Resistance Measurements

Size: px
Start display at page:

Download "Resistance Measurements"

Transcription

1 esistance Measurements OBJETE To understand the relationship between the current, voltage, and resistance in a circuit. To study series and parallel resistance circuits. NTODUTON esistance of an electrical element is defined by =/ or =ρl/, where is the resistance of the circuit element, is the potential drop across the element, is the current passing through the element, ρ is the resistivity of the elements material makeup, L is the length of the element, and is the cross-sectional area of the element. There are several ways to measure the value of the resistance; the most direct of which is to measure the potential drop and the current of the element with the aid of a voltmeter and ammeter. dditionally, more than one resistor can be part of a circuit. The resistance may be in a series or a parallel combination. Both of these methods will be studied and applied to the determination of several unknown resistors, series combinations, and parallel combinations. PPTUS o computer o ernier computer interface o Logger Pro o one ernier urrent Probe o one ernier Differential oltage Probe o wires o three known resistors & one unknown resistor o adjustable 5-volt D power supply THEOY s previously stated, resistance [Ω] of any circuit element is given by: = Equation 1 Where, [] is the electric potential between two points across the element and [] is the quantity of charge moving through the element in a unit time. resistor generally obeys this relationship over a wide range. However, it can vary by approximately ±10% from the known value of the resistor; somewhat due to temperature variations of the resistor itself. We call this the precision of the resistor. esistance Measurements - Page 1

2 s the name suggests, a resistance device is one which "resists" the flow of charges in an electrical circuit, thereby reducing the current flow in the aforementioned circuit. n general, the resistance of any material is given by: L = Equation 2 Where, ρ [Ωm] is the resistivity of the material {varies based on what the material is made of}, L [m] is the length of the material, and [m 2 ] is the cross-sectional area of the material, through which the current flows. esistors may be connected in a circuit to either increase their resistance (series combination) or to decrease their resistance (parallel combination). series connection of resistors, B, & is illustrated in Figure 1 below. B Figure 1 B s indicated, the current flows through the resistors, thus, each resistor has the same value of the current. However, as the potential difference is measured across each resistor, each resistor will have a different potential drop (voltage). The total voltage is, thus: TOTL = + Equation 3 B + Using this relationship, Equation 1, and the statement that the current through each resistor is the same yields: = = ( TOTL TOTL EQ SEES + B + + B + ) = = esistance Measurements - Page 2 Equation 4 This defines the relation that the equivalent resistance of a series combination is the sum of the given resistance elements. B B

3 parallel combination of resistors, B, & is illustrated in Figure 2 below. B B Figure 2 n the parallel combination, the resistors are all connected to the same potential difference and, thus, each has the same voltage across them. However, as the current approaches the junction of the three resistors, it must split, and a fraction of the total current passes through each of the three resistors. Thus, the total current in the circuit is given by: TOTL = TOTL TOTL 1 = EQ PLLEL + Equation 5 B + Using this relationship, Equation 1 and the statement that the voltage across each resistor is the same yields: = + + B ( + + ) B = + + B = + + B Equation 6 This gives the relation that the equivalent resistance of a parallel combination is the inverse of the sum of the inverses of each of the given resistance elements. esistance Measurements - Page 3

4 oltmeter-mmeter: The most direct way to determine an unknown resistance, or to verify the series/parallel relationships, is to measure the actual current passing through the system and voltage across the resistor (Ohm's Law). s indicated, a voltmeter (potential difference measuring device) must be connected across the resistor (in parallel) in order that is measures a difference from one side to another (again, the potential difference) and an ammeter (current measuring device) must be connected along the same part of the circuit that passes through the resistor (in series) in order to measure the current actually passing through the resistor; the ammeter does not keep any of the current nor does the resistor so it does not matter if the ammeter is placed before or after the resistor only that it be in-line with it. Figure 3 below is an illustration of this type of measuring arrangement. Figure 3 esistance Measurements - Page 4

