Single-phase Variable Frequency Switch Gear

Size: px
Start display at page:

Download "Single-phase Variable Frequency Switch Gear"

Transcription

1 1 Single-phase Variable Frequency Switch Gear Department of Electrical and Computer Engineering Eric Motyl and Leslie Zeman Advisor: Steven D. Gutschlag October 1, 2015

2 2 Outline Background Design Approach and Method of Solution Economic Analysis Schedule Division of Labor Societal and Environmental Impacts Summary and Conclusions

3 3 Outline Background Problem Background Problem Statement Constraints Design Approach and Method of Solution System Block Diagram Subsystem Block Diagram Availability of Equipment Testing

4 4 Problem Background Variable frequency drive Controls the speed of a three-phase AC motor by varying the frequency and voltage supplied to the motor [1]

5 5 Problem Background Importance of variable frequency drives: Provide energy efficiency benefits to industries that consume large amounts of power operating AC machines [2] Match the speed of the motor driven equipment to load requirements Extend equipment life Smooth startup of AC motors reduces belt, gear, and bearing wear Reduces shaft fatigue

6 6 Problem Statement Design, build, and test single-phase variable frequency switch gear Switch gear driven by a single-phase 60 Hz AC supply voltage System generates an output voltage with a constant Volts/Hertz ratio and a variable frequency in the range of 1 to 60 Hz

7 7 Constraints Single-phase variable frequency switch gear must: Provide output frequencies in the range of 1 to 60 Hz Use devices rated for a current of 1.5 A RMS Have a grounded neutral Be safe

8 8 System Block Diagram Single-phase 60 Hz AC Supply Voltage Frequency Select Input Variable Frequency Switch Gear Single-phase, Variable Frequency Output with Constant V/Hz Ratio

9 9 Subsystem Block Diagram Single-phase 60 Hz AC Supply Voltage Rectifier Gate Drive Circuitry + Vdc Frequency Select Input PWM Generation Controller Upper half PWM Lower half PWM DC-to-AC Voltage Inverter Vdc Single Phase Variable Frequency Output with Constant V/Hz Ratio

10 10 Subsystem Block Diagram Single-phase 60 Hz AC Supply Voltage Rectifier Gate Drive Circuitry + Vdc Frequency Select Input PWM Generation Controller Upper half PWM Lower half PWM DC-to-AC Voltage Inverter Vdc Single Phase Variable Frequency Output with Constant V/Hz Ratio

11 11 PWM Generation Controller Atmega 128 Atmel AVR Development Board Generate triangle wave and half-wave rectified sine wave Compare the two waves If the triangle wave is greater than the sine wave, toggle bit on output port high If the triangle wave is less than the sine wave, toggle bit on output port low Every other half cycle will control a separate bit on a given output port (e.g. PA0 and PA1)

12 12 Subsystem Block Diagram Single-phase 60 Hz AC Supply Voltage Rectifier Gate Drive Circuitry + Vdc Frequency Select Input PWM Generation Controller Upper half PWM Lower half PWM DC-to-AC Voltage Inverter Vdc Single Phase Variable Frequency Output with Constant V/Hz Ratio

13 13 Gate Drive Circuitry Two 8-pin Avago HCPL-3120 chips 18 V supply High and low side drivers Avago Technologies HCPL-3120 data sheet

14 14 Subsystem Block Diagram Single-phase 60 Hz AC Supply Voltage Rectifier Gate Drive Circuitry + Vdc Frequency Select Input PWM Generation Controller Upper half PWM Lower half PWM DC-to-AC Voltage Inverter Vdc Single Phase Variable Frequency Output with Constant V/Hz Ratio

15 15 DC-to-AC Voltage Inverter Fairchild FMG2G75U560 IGBT Pair +V DC and -V DC voltage rails +VDC Upper Half PWM Load Lower Half PWM - VDC

16 16 Availability of Equipment Atmega128 AVR Development Board Avago HCPL-3120 Fairchild FMG2G75U560

17 17 Key Component of Solution PWM generation controller Contingency plan: Function generator and LM311 comparators to substitute in for software used to generate the switched PWM that will drive IGBTs

18 18 Testing PWM generation controller Gate drive circuitry and DC-to-AC voltage inverter

19 19 Testing PWM Generation Controller External DtoA to see generated sine and triangle waves with oscilloscope Oscilloscope to view switched PWM output on two bits

