v R (t) = (10 V) cos[(120 s 1 )t]: a) At what frequency does the AC course operate? b) If the resistance is 12 Ω, what is the maximum current in this circuit? c) What is the RMS voltage of the AC source? EXAMPLE: RESISTORS IN PARALLEL IN AN AC CIRCUIT What is the current through the 10 Ω resistor in the following circuit? (5 V) cos[(200 s 1 )t] 5 Ω 3 Ω 10 Ω Page 11

12 CONCEPT: PHASORS FOR RESISTORS Remember! The voltage and current across a resistor at any time t is - i(t) = i MAX cos (ωt) - v R (t) = i MAX R cos (ωt) Because both cosines have the same angle (ωt), they are said to be IN PHASE. - This is reflected in their phasors: I V R I V R ωt ωt ωt Voltage across a resistor is IN PHASE with the current EXAMPLE: An AC source with an angular frequency of 20 s -1 is connected to a resistor with the circuit broken. 0.2 s after the circuit is completed, draw the voltage phasor and the current phasor. Page 12

13 PRACITCE: RESISTOR VOLTAGE AND CURRENT PHASORS A 12 Ω resistor is connected to an AC source. If the resistor s voltage phasor is initially at 0 o, and the figure below shows the phasor after 0.04 s, answer the following: a) What is the angular frequency of the source? Assume the phasor is on its first rotation. b) What does the current phasor diagram look like? c) What is the current in the circuit at this point (t = 0.04 s)? 5 V 42 o Page 13

14 CONCEPT: CAPACITORS IN AC CIRCUITS The current in an AC circuit at any time is - i(t) = Remember! The voltage across a capacitor is v C = - Using calculus, one can show q(t) = i MAX ω cos (ωt π 2 ) The VOLTAGE ACROSS A CAPACITOR in an AC circuit is - v C (t) = This means, if current and voltage across the capacitor are plotted, the voltage of a capacitor LAGS the current by 90 o : V I t The MAXIMUM voltage across the capacitor is V C = - This result looks A LOT like Ohm s Law, if we have some resistance-like quantity 1/ωC We define the CAPACITIVE REACTANCE as X C = 1/ωC EXAMPLE: An AC power source delivers a maximum voltage of 120 V at 60 Hz. What is the maximum current in a circuit with this power source connected to a 100 µf capacitor? Page 14

15 PRACTICE: MAXIMUM CHARGE IN A CAPACITOR AC CIRCUIT An AC source operates at a maximum voltage of 120 V and a frequency of 60 Hz. If it is connected to a 175 µf capacitor, what is the maximum charge stored on the capacitor? EXAMPLE: CURRENT IN A PARALLEL RC AC CIRCUIT An AC source operating at 160 s -1 and a maximum voltage of 15 V is connected in parallel to a 5 Ω resistor and in parallel to a 1.5 mf capacitor. What is the RMS current through the capacitor? Page 15

16 PRACTICE: OSCILLATION FREQUENCY OF A CAPCITOR CIRCUIT A 300 µf capacitor is connected to an AC source operating at an RMS voltage of 120 V. If the maximum current in the circuit is 1.5 A, what is the oscillation frequency of the AC source? Page 16

17 CONCEPT: PHASORS FOR CAPACITORS Remember! The voltage and current across a capacitor at any time t is - i(t) = i MAX cos (ωt) - v c (t) = i MAX X C cos (ωt π 2 ) Because both cosines have a DIFFERENT angle, they are said to be OUT OF PHASE The voltage LAGS the current - This is reflected in their phasors: I I ωt ωt π 2 V C V C Voltage across a capacitor LAGS the current EXAMPLE: An AC source is connected to a capacitor. At a particular instant in time, the voltage across the capacitor is positive and increasing in magnitude. Draw the phasors for voltage and current that correspond to this time. Page 17

18 PRACTICE: PHASORS IN A CAPACITOR CIRCUIT An AC source operates at a maximum voltage of 60 V and is connected to a 0.7 mf capacitor. If the current across the capacitor is i(t) = i MAX cos[(100 s 1 )t], a) What is i MAX? b) Draw the phasors for voltage across the capacitor and current in the circuit at t = 0.02 s. Assume that the current phasor begins at 0 o. Page 18