5 NTL SETUP With the equipment you have available, a current probe will serve as the ammeter in the circuit and a differential voltage probe will serve as the voltmeter in your circuit.. onnect the urrent Probe to hannel 1 and the Differential oltage Probe to hannel 2 of the computer interface. B. Open the file 22 Ohms Law in the Physics with ernier folder. graph of potential vs. current will be displayed. The meter displays potential and current readings.. With the power supply turned off, connect the power supply, one of the known resistors, wires, and clips as shown in Figure 3. Take care that the positive lead from the power supply and the red terminal from the urrent & oltage Probe are connected as shown in Figure 3. Note: ttach the red connector of the voltage probe closer to the positive side of the power supply. D. lick. dialog box will appear. lick to zero both sensors. This sets the zero for both probes with no current flowing and with no voltage applied. This can have consequences in making the y-intercept 0; or = * +?. E. Have Dr. rts check the arrangement of the wires before proceeding. EXPEMENTL POEDUE a) With one of the known resistors in place, adjust the power supply to approximately 0.5 D. b) Monitor the voltage and current. lick to allow the & probes to talk to the computer. When the readings are relatively stable click. c) ncrease the voltage on the power supply to approximately 1.0 D. When the readings are stable click. d) ncrease the voltage by approximately another 0.5. When the readings are stable click. epeat this process until you reach a voltage of approximately 5.0. e) lick and set the power supply back to 0. ndicate a best-fit-straight-line on the graph and compute the slope and y- intercept. t this point you will want to print ONLY your graph (NO data tables). o Be sure your graph has a clear title indicative of the resistor(s) connected. o uto scale the graph before printing! esistance Measurements - Page 5

6 f) onnect the second of the known resistors and repeat a-e. g) onnect the third of the known resistors and repeat a-e. h) onnect the unknown resistor and repeat a-e. i) Using your knowledge of resistor combinations, predict how series resistors would affect current flow. o What would you expect the effective resistance of two equal resistors in series to be, compared to the resistance of a single resistor? j) onnect the three known resistors in series and repeat a-e. s shown in the illustration, be sure to connect the voltmeter across the combination, not across the individual resistors. esistance Measurements - Page 6

7 k) Using your knowledge of resistor combinations, predict how parallel resistors would affect current flow. o What would you expect the effective resistance of two equal resistors in parallel to be, compared to the resistance of one alone? l) onnect the three known resistors in parallel and repeat a-e. s shown in the illustration, be sure to connect the voltmeter across the combination, not across the individual resistors. esistance Measurements - Page 7

8 OE PGE EPOT TEMS (To be submitted and stapled in the order indicated below) (-5 points if this is not done properly) ompleted Laboratory esponsibility and over Sheet DT (0 points) ll data collected was in the form of graphs DT NLYSS (0 points) ll data analysis will be graphical analysis GPHS (worth up to 10 points) Three known resistor graphs One unknown resistor graph One series combination graph One parallel combination graph GPH NLYSS (worth up to 40 points) The answers to the questions below should be completed on the back of each respective printout For EH of the known resistances: re the results that you found in each of these trials consistent with what you expected to find? s there a specific relationship between the variables (,, & ) or only a general one? Based on your graph of vs. for each resistor: o Explain the significance of the slope. What should it be? o How would you expect the slopes of the graphs of each of the resistors individually to look in comparison to each other? Based on your data and graphs, do your resistors follow Ohm s law? Explain. esistance Measurements - Page 8

9 For the unknown resistor: What does your data indicate as to the value of your unknown resistor? Within the errors you found for your other resistors and combinations (± the actual percentage values), what do you feel is the range in which your resistor would most likely fall? Based on your graph of vs. for this resistor: o Explain the significance of the slope. Based on your data and graph, does your unknown resistor appear to follow Ohm s law? Explain. For the series combination: Do the values ( vs. ) of the series combination, in theory, correspond to your expectations; i.e. in comparison to any of the individual resistors, what expectation about the collected data did you have? Explain any variations. Based on your graph of vs. for this resistor: o Explain the significance of the slope. What should it be? Show this calculation on the back of the graph. Based on your data and graph, does your series combination appear to follow Ohm s law? Explain. For the parallel combination: Do the values ( vs. ) of the parallel combination, in theory, correspond to your expectations; i.e. in comparison to any of the individual resistors, what expectation about the collected data did you have? Explain any variations. Based on your graph of vs. for this resistor: o Explain the significance of the slope. What should it be? Show this calculation on the back of the graph. Based on your data and graph, does your parallel combination appear to follow Ohm s law? Explain. ONLUSON (worth up to 20 points) See the Physics Laboratory eport Expectations document for detailed information related to each of the four questions indicated below. 1. What was the lab designed to show? 2. What were your results? 3. How do the results support (or not support) what the lab was supposed to show? 4. What are some reasons that the results were not perfect? esistance Measurements - Page 9