20 20 Testing Gate Drive and DC-to-AC Voltage Inverter Gate Drive Circuitry Use function generator to provide a PWM signal and verify that the output is correctly amplified DC-to-AC Voltage Inverter Verify that output of gate drive circuitry switches IGBTs as desired

21 21 Outline Economic Analysis Schedule Gantt Chart Division of Labor Societal and Environmental Impacts Summary and Conclusions

22 22 Economic Analysis Part Cost Atmega128A Atmel AVR development board kit $41.99 Avago HCPL-3120 $3.27 (2x) Fairchild FMG2G75US60 (IGBT) $30 LM311 $3.44 (10pcs) Total cost $82

23 23 Milestones 10/22/15 10/27/15 Code PWM Generation Controller Design Gate Drive 11/17/15 Design Inverter 11/26/15 12/3/15 Build Gate Drive Build Inverter 3/17/16 4/29/16 Testing Poster Presentation

24 24 Division of Labor Tasks Research Design Gate Drive Design Inverter Code PWM Generation Controller General Construction Testing Name(s) Assigned to Task Eric, Leslie Leslie Leslie Eric Eric, Leslie Eric, Leslie

25 Schedule 25

26 26 Safety Lab safety procedure Power lab rules Power turned off when not in use Power turned off before any changes Double check circuit Always have another member in the lab Lab Safety Clothing & Protection No bulky or loose fitting clothing Safety glasses

27 27 Safety Standards UL Safety requirements for power drive systems Refers to adjustable speed electric drive systems NEC, NFPA 70E Reducing exposure to major electrical hazards

28 28 Societal and Environmental Impacts Efficiency Benefits Lower cost for industries Equipment Life Equipment turnover Less turnover reduces cost Transportation Cranes and hoists Small vehicle drives Material handling conveyors

29 29 Conclusion Design of single-phase variable frequency switch gear will be accomplished through the design of its subsystems PWM generation controller Gate drive circuitry DC-to-AC Voltage Inverter

30 30 Single-phase Variable Frequency Switch Gear Department of Electrical and Computer Engineering Eric Motyl and Leslie Zeman Advisor: Steven D. Gutschlag October 1, 2015

31 31 References 1. Introduction to AC Drives, [Online]. Available: /ITACDS-D.PDF 2. C. Hartman. (2014). What is a Variable Frequency Drive, [Online]. Available: 3. K. Lemke and M. Pasternak. (2014). Variable Frequency AC Source, [Online]. Available: Proposal.pdf 4. K. Lemke and M. Pasternak, Variable Frequency AC Source (VFACS) Project Report, Bradley Univ., Peoria, IL, Variable Frequency Drive (VFD) [Online]. Available: n%20guide.pdf

32 Full Gantt Chart 32

33 33 PWM Generation Controller Flowchart Start Initialize Timer Create 2 V p-p 15 khz Triangle Wave Create desired sine wave Check: Triangle < sine Toggle output bit high Check: Triangle > sine Toggle output bit low Toggle output bit low

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear Single-phase Variable Frequency Switch Gear Eric Motyl, Leslie Zeman Advisor: Professor Steven Gutschlag Department of Electrical and Computer Engineering Bradley University, Peoria, IL October 15, 2015

More information

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear 1 Single-phase Variable Frequency Switch Gear Department of Electrical and Computer Engineering Eric Motyl and Leslie Zeman Advisor: Professor Steven D. Gutschlag April 21, 2016 2 Outline Introduction

More information

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear Single-phase Variable Frequency Switch Gear Eric Motyl, Leslie Zeman Advisor: Professor Steven Gutschlag Department of Electrical and Computer Engineering Bradley University, Peoria, IL May 13, 2016 ABSTRACT

More information

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear 1 Single-phase Variable Frequency Switch Gear Department of Electrical and Computer Engineering Eric Motyl and Leslie Zeman Advisor: Professor Steven D. Gutschlag November 19, 2015 2 Outline Problem Description

More information

Variable Frequency AC Source

Variable Frequency AC Source Variable Frequency AC Source Functional Requirements List and Performance Specifications Students: Kevin Lemke Matthew Pasternak Advisor: Steven D. Gutschlag Date: November 15, 2013 1 Introduction: Variable

More information

Variable Frequency AC Source

Variable Frequency AC Source Variable Frequency AC Source Functional Description and Complete System Block Diagram Students: Kevin Lemke Matthew Pasternak Advisor: Steve Gutschlag Date: October 21, 2013 1 Introduction: Variable frequency

