State of the Art in RF Control

Size: px
Start display at page:

Download "State of the Art in RF Control"

Transcription

1 State of the Art in RF Control S. Simrock, DESY LINAC 2004, Lübeck Stefan Simrock DESY

2 Outline RF System Architecture Requirements for RF Control RF Control Design Considerations Design Efforts Worldwide Measured and Predicted Performance Conclusion LINAC 2004, Lübeck Stefan Simrock DESY

3 RF System Architecture master oscillator ~ actuator A&P RF power amplifier power transmission cavity Timing to LO PS for./ref. power freq. tuner LO DAC DSP/FPGA ADC DAC ADC digital/analog feedback controller A & P cavity field detector down converter LINAC 2004, Lübeck Stefan Simrock DESY

4 A. Frequency generation (1) Phase stable reference frequency oscillator (2) Phase locked Oscillators (various frequencies) (3) Power supply (4) Diagnostics (5) Control system interface (6) Phase stability monitoring and correction B. Frequency and Reference Phase Distribution (1) Phase stable transmission line (2) Temperature stabilization (3) Power distribution (directional couplers) C. Cavity Field Control (LLRF) (1) Detectors for accelerating field (a) amplitude detector (b) phase detector (c) I/Q detector RF Subsystems (2) Actuators for amplitude and phase of incident wave (a) pin-attenuator (b) multiplier (c) phase-shifter (d) vector-modulator (3) Field error detection (4) Cavity field controller with Feedback and Feedforward (5) Interlock system (6) Diagnostics (7) Interface to control system D. High Power Amplifier (1) RF power source (2) Power supply (3) Interlocks (4) Diagnostics (5) Interface to control system E. Power Transmission System (1) Transmission line (coaxial, waveguide) (2) Circulator, Isolator (3) Power dividers (4) Directional couplers (Monitor) (5) Waveguide (coaxial) window (6) Pressurisation system F. Accelerating System (1) Cavity (2) Fundamental Coupler (3) Higher Order Mode Coupler G. Cavity Frequency Tuning System (1) Cavity tuner (fast and/or slow) (a) Ferrite loaded (b) Motor tuner (c) Magnetostrictive (d) piezoelectric (e) coupled variable reactance (VCX tuner) LINAC 2004, Lübeck Stefan Simrock DESY

5 RF Control Requirements Maintain Phase and Amplitude of the accelerating field within given tolerances to accelerate a charged particle beam Minimimize Power needed for control RF system must be reproducible, reliable, operable, and well understood. Other performance goals - build-in diagnostics for calibration of gradient and phase, cavity detuning, etc. - provide exception handling capabilities - meet performance goals over wide range of operating parameters LINAC 2004, Lübeck Stefan Simrock DESY

6 Requirements RF Control Derived from beam properties - energy spread - emittance - bunch length (bunch compressor) - arrival time Different accelerators have different requirements for field stability (approximate RMS requirements - 1% for amplitude and 1 deg. for phase (example: SNS) - 0.1% for amplitude and 0.1deg.for phase (linear collider) - up to 0.01% for amplitude and 0.01 deg. for phase (XFEL) Note: Distinguish between correlated and uncorrelated error LINAC 2004, Lübeck Stefan Simrock DESY

7 Nominal LCLS Linac Parameters for 1.5-Å FEL Single bunch, 1-nC 1 charge, 1.2-µm slice emittance, 120-Hz repetition rate 6 MeV σ z 0.83 mm σ δ 0.05 % rf gun Linac-0 L =6 m new...existing linac 135 MeV 250 MeV σ z 0.83 mm σ z 0.19 mm σ δ 0.10 % σ δ 1.6 % Linac-X L =0.6 m ϕ rf = 160 Linac-1 Linac-2 L 9 9 m L 330 m ϕ rf 25 ϕ rf 41 DL-1 L 12 m R b1b 21-1d1d (RF phase: φ rf = 0 is at accelerating crest) P. Emma, SLAC X BC-1 L 6 6 m mm R b 24-6d SLAC linac tunnel Linac-3 L 550 m ϕ rf a undulator BC c L =130 m L 22 m mm LTU L =275 m R 56 0 R GeV σ z mm σ δ 0.71 % 14.1 GeV σ z mm σ δ 0.01 % research yard John Corlett, July 2004