10 QUESTONS (worth up to 20 points) DO NOT forget to include the answers to questions that were asked within the experimental procedure 1) t was stated that the voltmeter (differential voltage probe) must be placed in parallel with the resistor in order to measure the potential difference across the resistor. However, the voltmeter, by the very nature that it is an electrical device, also has resistance. What then, qualitatively speaking (really big, really small, doesn't matter, etc.), must the resistance of the voltage probe be so as not to adversely affect the operation of the circuit? onsider the parallel resistance equation as you attempt to answer the question!! 2) t was stated that the ammeter (current probe) must be placed in series with the resistor in order to measure the current passing through the resistor. However, the ammeter, by the very nature that it is an electrical device, also has resistance. What then, qualitatively speaking (really big, really small, doesn't matter, etc.), must the resistance of the current probe be so as not to adversely affect the operation of the circuit? onsider the series resistance equation as you attempt to answer the question!! 3) How do you suspect that the lights, T, appliances, etc. of your home are connected; in series or in parallel? Explain your reasoning. esistance Measurements - Page 10

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth

Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth Goals: Learn how to make simple circuits, measuring resistances, currents, and voltages across components. Become more comfortable

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Experiment 26 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components

More information

OHM S LAW. Ohm s Law The relationship between potential difference (V) across a resistor of resistance (R) and the current (I) passing through it is

OHM S LAW. Ohm s Law The relationship between potential difference (V) across a resistor of resistance (R) and the current (I) passing through it is OHM S LAW Objectives: a. To find the unknown resistance of an ohmic resistor b. To investigate the series and parallel combination of resistors c. To investigate the non-ohmic resistors Apparatus Required:

More information

Electric Circuit Experiments

Electric Circuit Experiments Electric Circuit Experiments 1. Using the resistor on the 5-resistor block, vary the potential difference across it in approximately equal increments for eight different values (i.e. use one to eight D-

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

Configurations of Resistors

Configurations of Resistors Configurations of Resistors Safety and Equipment Multimeter with probes or banana leads. Two of 50Ω and one of 100Ω resistors 5 connecting wires with double alligator clips Introduction There are two basic

More information

Pre-LAB 5 Assignment

Pre-LAB 5 Assignment Name: Lab Partners: Date: Pre-LA 5 Assignment Fundamentals of Circuits III: Voltage & Ohm s Law (Due at the beginning of lab) Directions: Read over the Lab Fundamentals of Circuits III: Voltages :w & Ohm

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Series and parallel resistances

Series and parallel resistances Series and parallel resistances Objectives Calculate the equivalent resistance for resistors connected in both series and parallel combinations. Construct series and parallel circuits of lamps (resistors).

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

Lab 4 Ohm s Law and Resistors

Lab 4 Ohm s Law and Resistors ` Lab 4 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

More information

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t Chapters 34 & 35: Electric Circuits NAME: Text: Chapter 34 Chapter 35 Think and Explain: 1-3, 6-8, 10 Think and Explain: 1-10 Think and Solve: 1-6 Think and Solve: 1-4 Vocabulary: Ohm s Law, resistance,

More information

Chapters 35: Electric Circuits

Chapters 35: Electric Circuits Text: Chapter 35 Think and Explain: 1-10 Think and Solve: 1-4 Chapters 35: Electric Circuits NME: Vocabulary: ammeter, voltmeter, series, parallel, equivalent resistance, circuit, short circuit, open circuit

More information

Lab 11: Circuits. Figure 1: A hydroelectric dam system.