More information

MDSRC Proceedings, December, 2017 Wah/Pakistan

MDSRC Proceedings, December, 2017 Wah/Pakistan Three Phase Frequency Converter Quratulain Jamil 1, Hafiz Muhammad Ashraf Hayat 2, Haris Masood 3 1 Department of Electrical Engineering Wah Engineering College, University of Wah jamil0265@gmail.com 2

More information

Active Suspension System. Josh Rose, Xander Serrurier, Rhydon Vassay, Chase Ramseyer Advisor: Steven Gutschlag 4/27/2017

Active Suspension System. Josh Rose, Xander Serrurier, Rhydon Vassay, Chase Ramseyer Advisor: Steven Gutschlag 4/27/2017 Active Suspension System Josh Rose, Xander Serrurier, Rhydon Vassay, Chase Ramseyer Advisor: Steven Gutschlag 4/27/2017 Outline 1. Project Summary 2. Previous Work 3. Functional Description 4. System Block

More information

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved. Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

More information

ECET Industrial Motor Control. Variable Frequency Drives. Electronic Motor Drives

ECET Industrial Motor Control. Variable Frequency Drives. Electronic Motor Drives ECET 4530 Industrial Motor Control Variable Frequency Drives Electronic Motor Drives Electronic motor drives are devices that control the speed, torque and/or rotational direction of electric motors. Electronic

More information

RV4145A Low-Power Ground Fault Interrupter

RV4145A Low-Power Ground Fault Interrupter April 2014 RV4145A Low-Power Ground Fault Interrupter Features No Potentiometer Required Direct Interface to Silicon-Controlled Rectifier (SCR) Supply Voltage Derived from AC Line 26 V Shunt Adjustable

More information

SPECIFICATION EP 1000/1500/2000 Series

SPECIFICATION EP 1000/1500/2000 Series UNINTERRUPTIBLE POWER SYSTEM SPECIFICATION EP 1000/1500/2000 Series Page 1 of 28 1.0 Revision Summary REVISION SECTION DESCRIPTION Formal Release Page 2 of 28 Table of Contents 1. Introduction. 4 2. Block

More information

Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Active Suspension System (ACTSS)

Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Active Suspension System (ACTSS) Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Active Suspension System (ACTSS) Xander Serrurier, Josh Rose, Chase Ramseyer, Rhydon Vassay Project Advisor:

More information

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source M.M. A. Rahman, Kurt Hammons, Phillip Beemer, Marcia Isserstedt, and Matt Trommater School of Engineering Padnos

More information

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW)

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW) Name EGR 23 Lab #2 Logic Gates and Boolean Algebra Objectives ) Become familiar with common logic-gate chips and their pin numbers. 2) Using breadboarded chips, investigate the behavior of NOT (Inverter),

More information

Project Proposal. Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen

Project Proposal. Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen Project Proposal Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen Advisor Dr. Gary Dempsey Bradley University Department of Electrical Engineering December

More information

Fluxgate Magnetometer

Fluxgate Magnetometer 6.101 Final Project Proposal Woojeong Elena Byun Jack Erdozain Farita Tasnim 7 April 2016 Fluxgate Magnetometer Motivation: A fluxgate magnetometer is a highly precise magnetic field sensor. Its typical

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

EEL4914 Senior Design. Final Design Report

EEL4914 Senior Design. Final Design Report EEL4914 Senior Design Final Design Report Electric Super Bike The Best Team in the World Matt Fisher madfish@ufl.edu Richard Orr gautama@ufl.edu 21 April 2008 1 Contents Contents...2 Abstract...3 Project

More information

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION Exercise 2-2 Antenna Driving System EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the mechanical aspects and control of a rotating or scanning radar antenna. DISCUSSION

More information

Precision Variable Frequency Drive for an AC Synchronous Motor

Precision Variable Frequency Drive for an AC Synchronous Motor Precision Variable Frequency Drive for an AC Synchronous Motor Design Report May7-13 Jim Walker Prof. Ajjarapu By Dave Reinhardt Jason Kilzer Matt Shriver Nick Nation DISCLAIMER: This document was developed

More information

Precision Variable Frequency Drive for AC Synchronous Motor

Precision Variable Frequency Drive for AC Synchronous Motor Precision Variable Frequency Drive for AC Synchronous Motor Final Report May 07-13 Client Jim Walker Faculty Advisor Dr. Ajjarapu Group Members Matt Shriver Nick Nation Jason Kilzer Dave Reinhardt DISCLAIMER:

More information

Design Document. Analog PWM Amplifier. Reference: DD00004

Design Document. Analog PWM Amplifier. Reference: DD00004 Grainger Center for Electric Machinery and Electromechanics Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 1406 W. Green St. Urbana, IL 61801 Design Document

More information

Real Time Implementation of Power Electronics System

Real Time Implementation of Power Electronics System Real Time Implementation of Power Electronics System Prof.Darshan S.Patel M.Tech (Power Electronics & Drives) Assistant Professor,Department of Electrical Engineering Sankalchand Patel College of Engineerig-Visnagar

More information

Navigation and Thrust System for AUVSI RoboBoat

Navigation and Thrust System for AUVSI RoboBoat Navigation and Thrust System for AUVSI RoboBoat Authors: Michael S. Barnes, Evan J. Dinelli, Dan R. Van de Water Advisor: Dr. Gary Dempsey Client: Mr. Nick Schmidt Department of Electrical and Computer

More information

AC Drives and Soft Starter Application Guide

AC Drives and Soft Starter Application Guide Feature AC Drives and Soft Starter Application Guide by Walter J Lukitsch PE, Gary Woltersdorf Jeff Theisen, and John Streicher Allen-Bradley Company Abstract: There are usually several choices for starting

More information

Figure 1 Typical Inverter Block Diagram

Figure 1 Typical Inverter Block Diagram AC Drives and Soft Starter Application Guide Walter J Lukitsch PE, Gary Woltersdorf Jeff Theisen, John Streicher Allen-Bradley Company Milwaukee, WI Abstract: There are usually several choices for starting

More information

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS 1 RAKSHA A R, 2 KAVYA B, 3 PRAVEENA ANAJI, 4 NANDESH K N 1,2 UG student, 3,4 Assistant Professor Department of

More information

Frequently Asked Questions (FAQs) MV1000 Drive

Frequently Asked Questions (FAQs) MV1000 Drive QUESTION 1. What is a conventional PWM Inverter? 2. What is a medium voltage inverter? 3. Are all MV inverters Voltage Source (VSI) design? 4. What is a Current Source Inverter (CSI)? 5. What output power

More information

Digital-to-Analog Converter. Lab 3 Final Report

Digital-to-Analog Converter. Lab 3 Final Report Digital-to-Analog Converter Lab 3 Final Report The Ion Cannons: Shrinand Aggarwal Cameron Francis Nicholas Polito Section 2 May 1, 2017 1 Table of Contents Introduction..3 Rationale..3 Theory of Operation.3

More information

S11 Adjustable Speed Drive Engineering Specification

S11 Adjustable Speed Drive Engineering Specification PART 1 - GENERAL 1.0 Scope This specification shall cover Toshiba S11 AC Variable Frequency Drives, 6 pulse for 3- phase 200-240VAC, 380-500VAC and single phase 200V to 240VAC. 1.1 References A. National

More information

FBA42060 PFC SPM 45 Series for Single-Phase Boost PFC

FBA42060 PFC SPM 45 Series for Single-Phase Boost PFC FBA42060 PFC SPM 45 Series for Single-Phase Boost PFC Features UL Certified No. E209204 (UL1557) 600 V - 20 A Single-Phase Boost PFC with Integral Gate Driver and Protection Low Thermal Resistance Using

More information

The Single-Phase PWM Inverter with Dual-Polarity DC Bus

The Single-Phase PWM Inverter with Dual-Polarity DC Bus Exercise 2 The Single-Phase PWM Inverter with Dual-Polarity DC Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase PWM inverter with dual-polarity dc

More information

Using Optical Isolation Amplifiers in Power Inverters for Voltage, Current and Temperature Sensing

Using Optical Isolation Amplifiers in Power Inverters for Voltage, Current and Temperature Sensing Using Optical Isolation Amplifiers in Power Inverters for Voltage, Current and Temperature Sensing by Hong Lei Chen, Product Manager, Avago Technologies Abstract Many industrial equipments and home appliances

More information

MAINTENANCE MANUAL AUDIO MATRIX BOARD P29/

MAINTENANCE MANUAL AUDIO MATRIX BOARD P29/ MAINTENANCE MANUAL AUDIO MATRIX BOARD P29/5000056000 TABLE OF CONTENTS Page DESCRIPTION................................................ Front Cover CIRCUIT ANALYSIS.............................................