8 Jitter Tolerance Levels in the LCLS X-band X- Jitter Jitter tolerance tolerance budget budget for for LCLS LCLS based based on on the the many many sensitivities sensitivities LCLS and test the budget with jitter simulations s z jitter = 14 % rms rms Dt-jitter = 109 fs Jitter Jitter simulation, simulation, tracking tracking particles 5 particles times, times, where where each each run run is is randomized randomized in in its its main main rf-parameters rf-parameters according according to to the the tolerance tolerance budget budget P. Emma, SLAC John Corlett, July 2004

9 Parameters and Requirements CESR-c ERL buncher cavity ERL s.c. inject. cavities ERL s..c. main linac cavities frequency [MHz] number of cavities cells per cavity R/Q / cavity (circuit def.) [W] Q to ,000 > > Q ext to ,900 > ( ) for 25 Hz peak detuning acc. voltage per cavity [MV] 1.9 to (3)» 16 required klystron power per cavity [kw] up to required relative amplitude stability (rms) < 1 % required phase stability (rms) < CORNELL Matthias Liepe 7/30/ U N I V E R S I T Y

10 Typical Parameters in a Pulsed RF System fill flat-top ampl. accelerating voltage Beam Loading incident power beam pulse... cavity phase time cavity detuning Beam pulse pattern (micro and midi pulse structure) LINAC 2004, Lübeck Stefan Simrock DESY

11 Sources of Perturbations o Beam loading - Beam current fluctuations - Pulsed beam transients - Multipacting and field emission - Excitation of HOMs - Excitation of other passband modes - Wake fields o Cavity drive signal - HV- Pulse flatness - HV PS ripple - Phase noise from master oscillator - Timing signal jitter - Mismatch in power distribution o Cavity dynamics - cavity filling - settling time of field o Cavity resonance frequency change - thermal effects (power dependent) - Microphonics - Lorentz force detuning o Other - Response of feedback system - Interlock trips - Thermal drifts (electronics, power amplifiers, cables, power transmission system) LINAC 2004, Lübeck Stefan Simrock DESY

12 RF Regulation TESLA Cavity (Simulation) Gradient Phase Beam Current Lorentz Force Detuning Lorentz Force Detuning Microphonics Microphonics Gradient Phase LINAC 2004, Lübeck Stefan Simrock DESY

13 Microphonics at JLAB LINAC 2004, Lübeck Stefan Simrock DESY

14 Control Choices (1) Self-excited Loop (SEL) vs Generator Driven System (GDR) Vector-sum (VS) vs individual cavity control Analog vs Digital Control Design Amplitude and Phase (A&P) vs In-phase and Quadrature (I/Q) detector and controller LINAC 2004, Lübeck Stefan Simrock DESY

15 Control Choices (2) M.O. Phase Controller Amplitude Controller Klystron ~ Φ A Phase Setpoint Φ Generator Driven Resonator Phase Detector Gradient Detector Gradient Set Point Cavity Limiter Phase Controller Amplitude Controller Klystron Φ A Φ Loop Phase Gradient Detector Gradient Set Point Self Excited Loop M.O. ~ Φ Phase Setpoint Phase Cavity LINAC 2004, Lübeck Stefan Simrock DESY