19 CONCEPT: INDUCTORS IN AC CIRCUITS Remember! The current in an AC circuit at any time is - i(t) = Remember! The voltage across an inductor is v L = - Using calculus, one can show Δi Δt (t) = i MAXω cos (ωt + π 2 ) The VOLTAGE ACROSS AN INDUCTOR in an AC circuit is - v L (t) = This means, if current and voltage across the capacitor are plotted, the voltage of a capacitor LEADS the current by 90 o : V I t The MAXIMUM voltage across the inductor is V L = - This result looks A LOT like Ohm s Law, if we have some resistance-like quantity ωl We define the INDUCTIVE REACTANCE as X L = ωl EXAMPLE: An AC power source delivers a maximum voltage of 120 V at 60 Hz. If an unknown inductor is connected to this source, and the maximum current in the circuit is found to be 5 A, what is the inductance of the inductor? Page 19

20 EXAMPLE: INDUCTORS AND GRAPHS The voltage across, and the current through, an inductor connected to an AC source are shown in the following graph. Given the information in the graph, answer the following questions: a) What is the peak voltage of the AC source? b) What is the frequency of the AC source? c) What is the inductive reactance of the circuit? 10 V -2.5 A t 0.1 s PRACTICE: CURRENT IN INDUCTOR AC CIRCUITS AT DIFFERENT FREQUENCIES Will a frequency f = 60 Hz or ω = 75 s 1 produce a larger max current in an inductor connected to an AC source? Page 20

21 CONCEPT: PHASORS FOR INDCUTORS Remember! The voltage and current across an inductor at any time t is - i(t) = i MAX cos (ωt) - v L (t) = i MAX X L cos (ωt + π 2 ) Because both cosines have a DIFFERENT angle, they are said to be OUT OF PHASE The current LAGS the voltage - This is reflected in their phasors: I V L V L I ωt ωt + π 2 Voltage across an inductor LEADS the current EXAMPLE: An AC source is connected to an inductor. At a particular instant in time, the current in the circuit is negative and increasing in magnitude. Draw the phasors for voltage and current that correspond to this instant in time. Page 21

22 PRACITCE: PHASORS IN A INDUCTOR CIRCUIT An AC source operates at a maximum voltage of 75 V and is connected to a 0.4 H inductor. If the current across the inductor is i(t) = i MAX cos[(450 s 1 )t], a) What is i MAX? b) Draw the phasors for voltage across the inductor and current in the circuit at t = 4.2 ms. Assume that the current phasor begins at 0 o. Page 22

23 CONCEPT: IMPEDANCE IN AC CIRCUITS We know how to find the current in any AC circuit with ONE element It s just the maximum voltage divided by the There are two types of circuits: series circuits and parallel circuits. - Whenever an AC circuit has multiple elements in series, the phasors line up - Whenever an AC circuit has multiple elements in parallel, the phasors line up Consider an AC source connected in series to a resistor and a capacitor. - In this case, the maximum voltage across the resistor and capacitor, V RC, will NOT be equal to V R + V C - These maximum voltages, V R and V C, occur at different times - Instead, the maximum voltage V RC will be the of the voltage phasors This leads us to V RC = I MAX R 2 + X C 2 = I MAX Z The IMPEDENCE in an AC circuit, Z, acts as the effective reactance in a circuit with multiple elements The MAXIMUM CURRENT output by the source is ALWAYS I MAX = EXAMPLE: What s the impedance of an AC circuit with a resistor and inductor in series? Page 23

24 EXAMPLE: IMPEDANCE OF A PARALLEL LR AC CIRCUIT What s the impedance of a parallel LR AC circuit? PRACTICE: IMPEDANCE OF A PARALLEL RC AC CIRCUIT What s the impedance of a parallel RC AC circuit? Page 24

25 PRACTICE: CURRENT IN A PARALLEL RC CIRCUIT An AC source operates at a maximum voltage of 120 V and an angular frequency of 377 s -1. If this source is connected in parallel to a 15 Ω resistor and in parallel to a 0.20 mf capacitor, answer the following questions: a) What is the maximum current produced by the source? b) What is the maximum current through the resistor? c) What is the maximum current through the capacitor? Page 25