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS OBJECTIVES In this experiment you will Explore the use of a popular IC chip and its applications. Become more

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

Operational Amplifiers

Operational Amplifiers Objective Operational Amplifiers Understand the basics and general concepts of operational amplifier (op amp) function. Build and observe output of a comparator and an amplifier (inverting amplifier).

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information

Exercise 1: AC Waveform Generator Familiarization

Exercise 1: AC Waveform Generator Familiarization Exercise 1: AC Waveform Generator Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to operate an ac waveform generator by using equipment provided. You will verify

More information

The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual

The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual Name: Partner(s): Desk #: Date: Purpose The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual The purpose of this lab is to examine the functions of operational amplifiers (op amps)

More information

ECE Senior Design Final Report For. Scalable Regulated Three Phase Power Rectifier. May 10, 2004 Rev. 1.0

ECE Senior Design Final Report For. Scalable Regulated Three Phase Power Rectifier. May 10, 2004 Rev. 1.0 ECE Senior Design Final Report For Scalable Regulated Three Phase Power Rectifier May 10, 2004 Rev. 1.0 Sponsors: Dr. Herb Hess (University of Idaho) Dr. Richard Wall (University of Idaho) Instructor:

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS Issued 9/22/2008 Pre Lab Completed 9/29/2008 Lab Due in Lecture 10/6/2008 Introduction In this lab you will design a

More information

STATION NUMBER: LAB SECTION: RC Oscillators. LAB 5: RC Oscillators ELECTRICAL ENGINEERING 43/100. University Of California, Berkeley

STATION NUMBER: LAB SECTION: RC Oscillators. LAB 5: RC Oscillators ELECTRICAL ENGINEERING 43/100. University Of California, Berkeley YOUR NAME: YOUR SID: Lab 5: RC Oscillators EE43/100 Spring 2013 Kris Pister YOUR PARTNER S NAME: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Pre- Lab GSI Sign- Off: Pre- Lab Score: /40 In- Lab Score:

More information

E3 Adjustable Speed Drive Engineering Specification

E3 Adjustable Speed Drive Engineering Specification E3 Adjustable Speed Drive Engineering Specification PART 1 - GENERAL 1.0 Scope This specification shall cover Toshiba E3 AC Variable Frequency Drives, 6 pulse for 230V and 460V. 1.1 References A. National

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Lab 3: Embedded Systems

Lab 3: Embedded Systems THE PENNSYLVANIA STATE UNIVERSITY EE 3OOW SECTION 3 FALL 2015 THE DREAM TEAM Lab 3: Embedded Systems William Stranburg, Sean Solley, Sairam Kripasagar Table of Contents Introduction... 3 Rationale... 3

More information

VF-nC1 Adjustable Speed Drive Engineering Specification

VF-nC1 Adjustable Speed Drive Engineering Specification PART 1 - GENERAL 1.0 Scope This specification shall cover Toshiba VF-nC1 AC Variable Frequency Drives, 6 pulse for 100V single-phase 0.1 to 0.75kW, 200V single-phase 0.2 to 2.2kW and 200V threephase 0.1

More information

transformer rectifiers

transformer rectifiers Power supply mini-project This week, we finish up 201 lab with a short mini-project. We will build a bipolar power supply and use it to power a simple amplifier circuit. 1. power supply block diagram Figure

More information

N. Sadeesh 1, P. Hema 2, E. Prasannakumar 3, S. Leelakrishnan 4. IJRASET: All Rights are Reserved

N. Sadeesh 1, P. Hema 2, E. Prasannakumar 3, S. Leelakrishnan 4. IJRASET: All Rights are Reserved Automation of VFD Based Sugarcane Crusher with PLC and SCADA Control N. Sadeesh 1, P. Hema 2, E. Prasannakumar 3, S. Leelakrishnan 4 Abstract Three phase induction motors are widely used motor in sugar

More information

RV4141A Low-Power, Ground-Fault Interrupter

RV4141A Low-Power, Ground-Fault Interrupter RV4141A Low-Power, Ground-Fault Interrupter Features Powered from the AC Line Built-In Rectifier Direct Interface to SCR 500μA Quiescent Current Precision Sense Amplifier Adjustable Time Delay Minimum

More information

Hydra: A Three Stage Power Converter

Hydra: A Three Stage Power Converter 6.101 Project Proposal Paul Hemberger, Joe Driscoll, David Yamnitsky Hydra: A Three Stage Power Converter Introduction Hydra is a three stage power converter system where each stage not only supports a

More information

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018 ME375 Lab Project Bradley Boane & Jeremy Bourque April 25, 2018 Introduction: The goal of this project was to build and program a two-wheel robot that travels forward in a straight line for a distance