16 LINAC 2004, Lübeck Stefan Simrock DESY

17 LINAC 2004, Lübeck Stefan Simrock DESY

18 LINAC 2004, Lübeck Stefan Simrock DESY

19 LINAC 2004, Lübeck Stefan Simrock DESY

20 Digital Control at the TTF master oscillator Im vector modulator DAC DAC Re klystron 1.3 GHz Cavity 1 Cavity 8 cryomodule GHz khz clock LO f = 1 MHz s a -b b a ( ) ADC 8x khz power transmission line 1.3GHz field probe.... LO ( ) a -b a 1 b 8 ADC... Cavity 25 cryomodule 4... LO a -b ( b a ) 25 ADC 8x... Cavity LO a -b ( b a ) 32 ADC Σ vector-sum feed forward table Re + Im + Re Im gain table Re Im Re setpoint table Im digital low pass filter DSP system Linac 2004 Stefan Simrock DESY

21 Digital I/Q Detection mixer RF local oscillator (LO) 1300 MHz MHz IF 250 khz amplitude x 1 x 0 x 2 0 U cos(ωt+ φ) time [µs] downconversion of cavity field to IF frequency at 250 khz - complete phase and amplitude information of the accelerating field is preserved. x 3 sample IF signal at 1MHz rate subsequent samples describe real and imaginary component of the cavity field. Linac 2004 Stefan Simrock DESY

22 Beam Transient based Phase and Gradient Calibration beam induced transient Module 2 E acc P inc (open loop) 0 Ibeam 1 2 φ cav time beam induced transient field decay for t << τ cav : φ Re(E acc ) beam V ind = I t r --- π f Q cavity filling Linac 2004 Stefan Simrock DESY

23 Adaptive Feedforward Feed Forward Real Part ( ff(t) ) [bits] Step time [µs] E( τ 1 ) Closed Loop System T 11 T 12 T 1n Real ff 1 Part ( E(t) ) [ΜV/m] Vector Sum Step Response measured calculated for a linear time-invariant System time [µs] E( τ 2 ) E( τ n ) = T 21 T 22 T 2n T n1 T n2 T nn ff n ff n ff () t = ff j Θ( t t j ). j Linac 2004 Stefan Simrock DESY

24

25

26

27

28

29

30

31 System Identification (1) Cavity-Field ω V 1 2 ω = ω ω 1 2 V + Rω 1 2 ( I G + I B ) Beam-Phase smoothed & derived Forward-Power smoothed Differential Equation Bandwidth smoothed ω V 1 2 ω = ω ω 1 2 V + Rω 1 2 ( I G + I B ) Beam-Current Detuning during Pulse Linac 2004 Stefan Simrock DESY

32 System Identification (2) st Order ID on Cavity 7 Single Pulse Detuning Measurement Pf P r force P f to be zero at end of pulse by substraction of d f *P r (complex) the whole shape changes V acc f/hz, f/hz 2, V 2 /2MV ω(t) beam phase/ Correct for directivity of couplers time/µs No of Measurement Beam phase of 4 cavities for different phase of V acc Linac 2004 Stefan Simrock DESY

33 Performance at TTF (1) accelerating gradient [MV/m] with feedback and feedforward compensation only feedback (gain = 70) Zoomed Region beam time [µs] Amplitude accelerating phase [deg] only feedback (gain = 70) with feedback and feedforward compensation Zoomed Region beam time [µs] Phase Linac 2004 Stefan Simrock DESY

34 Performance at TTF (2) Operation with long beam pulses Linac 2004 Stefan Simrock DESY

35 DSP and ADC board LLRF for TTF I Linac 2004, Lübeck Stefan Simrock DESY

36 Rack Layout and Cabling for TTF I Linac 2004, Lübeck Stefan Simrock DESY

37 C67 DSP board Linac 2004, Lübeck Stefan Simrock DESY

38 Installation Status of LLRF for ACC 2-6 Zeuthen, Jan Stefan Simrock DESY

39 C67 DSP board Linac 2004, Lübeck Stefan Simrock DESY

40 Downconverter Linac 2004, Lübeck Stefan Simrock DESY

41 FPGA based RF Gun Controller Linac 2004, Lübeck Stefan Simrock DESY

42 Cavity Simulator Linac 2004, Lübeck Stefan Simrock DESY

43 SNS Controller and Initial Performance Test sc-cavity nc-cavity L. Doolittle LINAC 2004, Lübeck Stefan Simrock DESY

44 New Field Control Module for SNS L. Doolittle LINAC 2004, Lübeck Stefan Simrock DESY

45 Measurement Phase Noise L. Doolittle LINAC 2004, Lübeck Stefan Simrock DESY

46 RF Vector Control Scheme RF IF=50MHz ADC 10 MHz FPGA DAC ~ LO clock=40 MHz 50 MHz LO L. Doolittle LINAC 2004, Lübeck Stefan Simrock DESY