26 CONCEPT: LRC CIRCUITS IN SERIES In a series LRC circuit, the through each element is the same In a DC circuit, we would simply say that V LRC = V L + V R + V C, since they are all in series - In an AC circuit, this isn t true, since the maximum voltages occur at different times In a series LRC circuit, the MAXIMUM voltage is - V LRC = The IMPEDANCE, Z, acts like the effective reactance of the circuit. - In a series LRC circuit, the impedance is Z = R 2 + (ωl 1 ωc ) 2 The maximum current produced by the source is given by i MAX = EXAMPLE: A circuit is formed by attaching an AC source in series to an 0.5 H inductor, a 10 Ω resistor and a 500 µf capacitor. If the source operates at a VRMS of 120 V and a frequency of 60 Hz, what is the maximum current in the circuit? Page 26

27 PRACTICE: VOLTAGE IN A SERIES LRC AC CIRCUIT An AC source operates at an RMS voltage of 70 V and a frequency of 85 Hz. If the source is connected in series to a 20 Ω resistor, a 0.15 H inductor and a 500 µf capacitor, answer the following questions: a) What is the maximum current produced by the source? b) What is the maximum voltage across the resistor? c) What is the maximum voltage across the inductor? d) What is the maximum voltage across the capacitor? Page 27

28 CONCEPT: RESONANCE IN SERIES LRC CIRCUITS The impedance of an LRC circuit depends on the frequency of the AC source: - The impedance is large at small ω and at large ω Recall that the impedance is Z = Z X L = ωl X C = 1 ωc R ω - The SMALLEST value of impedance, Z = R, occurs when X C = X L - When this occurs, the circuit is said to be in RESONANCE The RESONANT FREQUENCY of an LRC circuit is ω 0 = 1 LC Since resonance occurs when the impedance is SMALLEST, the current is LARGEST in resonance for series LRC EXAMPLE: An AC circuit is composed of a 10 Ω resistor, a 2 H inductor, and a 1.2 mf capacitor. If it is connected to a power source that operates at a maximum voltage of 120 V, what frequency should it operate at to produce the largest possible current in the circuit? What would the value of this current be? In a series LRC circuit, the current is the same through the inductor and the capacitor - In resonance, since X L = X C The voltage across the inductor and the capacitor is the same Page 28

29 PRACTICE: VOLTAGES IN A SERIES LRC CIRCUIT IN RESONANCE A series LRC circuit is formed with a power source operating at VRMS = 100 V, and is formed with a 15 Ω resistor, a 0.05 H inductor, and a 200 µf capacitor. What is the voltage across the inductor in resonance? The voltage across the capacitor? Page 29

30 CONCEPT: POWER IN AC CIRCUITS In AC circuits, the only element to have an average power not equal to zero is the - Whatever energy enters a(n) / equals the energy that leaves The MAXIMUM power of a resistor is P MAX = Since the power of a resistor is p(t) = i(t) 2 R, we have the following graphs of current and power through a resistor: P I t The AVERAGE POWER emitted by an AC circuit is P av = = EXAMPLE: An AC source operating at a maximum voltage of 120 V is connected to a 10 Ω resistor. What is the average 2 power emitted by this circuit? Is this equivalent to the RMS power, which would be i RMS R? Page 30

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 31 Alternating Current PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 31 Looking forward at How

More information

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals.

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals. Chapter 6: Alternating Current An alternating current is an current that reverses its direction at regular intervals. Overview Alternating Current Phasor Diagram Sinusoidal Waveform A.C. Through a Resistor

More information

Lecture Outline Chapter 24. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 24. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker Chapter 24 Alternating-Current Circuits Units of Chapter 24 Alternating Voltages and Currents Capacitors in AC Circuits RC Circuits Inductors

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 19 Chapter 29 sec. 1,2,5 Fall 2017 Semester Professor Koltick Series and Parallel R and L Resistors and inductors in series: R series = R 1 + R 2 L series = L

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

Exercise 9: inductor-resistor-capacitor (LRC) circuits

Exercise 9: inductor-resistor-capacitor (LRC) circuits Exercise 9: inductor-resistor-capacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction

More information

LRC Circuit PHYS 296 Your name Lab section

LRC Circuit PHYS 296 Your name Lab section LRC Circuit PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. Figure 1 on the following page shows an LRC circuit with the resistor of 1 Ω, the capacitor of 33

More information

Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift

Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift We characterize the voltage (or current) in AC circuits in terms of the amplitude, frequency (period) and phase. The sinusoidal voltage