Lab 11: Circuits. Figure 1: A hydroelectric dam system. Description Lab 11: Circuits In this lab, you will study voltage, current, and resistance. You will learn the basics of designing circuits and you will explore how to find the total resistance of a circuit

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate Section 4 Ohm s Law: Putting up a Resistance Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section 4 SC.912.N.2.4 Explain that scientific knowledge is both durable and

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

Current, resistance, and Ohm s law

Current, resistance, and Ohm s law Current, resistance, and Ohm s law Apparatus DC voltage source set of alligator clips 2 pairs of red and black banana clips 3 round bulb 2 bulb sockets 2 battery holders or 1 two-battery holder 2 1.5V

More information

Electrical Measurements

Electrical Measurements Electrical Measurements. OBJECTIES: This experiment covers electrical measurements, including use of the volt-ohmmeter and oscilloscope. Concepts including Ohm's Law, Kirchoff's Current and oltage Laws,

More information

Oregon State University Lab Session #1 (Week 3)

Oregon State University Lab Session #1 (Week 3) Oregon State University Lab Session #1 (Week 3) ENGR 201 Electrical Fundamentals I Equipment and Resistance Winter 2016 EXPERIMENTAL LAB #1 INTRO TO EQUIPMENT & OHM S LAW This set of laboratory experiments

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Fundamentals of Electric Circuits Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Overview This chapter will introduce Ohm s law: a central concept

More information

Exercise 3: Voltage in a Series Resistive Circuit

Exercise 3: Voltage in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 3: Voltage in a Series Resistive Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the voltage in a series

More information

Exercise 3: Ohm s Law Circuit Voltage

Exercise 3: Ohm s Law Circuit Voltage Ohm s Law DC Fundamentals Exercise 3: Ohm s Law Circuit Voltage EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine voltage by using Ohm s law. You will verify your

More information

Electric Circuits. Have you checked out current events today?

Electric Circuits. Have you checked out current events today? Electric Circuits Have you checked out current events today? Circuit Symbolism We can simplify this circuit by using symbols All circuits have an energy source and a load, with wires completing the loop

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To correctly operate the

More information

Unit 3. Electrical Circuits

Unit 3. Electrical Circuits Strand G. Electricity Unit 3. Electrical Circuits Contents Page Representing Direct Current Circuits 2 Rules for Series Circuits 5 Rules for Parallel Circuits 9 Circuit Calculations 14 G.3.1. Representing

More information

3. Apparatus/ Materials 1) Computer 2) Vernier board circuit

3. Apparatus/ Materials 1) Computer 2) Vernier board circuit Experiment 3 RLC Circuits 1. Introduction You have studied the behavior of capacitors and inductors in simple direct-current (DC) circuits. In alternating current (AC) circuits, these elements act somewhat

More information

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law EENG-201 Experiment # 1 Series Circuit and Parallel Circuits I. Objectives Upon completion of this experiment, the student should be able to: 1. ead and use the resistor color code. 2. Use the digital

More information

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi L UTS nstitute of Lifelong Learning, University of Delhi L UTS PHYSS (LAB MANUAL) nstitute of Lifelong Learning, University of Delhi PHYSS (LAB MANUAL) L UTS ntroduction ircuits containing an inductor

More information

Lab 9 AC FILTERS AND RESONANCE

Lab 9 AC FILTERS AND RESONANCE 09-1 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

More information

Electrical Measurements

Electrical Measurements Electrical Measurements INTRODUCTION In this section, electrical measurements will be discussed. This will be done by using simple experiments that introduce a DC power supply, a multimeter, and a simplified

More information

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law DC Circuits and Ohm s Law Contents Part I: Objective Part II: Introduction Part III: Apparatus and Setup Part IV: Measurements Part V: Analysis Part VI: Summary and Conclusions Part I: Objective In this

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

Series and Parallel DC Circuits

Series and Parallel DC Circuits Series and Parallel DC Circuits asic Circuits n electric circuit is closed loop of conductive material (metal wire) that connects several circuit elements together (batteries, resistors, capacitors, etc.)

More information

Industrial Electricity

Industrial Electricity Industrial Electricity Name DUE //7 or //7 (Your next lab day) Prelab: efer to the tables on Page 5. Show work neatly and completely on separate paper for any entry labeled calculated. You do not need

More information

DC Circuits, Ohm's Law and Multimeters Physics 246

DC Circuits, Ohm's Law and Multimeters Physics 246 DC Circuits, Ohm's Law and Multimeters Physics 246 Theory: In this lab we will learn the use of multimeters, verify Ohm s law, and study series and parallel combinations of resistors and capacitors. For

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment Mark High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment Name: Purpose: To investigate circuits connected in series and parallel. pparatus: 2V Power Supply 5 x Digital