47 LLRF Proposal for CEBAF Upgrade C. Hovater LINAC 2004, Lübeck Stefan Simrock DESY

48 Proposal for RIA LLRF C. Hovater LINAC 2004, Lübeck Stefan Simrock DESY

49 LINAC 2004, Lübeck Stefan Simrock DESY

50 AD 8302 phase linearity ( f=25 Hz) linearity log(a) LINAC 2004, Lübeck Stefan Simrock DESY

51 AD 8302 (Cnt d) noise at output hysteresis effect LINAC 2004, Lübeck Stefan Simrock DESY

52 LINAC 2004, Lübeck Stefan Simrock DESY

53 AD8361 Temperature Stability Linearity LINAC 2004, Lübeck Stefan Simrock DESY

54 LINAC 2004, Lübeck Stefan Simrock DESY

55 AD 8347 Amplitude (P_in) Linearity Phase (P_in) LINAC 2004, Lübeck Stefan Simrock DESY

56 LINAC 2004, Lübeck Stefan Simrock DESY

57 HMC439 Linearity Noise LINAC 2004, Lübeck Stefan Simrock DESY

58 LINAC 2004, Lübeck Stefan Simrock DESY

59 Field Detector and Act. for Ctrl (Darmstadt) LINAC 2004, Lübeck Stefan Simrock DESY

60 Requirement for CEBAF (JLAB) LINAC 2004, Lübeck Stefan Simrock DESY

61 Bode Plot of Controller at JLAB LINAC 2004, Lübeck Stefan Simrock DESY

62 Performance Measured at JLAB LINAC 2004, Lübeck Stefan Simrock DESY

63 Performance Measure at JLAB LINAC 2004, Lübeck Stefan Simrock DESY

64 Performance at Rossendorf LINAC 2004, Lübeck Stefan Simrock DESY

65 Stability Measured for J-PARC % deg. S. Michizono LINAC 2004, Lübeck Stefan Simrock DESY

66 Matthias Liepe CORNELL CESR MO 11.9 MHz U N I V E R S I T Y Pkly MHz RF system vector synthesizer modulator Pt1 Pt2 Q I LO MHz MHz ADC ADC ADC ADC DAC DAC I Ultra-Fast Digital RF Field Control System for CESR and ERLs Q RF switch fast control RF on/off, trip fast interlock card FPGA DSP memory klystron link ports 4 ADCs 2 DACs DSP Virtex II FPGA memory FPGA DSP samplebuffer samplebuffer slow control + DAQ cavity ADC ADC ADC ADC DAC DAC piezo-tuner Pf Pr very low delay in the control loop (» 1 ms) Field Programmable Gate Array (FPGA) design combines the speed of an analog system and the flexibility of a digital system high computation power allows advanced control algorithms all boards have been designed in house generic design: digital boards can be used for a variety of control and data processing applications

67 Cornell s Digital RF Control System: Digital Boards: RF Down- Converters 500 MHz frequency synthesizer vector modulator CORNELL Matthias Liepe 7/30/ U N I V E R S I T Y

68 Open Loop Errors rad σ A /A PS klys. mic=0.1*f 12 LFD=+-f 12 σ I /I=10% (slow) 10-2 mic=0.1*f 12 (on crest) 10-3 Goal σ I /I=10% (fast) 10-0 LINAC 2004, Lübeck Stefan Simrock DESY