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

AC Circuits. Nikola Tesla

AC Circuits. Nikola Tesla AC Circuits Nikola Tesla 1856-1943 Mar 26, 2012 Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage of

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112 PHYS 2212 Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8 PHYS 1112 Look over Chapter 21 sections 11-14 Examples 16-18 Good Things To Know 1) How AC generators work. 2) How to find the

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Experiment 7: Undriven & Driven RLC Circuits

Experiment 7: Undriven & Driven RLC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 OBJECTIVES Experiment 7: Undriven & Driven RLC Circuits 1. To explore the time dependent behavior of RLC Circuits, both driven

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

Physics 132 Quiz # 23

Physics 132 Quiz # 23 Name (please (please print) print) Physics 132 Quiz # 23 I. I. The The current in in an an ac ac circuit is is represented by by a phasor.the value of of the the current at at some time time t t is is

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

AC Sources and Phasors

AC Sources and Phasors AC Sources and Phasors Circuits powered by a sinusoidal emf are called AC circuits, where AC stands for alternating current. Steady-current circuits are called DC circuits, for direct current. The instantaneous

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives EXPERIMENT 8 FREQUENCY RESPONSE OF AC CIRCUITS Frequency Response of AC Circuits Structure 81 Introduction Objectives 8 Characteristics of a Series-LCR Circuit 83 Frequency Responses of a Resistor, an

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

Chapter 6: Alternating Current

Chapter 6: Alternating Current hapter 6: Alternating urrent 6. Alternating urrent.o 6.. Define alternating current (A) An alternating current (A) is the electrical current which varies periodically with time in direction and magnitude.

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS. ECE 4501 Power Systems Laboratory Manual Rev OBJECTIVE

2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS. ECE 4501 Power Systems Laboratory Manual Rev OBJECTIVE 2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS 2.1.1 OBJECTIVE To study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average

More information

AC Fundamental. Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it.

AC Fundamental. Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it. AC Fundamental Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it. Fig.: Simple Loop Generator The amount of EMF induced into a coil cutting the magnetic lines

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits C HAP T E O UTLI N E 33 1 AC Sources 33 2 esistors in an AC Circuit 33 3 Inductors in an AC Circuit 33 4 Capacitors in an AC Circuit 33 5 The L Series Circuit 33

More information

ECE 215 Lecture 8 Date:

ECE 215 Lecture 8 Date: ECE 215 Lecture 8 Date: 28.08.2017 Phase Shifter, AC bridge AC Circuits: Steady State Analysis Phase Shifter the circuit current I leads the applied voltage by some phase angle θ, where 0 < θ < 90 ο depending

More information

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P45-1 Experiment P45: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P45 P45_LRCC.SWS EQUIPMENT NEEDED

More information

AC reactive circuit calculations

AC reactive circuit calculations AC reactive circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Physics Class 12 th NCERT Solutions

Physics Class 12 th NCERT Solutions Chapter.7 Alternating Current Class XII Subject Physics 7.1. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. a) What is the rms value of current in the circuit? b) What is the net power consumed

More information

RC circuit. Recall the series RC circuit.

RC circuit. Recall the series RC circuit. RC circuit Recall the series RC circuit. If C is discharged and then a constant voltage V is suddenly applied, the charge on, and voltage across, C is initially zero. The charge ultimately reaches the

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E Review hysics for Scientists & Engineers Spring Semester 005 Lecture 30! If we have a single loop RLC circuit, the charge in the circuit as a function of time is given by! Where q = q max e! Rt L cos "t

More information

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating

More information

Series and Parallel Resonant Circuits

Series and Parallel Resonant Circuits Series and Parallel Resonant Circuits Aim: To obtain the characteristics of series and parallel resonant circuits. Apparatus required: Decade resistance box, Decade inductance box, Decade capacitance box

More information

Question Paper Profile

Question Paper Profile I Scheme Question Paper Profile Program Name : Electrical Engineering Program Group Program Code : EE/EP/EU Semester : Third Course Title : Electrical Circuits Max. Marks : 70 Time: 3 Hrs. Instructions:

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS Name: Partners: PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS The electricity produced for use in homes and industry is made by rotating coils of wire in a magnetic field, which results in alternating

More information

Chapter 28 Alternating Current Circuits

Chapter 28 Alternating Current Circuits History teaches us that the searching spirit of man required thousands of years for the discovery of the fundamental principles of the sciences, on which the superstructure was then raised in a comparatively