More information

Experiment 5: Basic Digital Logic Circuits

Experiment 5: Basic Digital Logic Circuits ELEC 2010 Laboratory Manual Experiment 5 In-Lab Procedure Page 1 of 5 Experiment 5: Basic Digital Logic Circuits In-Lab Procedure and Report (30 points) Before starting the procedure, record the table

More information

Drives 101 Lesson 3. Parts of a Variable Frequency Drive (VFD)

Drives 101 Lesson 3. Parts of a Variable Frequency Drive (VFD) Drives 101 Lesson 3 Parts of a Variable Frequency Drive (VFD) This lesson covers the parts that make up the Variable Frequency Drive (VFD) and describes the basic operation of each part. Here is the basics

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information

EV Power Converter Functional Description & Block Diagram

EV Power Converter Functional Description & Block Diagram EV Power Converter Functional Description & Block Diagram By: Sam Emrie Jacob Anderson Advisor: Dr. Woonki Na October 16, 2012 Introduction: This Electric Vehicle Power Converter project is an expansion

More information

FPAB30BH60 PFC SPM 3 Series for Single-Phase Boost PFC

FPAB30BH60 PFC SPM 3 Series for Single-Phase Boost PFC FPAB30BH60 PFC SPM 3 Series for Single-Phase Boost PFC Features UL Certified No. E209204 (UL1557) 600 V - 30 A Single-Phase Boost PFC with Integral Gate Driver and Protection Very Low Thermal Resistance

More information

FPDB40PH60B PFC SPM 3 Series for 2-Phase Bridgeless PFC

FPDB40PH60B PFC SPM 3 Series for 2-Phase Bridgeless PFC FPDB40PH60B PFC SPM 3 Series for 2-Phase Bridgeless PFC Features UL Certified No. E209204 (UL1557) 600 V - 40 A 2-Phase Bridgeless PFC with Integral Gate Driver and Protection Very Low Thermal Resistance

More information

Applications for Isolated Gate Drivers

Applications for Isolated Gate Drivers Applications for Isolated Gate Drivers Multiple Choice Quiz TI Precision Labs Isolation 1 1. must be used for the interface between high voltage and user-accessible circuitry (like connectors or communications

More information

Laboratory Design Project: PWM DC Motor Speed Control

Laboratory Design Project: PWM DC Motor Speed Control EE-331 Devices and Circuits I Summer 2013 Due dates: Laboratory Design Project: PWM DC Motor Speed Control Instructor: Tai-Chang Chen 1. Operation of the circuit should be verified by your lab TA by Friday,

More information

Analog Servo Drive. Peak Current 16 A (11.3 A RMS )

Analog Servo Drive. Peak Current 16 A (11.3 A RMS ) Description The PWM servo drive is designed to drive three phase brushless motors with sine wave current at a high switching frequency. The drive requires two sinusoidal command signals with a 120-degree

More information

Analog Inputs and Outputs

Analog Inputs and Outputs Analog Inputs and Outputs PLCs must also work with continuous or analog signals. Typical analog signals are 0-10 VDC or 4-20 ma. Analog signals are used to represent changing values such as speed, temperature,

More information

Introduction. Theory of Operation

Introduction. Theory of Operation Mohan Rokkam Page 1 12/15/2004 Introduction The goal of our project is to design and build an automated shopping cart that follows a shopper around. Ultrasonic waves are used due to the slower speed of

More information

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

More information

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Explore More! Points awarded: Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Name: Net ID: Laboratory Outline A voltage comparator considers two voltage waveforms,

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Machine Vision Lyte-MV 2

Machine Vision Lyte-MV 2 Machine Vision Lyte-MV 2 The Lyte-MV 2 Range The Lyte-MV 2 provides a reliable industrial light source for a wide range of machine vision applications including triangulation, 3D inspection and alignment.