69 RMS Error as Function of Feedback Gain Error lower latency unstable less noise LINAC 2004, Lübeck Stefan Simrock DESY Gain

70 Active Compensation of Lorentz Force Detuning (1) tuning mechanism piezo He-tank + cavity Piezo-Actuator: l = 39 mm U max =150V l 4 to 5 µm at 2K f max, static 500Hz Linac 2004 Stefan Simrock DESY

71 Active Compensation of Lorentz Force Detuning (2) detuning [Hz] beam on - time without compensation with compensation fill time 900 µs constant gradient time [µs] 9-cell cavity operated at 23.5 MV/m Linac 2004 Stefan Simrock DESY Lorentz force compensated with fast piezoelectric tuner

72 Microphonics Suppression with Feedforward T. Grimm LINAC 2004, Lübeck Stefan Simrock DESY

73 rf signals for the accelerator may also be derived from the laser master oscillator ~ FEL seed lasers Laser oscillator Amplifier & conditioning Spatial profiling Amplitude control Multiply Amplifier Pulse shaping Laser oscillator ~ ~ ~ ~ ~ ~ Laser master oscillator Laser oscillator Laser oscillator Laser oscillator Amplifier & conditioning Amplifier & conditioning Amplifier & conditioning Multiple beamline endstation lasers Photocathode laser Accelerator RF signals John Corlett, July 2004

74 Timing Stabilized Fiber Links (~1 km) Fiber laser or Er/Yb-glass laser Assuming no fiber length fluctuations faster than 2L/c (~100 khz) Thermal fluctuations: ~ 20 µm (~ 100 fs) over 1 km for 0.1 C MIT Ultrafast Optics & Quantum Electronics Group

75 Conclusion Field regulation ranging from 1% to 10-4 amplitude and 1 deg. to 0.01 deg. for phase (in critical sections) will be required for future superconducting and normalconducting accelerators Noise sources for superconducting cavities are understood - Microphonics ( typ. 10 Hz) - Lorenz force detuning ( 1-3 Hz/(MV/m)^2) - Beam loading (few %) Rapid development in digital technology (DSP, FPGA, ADC, DAC) favors digital design for feedback/feedforward control. Fast Control with incident wave - feedforward for repetitive errors (beam,lfd, klystr.) - feedback (stochastic errors) LINAC 2004, Lübeck Stefan Simrock DESY

76 Limitation of feedback: Latency in Loop (limits loop gain) and Noise Limitation of feedforward: Measurement and Estimation of Perturbations Resonance control with fast tuner promising - Lorentz force compensation successfully demonstrated - For microphonics control first result promising results Present achievements in amplitude and 0.03 deg. have been achieved at QL=1e7 Outlook: Phase stability of 0.01 deg. appears feasible LINAC 2004, Lübeck Stefan Simrock DESY

77 LLRF Contributions at the LINAC 2004 MOP69 A. Hofler et al. RF Control Modelling Issues for Future Superconducting Accelerators TUP75 D. Dong et al. The High Accuracy RF Phase Detector Research for the 200 MeV LINAC TUP76 T. Kandil et al. Adaptive Feedforward Cancellation (AFC) of SInusoidal Disturbances in Superconducting RF (SCRF) Cavities TUP77 K. Fong et al. Status of RF Control System for ISAC II Superconducting Cavities TUP78 T. Jezynski at al. On-Line Diagnostics for the Low Level RF Control for the European XFEL TUP79 C. Hovater et al. A New RF System for the CEBAF Normal Conducting Cavities TUP89 S.P.M. Sekalski et al. Static Absolute Force Measurement for Preload Piezoelements Used for Active Force Force Detuning TUP98 W. Cichalewski et al. The Finite State Machine for Klystron Operation for TESLA and the European XFEL Linear Accelerator THP52 T. Kobayashi et al.. RF Reference Distribution System for J-PARC Linac THP56 S. Michizono et al. Control of Low Level RF System for J-Parc Linac THP57 S. Michizono et al. Digital Feedback System for J-Parc Linac RF Source THP59 J. Mourier et al. Low Level RF Including a Sophisticated Phase Control System for CTF3 THP66 T.L. Grimm et al. Measurement and Control of Microphonics in High Loaded-Q Superconducting RF Cavities LINAC 2004, Lübeck Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY Low-Level RF S. Simrock, DESY Outline Scope of LLRF System Work Breakdown for XFEL LLRF Design for the VUV-FEL Cost, Personpower and Schedule RF Systems for XFEL RF Gun Injector 3rd harmonic cavity Main