More information

AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits. Look for knowledge not in books but in things themselves. W. Gilbert ( ) AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

More information

Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment 1 Alternating Current with Coil and Ohmic Resistors Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

More information

Physics 115. Inductors, Capacitors, and RLC circuits. General Physics II. Session 34

Physics 115. Inductors, Capacitors, and RLC circuits. General Physics II. Session 34 Physics 115 General Physics II Session 34 Inductors, Capacitors, and RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 06/05/13 1 Lecture Schedule

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

Alternating voltages and currents

Alternating voltages and currents Alternating voltages and currents Introduction - Electricity is produced by generators at power stations and then distributed by a vast network of transmission lines (called the National Grid system) to

More information

Lab 9 - AC Filters and Resonance

Lab 9 - AC Filters and Resonance Lab 9 AC Filters and Resonance L9-1 Name Date Partners Lab 9 - AC Filters and Resonance OBJECTIES To understand the design of capacitive and inductive filters. To understand resonance in circuits driven

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.2 Spring 24 Experiment 11: Driven LC Circuit OBJECTIVES 1. To measure the resonance frequency and the quality factor of a driven LC circuit.

More information

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits PHY203: General Physics III Lab page 1 of 5 Lab: AC Circuits OBJECTIVES: EQUIPMENT: Universal Breadboard (Archer 276-169) 2 Simpson Digital Multimeters (464) Function Generator (Global Specialties 2001)*

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK YEAR / SEM : I / II SUBJECT CODE & NAME : EE 1151 CIRCUIT THEORY UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

More information

Experiment 1 LRC Transients

Experiment 1 LRC Transients Physics 263 Experiment 1 LRC Transients 1 Introduction In this experiment we will study the damped oscillations and other transient waveforms produced in a circuit containing an inductor, a capacitor,

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Chapter 25 Alternating Currents

Chapter 25 Alternating Currents Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in

More information

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 145 Name Date Partners Lab 9 INTRODUCTION TO AC CURRENTS AND VOLTAGES V(volts) t(s) OBJECTIVES To learn the meanings of peak voltage and frequency for AC signals. To observe the behavior of resistors in

More information

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1 hapter Seven ALTERNATING URRENT MQ 1 7.1 If the rms current in a 50 Hz ac circuit is 5 A, the value of the current 1/300 seconds after its value becomes zero is (a) 5 2 A (b) 5 3/2 A (c) 5/6 A (d) 5/ 2

More information

AC CIRCUITS. Part 1: Inductance of a Coil. THEORY: If the current in a resistor R, a capacitor C, and/or an inductor L is given by:

AC CIRCUITS. Part 1: Inductance of a Coil. THEORY: If the current in a resistor R, a capacitor C, and/or an inductor L is given by: AC CIRCUITS OBJECTIVE: To study the effect of alternating currents on various electrical quantities in circuits containing resistors, capacitors and inductors. Part 1: Inductance of a Coil THEORY: If the

More information

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

RLC Circuits. Centre College. Physics 230 Lab 8

RLC Circuits. Centre College. Physics 230 Lab 8 ircuits entre ollege Phsics 230 ab 8 1 Preliminaries Objective To stud the electrical characteristics of an alternating current circuit containing a resistor, inductor, and capacitor. Equipment Oscilloscope,

More information

RC and RL Circuits. Figure 1: Capacitor charging circuit.

RC and RL Circuits. Figure 1: Capacitor charging circuit. RC and RL Circuits Page 1 RC and RL Circuits RC Circuits In this lab we study a simple circuit with a resistor and a capacitor from two points of view, one in time and the other in frequency. The viewpoint

More information

RLC Frequency Response

RLC Frequency Response 1. Introduction RLC Frequency Response The student will analyze the frequency response of an RLC circuit excited by a sinusoid. Amplitude and phase shift of circuit components will be analyzed at different

More information

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2018 Objectives At the end of this presentation the learner will be able to: Identify the characteristics of Sine

More information

Lab 1: Basic RL and RC DC Circuits

Lab 1: Basic RL and RC DC Circuits Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

More information

The RLC Series Circuit with an AC Source

The RLC Series Circuit with an AC Source The R Series ircuit with an A Source Introduction Ohm s law and R circuit labs use a steady current. However, this lab uses a different power supply, which is alternating current (A). The previous electronics

More information

ECE215 Lecture 7 Date:

ECE215 Lecture 7 Date: Lecture 7 Date: 29.08.2016 AC Circuits: Impedance and Admittance, Kirchoff s Laws, Phase Shifter, AC bridge Impedance and Admittance we know: we express Ohm s law in phasor form: where Z is a frequency-dependent

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

Lecture 16 Date: Frequency Response (Contd.)