More information

Multi-Stage Power Conversion Proposal

Multi-Stage Power Conversion Proposal Multi-Stage Power Conversion Proposal Joe Driscoll, Paul Hemberger, David Yamnitsky Introduction MSPC is a three stage power converter system where each stage not only supports a useful application, but

More information

DESIGN OF A THREE PHASE CONTROLLED RECTIFIER FOR USE IN THE LABORATORY

DESIGN OF A THREE PHASE CONTROLLED RECTIFIER FOR USE IN THE LABORATORY DESIGN OF A THREE PHASE CONTROLLED RECTIFIER FOR USE IN THE LABORATORY PRESENTED BY: MWONGA BRIAN MATOLO F17/39946/2011 SUPERVISOR: Mr. S. L. OGABA EXAMINER: Mr. OMBURA PROJECT INDEX: 116 Objectives Theory

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

More information

Lab 3 Final report: Embedded Systems Digital Potentiometer Subsystem TEAM: RAR

Lab 3 Final report: Embedded Systems Digital Potentiometer Subsystem TEAM: RAR Lab 3 Final report: Embedded Systems Digital Potentiometer Subsystem TEAM: RAR EE 300W, Section 6 Professor Tim Wheeler Rui Xia, Yuanpeng Liao and Ashwin Ramnarayanan Table of Contents Introduction...2

More information

2.1 Performance Standards The UPS is designed with the applicable sections of UL, CUL, and ISO The UPS has UL and CUL listing.

2.1 Performance Standards The UPS is designed with the applicable sections of UL, CUL, and ISO The UPS has UL and CUL listing. 1.0 Scope This document describes the specification for Toshiba 1000 Series On-Line Uninterruptible Power System (UPS). The UPS will supply a computer grade AC output sine wave which is unaffected by the

More information

Micro Controller Based Ac Power Controller

Micro Controller Based Ac Power Controller Wireless Sensor Network, 9, 2, 61-121 doi:1.4236/wsn.9.112 Published Online July 9 (http://www.scirp.org/journal/wsn/). Micro Controller Based Ac Power Controller S. A. HARI PRASAD 1, B. S. KARIYAPPA 1,

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Initial Project Document Vacuum Tube Stereo Amplifier

Initial Project Document Vacuum Tube Stereo Amplifier Initial Project Document Vacuum Tube Stereo Amplifier By Stephen Nichols, Jason Lambert, Rafael Enriquez Group 4 January 30, 2013 1 Narrative Description Motivation The motivation for this idea is nostalgia.

More information

Introduction to the Analog Discovery

Introduction to the Analog Discovery Introduction to the Analog Discovery The Analog Discovery from Digilent (http://store.digilentinc.com/all-products/scopes-instruments) is a versatile and powerful USB-connected instrument that lets you

More information

Fairchild Optocoupler Overview.

Fairchild Optocoupler Overview. Fairchild Optocoupler Overview www.fairchildsemi.com High Performance Optocouplers recent releases Extension of existing 5V 8-pin DIP portfolio in 5-pin MFP and dual channel 8-pin SOP packages. These smaller

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 2, February -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 SIMULATION

More information

Preliminary Design Report. Project Title: Search and Destroy

Preliminary Design Report. Project Title: Search and Destroy EEL 494 Electrical Engineering Design (Senior Design) Preliminary Design Report 9 April 0 Project Title: Search and Destroy Team Member: Name: Robert Bethea Email: bbethea88@ufl.edu Project Abstract Name:

More information

Project 1 Final System Design and Performance Report. Class D Amplifier

Project 1 Final System Design and Performance Report. Class D Amplifier Taylor Murphy & Remo Panella EE 333 12/12/18 Project 1 Final System Design and Performance Report Class D Amplifier Intro For this project, we designed a class D amplifier circuit. Class D amplifiers work

More information

Embedded Test System. Design and Implementation of Digital to Analog Converter. TEAM BIG HERO 3 John Sopczynski Karim Shik-Khahil Yanzhe Zhao

Embedded Test System. Design and Implementation of Digital to Analog Converter. TEAM BIG HERO 3 John Sopczynski Karim Shik-Khahil Yanzhe Zhao Embedded Test System Design and Implementation of Digital to Analog Converter TEAM BIG HERO 3 John Sopczynski Karim Shik-Khahil Yanzhe Zhao EE 300W Section 1 Spring 2015 Big Hero 3 DAC 2 INTRODUCTION (KS)

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Cable Solutions for Servo and Variable Frequency Drives (VFD)

Cable Solutions for Servo and Variable Frequency Drives (VFD) Cable Solutions for Servo and Variable Frequency Drives (VFD) Electric drive systems with continuous torque and speed control are widespread today. They allow an optimal adjustment of the drive with respect

More information

THE PENNSYLVANIA STATE UNIVERSITY. Lab 2: Designing Optical Theremin Instrument. EE 300W Section 001. Nathaniel Houtz, Ji Eun Shin, Peter Wu 2/22/2013