More information

Review on Progress in RF Control Systems. Cornell University. Matthias Liepe. M. Liepe, Cornell U. SRF 2005, July 14

Review on Progress in RF Control Systems. Cornell University. Matthias Liepe. M. Liepe, Cornell U. SRF 2005, July 14 Review on Progress in RF Control Systems Matthias Liepe Cornell University 1 Why this Talk? As we all know, superconducting cavities have many nice features one of which is very high field stability. Why?

More information

Cavity Field Control - RF Field Controller. LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany

Cavity Field Control - RF Field Controller. LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany Cavity Field Control - RF Field Controller LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany Content Introduction to the controller Control scheme selection In-phase and Quadrature (I/Q)

More information

Borut Baricevic. Libera LLRF. 17 September 2009

Borut Baricevic. Libera LLRF. 17 September 2009 Borut Baricevic Libera LLRF borut.baricevic@i-tech.si 17 September 2009 Outline Libera LLRF introduction Libera LLRF system topology Signal processing structure GUI and signal acquisition RF system diagnostics

More information

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs The gun RF control at FLASH (and PITZ) Elmar Vogel in collaboration with Waldemar Koprek and Piotr Pucyk th FLASH Seminar at December 19 2006 FLASH rf gun beam generated within the (1.3 GHz) RF gun by

More information

Synchronization Overview

Synchronization Overview Synchronization Overview S. Simrock, DESY ERL Workshop 2005 Stefan Simrock DESY What is Synchronization Outline Synchronization Requirements for RF, Laser and Beam Timing stability RF amplitude and phase

More information

C100 Cryomodule. Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint

C100 Cryomodule. Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint 1 new module C100 Cryomodule Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint Fundamental frequency f 0 Accelerating gradient E acc 1497 MHz >

More information

R.Bachimanchi, IPAC, May 2015, Richmond, VA

R.Bachimanchi, IPAC, May 2015, Richmond, VA 1 new module C100 Cryomodule Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint Fundamental frequency f 0 Accelerating gradient E acc 1497 MHz >

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

Digital Signal Processing in RF Applications

Digital Signal Processing in RF Applications Digital Signal Processing in RF Applications Part II Thomas Schilcher Outline 1. signal conditioning / down conversion 2. detection of amp./phase by digital I/Q sampling I/Q sampling non I/Q sampling digital

More information

Digital LLRF Test on the Renascence Cryomodule

Digital LLRF Test on the Renascence Cryomodule Digital LLRF Test on the Renascence Cryomodule Trent Allison, Rama Bachimanchi, Curt Hovater, John Musson and Tomasz Plawski Introduction The Renascence cryomodule was the first opportunity for testing

More information

Cavity Field Control - Feedback Performance and Stability Analysis. LLRF Lecture Part3.2 S. Simrock, Z. Geng DESY, Hamburg, Germany

Cavity Field Control - Feedback Performance and Stability Analysis. LLRF Lecture Part3.2 S. Simrock, Z. Geng DESY, Hamburg, Germany Cavity Field Control - Feedback Performance and Stability Analysis LLRF Lecture Part3.2 S. Simrock, Z. Geng DESY, Hamburg, Germany Motivation Understand how the perturbations and noises influence the feedback

More information

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM FOR THE EUROPEAN XFEL Julien Branlard, for the LLRF team TALK OVERVIEW 2 Introduction Brief reminder about the XFEL LLRF system Commissioning goals