More information

Electronic Simulation Software for Teaching and Learning

Electronic Simulation Software for Teaching and Learning Electronic Simulation Software for Teaching and Learning Electronic Simulation Software: 1. Ohms Law (a) Example 1 Zoom 200% (i) Run the simulation to verify the calculations provided. (ii) Stop the simulation

More information

Pre-Lab for Batteries and Bulbs

Pre-Lab for Batteries and Bulbs Pre-Lab for Batteries and Bulbs Complex circuits composed of resistors can be simplified by using the concept of equivalent resistors. For example if resistors R 1, R 2, and R 3 are connected in series,

More information

Experiment P-10 Ohm's Law

Experiment P-10 Ohm's Law 1 Experiment P-10 Ohm's Law Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors PC + NeuLog application

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory PC1222 Fundamentals of Physics II Basic Circuits 1 Objectives Investigate the relationship among three variables (resistance, current and voltage) in direct current circuits. Investigate the behaviours

More information

Resistance and Ohm s Law

Resistance and Ohm s Law esistance and Ohm s Law Name D TA Partners Date Section Please be careful about the modes of the multimeter. When you measure a voltage, you are not allowed to use current mode (A), and vice versa. Otherwise,

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

Experiment P-24 Circuits and Series Resistance

Experiment P-24 Circuits and Series Resistance 1 Experiment P-24 Circuits and Series Resistance Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors

More information

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits ame & Surname: D: Date: EEE 20 Circuit Theory - Laboratory Kirchoff s Laws, Series-Parallel Circuits List of topics for this laboratory: Ohm s Law Kirchoff s Current Law(KCL) Kirchoff s Voltage Law(KVL)

More information

Lab 9 AC FILTERS AND RESONANCE

Lab 9 AC FILTERS AND RESONANCE 151 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

More information

I(A) FIGURE 1 - Current vs. Time graph

I(A) FIGURE 1 - Current vs. Time graph ab 7 A ircuits What You Need To Know: The Physics All of the circuit labs you ve been dealing with in this lab course have been using direct current or D. D implies that the current has a constant value

More information

Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors.

Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors. Objective of Lecture Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors. Chapter.5 in Fundamentals of Electric Circuits Chapter 5.7 Electric

More information

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I)

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) Power Electronics Laboratory SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) OBJECT: To study the gate firing pulses. To observe and measure the voltages across the Thyristors and across the Load for a current

More information

1/15/2012. Overview. 06-Basic Laws Part 3 Text: Chapter Voltage Drop. Voltage Drop. Multi-Resistor Circuits. Voltage Drop

1/15/2012. Overview. 06-Basic Laws Part 3 Text: Chapter Voltage Drop. Voltage Drop. Multi-Resistor Circuits. Voltage Drop /5/0 Overview 0Basic Laws Part Text: Chapter 58 ECEG 0 Electric Circuits oltage Drop oltage Divider Series esistors Parallel esistors DeltaWye Conversion oltage Drop The voltage difference across the terminals

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: Voltage, current, and power. In the simplest

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

Date Period Name. For each description on the left, write the letter of the matching item.

Date Period Name. For each description on the left, write the letter of the matching item. Date Period Name CHAPTER 23 Study Guide Series and Parallel Circuits Vocabulary Review For each description on the left, write the letter of the matching item. Section 23.1 1. a circuit in which all current

More information

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Lecture 10 review: EMF ξ is not a voltage V, but OK for now. Physical emf source has V ab = ξ - Ir internal. Power in a circuit element is P = IV. For

More information

PHY 132 LAB : Ohm s Law

PHY 132 LAB : Ohm s Law PHY 132 LAB : Ohm s Law Introduction: In this lab, we look at the concepts of electrical resistance and resistivity. Text Reference: Wolfson 27:2-3. Special equipment notes: 1. Note the tips on wiring

More information

Page 21 GRAPHING OBJECTIVES:

Page 21 GRAPHING OBJECTIVES: Page 21 GRAPHING OBJECTIVES: 1. To learn how to present data in graphical form manually (paper-and-pencil) and using computer software. 2. To learn how to interpret graphical data by, a. determining the

More information

Uncovering a Hidden RCL Series Circuit

Uncovering a Hidden RCL Series Circuit Purpose Uncovering a Hidden RCL Series Circuit a. To use the equipment and techniques developed in the previous experiment to uncover a hidden series RCL circuit in a box and b. To measure the values of