Lecture 16 Date: Frequency Response (Contd.) Lecture 16 Date: 03.10.2017 Frequency Response (Contd.) Bode Plot (contd.) Bode Plot (contd.) Bode Plot (contd.) not every transfer function has all seven factors. To sketch the Bode plots for a generic

More information

Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE

Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE 159 Name Date Partners Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven by AC signals

More information

Contents. Core information about Unit

Contents. Core information about Unit 1 Contents Core information about Unit UEENEEH114A - Troubleshoot resonance circuits......3 UEENEEG102A Solve problems in low voltage AC circuits...5 TextBook...7 Topics and material Week 1...9 2 Core

More information

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCE. BEng (HONS)/MEng BIOMEDICAL ENGINEERING. BEng (HONS) MEDICAL ENGINEERING

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCE. BEng (HONS)/MEng BIOMEDICAL ENGINEERING. BEng (HONS) MEDICAL ENGINEERING LH29 SCHOOL OF SPORT AND BIOMEDICAL SCIENCE BEng (HONS)/MEng BIOMEDICAL ENGINEERING BEng (HONS) MEDICAL ENGINEERING SEMESTER 2 EXAMINATIONS 2015/2016 MODULE NO: BME4004 Date: Wednesday 18 May 2016 Time:

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS ELECTRICITY: AC QUESTIONS No Brain Too Small PHYSICS MEASURING IRON IN SAND (2016;3) Vivienne wants to measure the amount of iron in ironsand mixtures collected from different beaches. The diagram below

More information

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi L UTS nstitute of Lifelong Learning, University of Delhi L UTS PHYSS (LAB MANUAL) nstitute of Lifelong Learning, University of Delhi PHYSS (LAB MANUAL) L UTS ntroduction ircuits containing an inductor

More information

Sample Question Paper

Sample Question Paper Scheme G Sample Question Paper Course Name : Electrical Engineering Group Course Code : EE/EP Semester : Third Subject Title : Electrical Circuit and Network 17323 Marks : 100 Time: 3 hrs Instructions:

More information

I. Introduction to Simple Circuits of Resistors

I. Introduction to Simple Circuits of Resistors 2 Problem Set for Dr. Todd Huffman Michaelmas Term I. Introduction to Simple ircuits of esistors 1. For the following circuit calculate the currents through and voltage drops across all resistors. The

More information

Experiment 9: AC circuits

Experiment 9: AC circuits Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

A.C. Circuits -- Conceptual Solutions

A.C. Circuits -- Conceptual Solutions A.C. Circuits -- Conceptual Solutions 1.) Charge carriers in a DC circuit move in one direction only. What do charge carriers do in an AC circuit? Solution: The voltage difference between the terminals

More information

Unit 4: Principles of Electrical and Electronic Engineering

Unit 4: Principles of Electrical and Electronic Engineering Unit 4: Principles of Electrical and Electronic Engineering LO2: Understand alternating voltage and current AC circuits with combinations of resistance, inductance and capacitance Instructions and answers

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology COURSE : ECS 34 Basic Electrical Engineering Lab INSTRUCTOR : Dr. Prapun

More information

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 08-1 Name Date Partners ab 8 - INTRODUCTION TO AC CURRENTS AND VOTAGES OBJECTIVES To understand the meanings of amplitude, frequency, phase, reactance, and impedance in AC circuits. To observe the behavior

More information

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit CHAPTER 2 Basic Concepts, Three-Phase Review, and Per Unit 1 AC power versus DC power DC system: - Power delivered to the load does not fluctuate. - If the transmission line is long power is lost in the

More information

PART B. t (sec) Figure 1

PART B. t (sec) Figure 1 Code No: R16128 R16 SET 1 I B. Tech II Semester Regular Examinations, April/May 217 ELECTRICAL CIRCUIT ANALYSIS I (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 7 Note: 1. Question

More information