THE PENNSYLVANIA STATE UNIVERSITY. Lab 2: Designing Optical Theremin Instrument. EE 300W Section 001. Nathaniel Houtz, Ji Eun Shin, Peter Wu 2/22/2013 THE PENNSYLVANIA STATE UNIVERSITY Lab 2: Designing Optical Theremin Instrument EE 300W Section 001 Nathaniel Houtz, Ji Eun Shin, Peter Wu 2/22/2013 1 ABSTRACT A simple Theremin must be able to produce

More information

IRPT2062A IRPT2062A. Power Module for 3 hp Motor Drives. 3 hp (2.2 kw) power output

IRPT2062A IRPT2062A. Power Module for 3 hp Motor Drives. 3 hp (2.2 kw) power output PRELIMINARY PD 6.122 3 hp (2.2 kw) power output Industrial rating at 150% overload for 1 minute 380-480V AC input, 50/60 Hz 3-phase rectifier bridge 3-phase, short circuit rated, ultrafast IGBT inverter

More information

Electronic Circuits EE359A Final project requirements

Electronic Circuits EE359A Final project requirements Design an electronic circuit it may be one of the ideas described below or a similar project of your choosing. Senior Design projects are acceptable designs if the design is yours, and not your team s.

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

An Introduction to Rectifier Circuits

An Introduction to Rectifier Circuits TRADEMARK OF INNOVATION An Introduction to Rectifier Circuits An important application of the diode is one that takes place in the design of the rectifier circuit. Simply put, this circuit converts alternating

More information

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor The bipolar amplifier is well suited for controlling motors for vehicle propulsion. Figure 12-45 shows a good-sized 24VDC motor that runs nicely on 13.8V from a lead acid battery based power supply. You

More information

Design and Implement of a Frequency Response Analysis System

Design and Implement of a Frequency Response Analysis System University of Manitoba Department of Electrical & Computer Engineering ECE 4600 Group Design Project Progress Report Design and Implement of a Frequency Response Analysis System by Group 02 Alan Mark Naima

More information

Low Cost, Small Package, 120VAC Microstepping Drive

Low Cost, Small Package, 120VAC Microstepping Drive Catalog 8-4/USA E-AC Low Cost, Small Package, 12VAC Microstepping Drive Compumotor's new E-AC is a low-cost, high-performance, high-reliability microstepping drive in a small package. The design of the

More information

FPAB30BH60B PFC SPM 3 Series for Single-Phase Boost PFC

FPAB30BH60B PFC SPM 3 Series for Single-Phase Boost PFC FPAB30BH60B PFC SPM 3 Series for Single-Phase Boost PFC Features UL Certified No. E209204 (UL1557) 600 V - 30 A Single-Phase Boost PFC with Integral Gate Driver and Protection Very Low Thermal Resistance

More information

Electronics. RC Filter, DC Supply, and 555

Electronics. RC Filter, DC Supply, and 555 Electronics RC Filter, DC Supply, and 555 0.1 Lab Ticket Each individual will write up his or her own Lab Report for this two-week experiment. You must also submit Lab Tickets individually. You are expected

More information

FPDB30PH60 PFC SPM 3 Series for 2-Phase Bridgeless PFC

FPDB30PH60 PFC SPM 3 Series for 2-Phase Bridgeless PFC FPDB30PH60 PFC SPM 3 Series for 2-Phase Bridgeless PFC Features UL Certified No. E209204 (UL1557) 600 V - 30 A 2-Phase Bridgeless PFC with Integral Gate Driver and Protection Very Low Thermal Resistance

More information

Electric Vehicle Charger for Plug-In Hybrid Electric Vehicles

Electric Vehicle Charger for Plug-In Hybrid Electric Vehicles Electric Vehicle Charger for Plug-In Hybrid Electric Vehicles PROJECT PROPOSAL By: Matt Daly Peter Burrmann Renee Kohl Project Advisers: Dr. Woonki Na Dr. Brian Huggins Date: November 18. 2011 phev 2 INTRODUCTION

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

VLA Hybrid IC IGBT Gate Driver + DC/DC Converter

VLA Hybrid IC IGBT Gate Driver + DC/DC Converter VLA52-1 Powerex, Inc., 2 E. Hillis Street, Youngwood, Pennsylvania 1597-1 (72) 925-7272 Hybrid IC IGBT Gate Driver + A C B D V D 15V 1 3 + + CONTROL INPUT 5V 1 2 3 7 E 3Ω DC-DC CONVERTER V iso = 25V RMS

More information