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

DC Electric Circuits: Resistance and Ohm s Law

DC Electric Circuits: Resistance and Ohm s Law DC Electric Circuits: Resistance and Ohm s Law Goals and Introduction Our society is very reliant on electric phenomena, perhaps most so on the utilization of electric circuits. For much of our world to

More information

Exercise 2: Ohm s Law Circuit Current

Exercise 2: Ohm s Law Circuit Current Exercise 2: Circuit Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine current by using Ohm s law. You will verify your results with a multimeter. DISCUSSION

More information

Reactance and Impedance

Reactance and Impedance eactance and Impedance Theory esistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum value (in

More information

D1: Electric Circuits I

D1: Electric Circuits I Physics 133 Experiments D1: Electric Circuits I 1 D1: Electric Circuits I Goals To develop a model for how current flows in a circuit To see how a power supply provides current and voltage to a circuit

More information

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS VISUAL PHYSICS ONLINE Experiment PA41A ELECTRIC CIRCUITS Equipment (see Appendices) 12V DC power supply (battery): multimeter (and/or milliammeter and voltmeter); electrical leads; alligator clips; fixed

More information

CK-12 Physics Concepts - Intermediate Answer Key

CK-12 Physics Concepts - Intermediate Answer Key Chapter 19: Electrical Circuits 19.1 Series Circuits CK-12 Physics Concepts - Intermediate Answer Key 1. There are three 20.0 Ohm resistors connected in series across a 120 V generator. a. What is the

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND Make sure you read the background in Activity 3 before doing this activity. WIRING DIRECTIONS Materials per group of two: one or two D-cells

More information

PHYSICS 133 EXPERIMENTS ELECTRICS CIRCUITS I - 1

PHYSICS 133 EXPERIMENTS ELECTRICS CIRCUITS I - 1 PHYSICS 133 EXPERIMENTS ELECTRICS CIRCUITS I - 1 Electric Circuits I Goals To develop a model for how current flows in a circuit To see how a battery supplies current and voltage to a circuit To measure

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 10: LR and Undriven LRC Circuits

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 10: LR and Undriven LRC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 005 Experiment 10: LR and Undriven LRC Circuits OBJECTIVES 1. To determine the inductance L and internal resistance R L of a coil,

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

Ohm s Law. Equipment. Setup

Ohm s Law. Equipment. Setup rev 05/2018 Ohm s Law Equipment Qty Item Part Number 1 AC/DC Electronics Laboratory EM-8656 1 Current Sensor CI-6556 1 Multimeter 4 Patch Cords 2 Banana Clips 1 100Ω Resistor Purpose The purpose of this

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

FINAL EXAMINATION SOLUTIONS

FINAL EXAMINATION SOLUTIONS FINAL EXAMINATION SOLUTIONS Electronics I for EE ourse Number EE 09-3 N 0460 Instructor: James K Beard, PhD beard@rowanedu Page of 3 Table of ontents Problem (0%)3 Solution 3 Problem (0%)5 Solution 6 Problem

More information

ωc ωc sin(wt 90o ) (for a capacitance) (4)

ωc ωc sin(wt 90o ) (for a capacitance) (4) Physics'241'Signal'Processing:'Lab'3' Sinusoidal esponse of, L ircuits In the previous lab, we studied the behavior of series combinations of and L circuits with input square and triangular waveforms.

More information

Mixed Series & Parallel Circuits

Mixed Series & Parallel Circuits Add Important Mixed Series & arallel Circuits age: 477 Mixed Series & arallel Circuits NGSS Standards: N/A MA Curriculum Frameworks (006): 5. A hysics 1 Learning Objectives: 5.B.9.1, 5.B.9., 5.B.9., 5.C..1,

More information

Experiment Number 1. Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface:

Experiment Number 1. Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface: Experiment Number 1 Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface: Experiment number 1 will be held in CLC room 105, 106, or 107. Your TA will let you know

More information

The Series RLC Circuit and Resonance

The Series RLC Circuit and Resonance Purpose Theory The Series RLC Circuit and Resonance a. To study the behavior of a series RLC circuit in an AC current. b. To measure the values of the L and C using the impedance method. c. To study the

More information

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it.

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it. DC Circuits KET Virtual Physics Labs Worksheet Lab 12-1 As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact values you record

More information