More information

ABSTRACT 1 CEBAF UPGRADE CAVITY/CRYOMODULE

ABSTRACT 1 CEBAF UPGRADE CAVITY/CRYOMODULE Energy Content (Normalized) SC Cavity Resonance Control System for the 12 GeV Upgrade Cavity: Requirements and Performance T. Plawski, T. Allison, R. Bachimanchi, D. Hardy, C. Hovater, Thomas Jefferson

More information

SNS LLRF Design Experience and its Possible Adoption for the ILC

SNS LLRF Design Experience and its Possible Adoption for the ILC SNS LLRF Design Experience and its Possible Adoption for the ILC Brian Chase SNS - Mark Champion Fermilab International Linear Collider Workshop 11/28/2005 1 Why Consider the SNS System for ILC R&D at

More information

Microphonics. T. Powers

Microphonics. T. Powers Microphonics T. Powers What is microphonics? Microphonics is the time domain variation in cavity frequency driven by external vibrational sources. A 1.5 GHz structure 0.5 m long will change in frequency

More information

The low level radio frequency control system for DC-SRF. photo-injector at Peking University *

The low level radio frequency control system for DC-SRF. photo-injector at Peking University * The low level radio frequency control system for DC-SRF photo-injector at Peking University * WANG Fang( 王芳 ) 1) FENG Li-Wen( 冯立文 ) LIN Lin( 林林 ) HAO Jian-Kui( 郝建奎 ) Quan Sheng-Wen( 全胜文 ) ZHANG Bao-Cheng(

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA

Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA Krzysztof Czuba *a, Henning C. Weddig #b a Institute of Electronic Systems, Warsaw University of Technology,

More information

LLRF Plans for SMTF. Ruben Carcagno (Fermilab) Nigel Lockyer (University of Pennsylvania) Thanks to DESY, PISA, KEK, Fermilab, SLAC Colleagues

LLRF Plans for SMTF. Ruben Carcagno (Fermilab) Nigel Lockyer (University of Pennsylvania) Thanks to DESY, PISA, KEK, Fermilab, SLAC Colleagues LLRF Plans for SMTF Ruben Carcagno (Fermilab) Nigel Lockyer (University of Pennsylvania) Thanks to DESY, PISA, KEK, Fermilab, SLAC Colleagues Outline Near-term (< 1.5 years) SMTF LLRF plan Long-term (>

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

SYNCHRONIZATION SYSTEMS FOR ERLS

SYNCHRONIZATION SYSTEMS FOR ERLS SYNCHRONIZATION SYSTEMS FOR ERLS Stefan Simrock, Frank Ludwig, Holger Schlarb DESY Notkestr. 85, 22603 Hamburg News, Germany Corresponding author: Stefan Simrock DESY Notkestr. 85 22603 Hamburg, Germany

More information

Software Requirements Specification for LLRF Applications at FLASH Version 1.0 Prepared by Zheqiao Geng MSK, DESY Nov. 06, 2009

Software Requirements Specification for LLRF Applications at FLASH Version 1.0 Prepared by Zheqiao Geng MSK, DESY Nov. 06, 2009 Software Specification for LLRF Applications at FLASH Version 1.0 Prepared by Zheqiao Geng MSK, DESY Nov. 06, 2009 Copyright 2009 by Zheqiao Geng. Any change of this document should be agreed by the development

More information

MIMO-LTI Feedback Controller Design -Status report-

MIMO-LTI Feedback Controller Design -Status report- MIMO-LTI Feedback Controller Design -Status report- Christian Schmidt Deutsches Elektronen Synchrotron Technische Universitaet Hamburg Harburg FLASH Seminar 4/1/28 Outline Current RF Feedback System MIMO

More information

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University Overview of ERL Projects: SRF Issues and Challenges Matthias Liepe Cornell University Overview of ERL projects: SRF issues and challenges Slide 1 Outline Introduction: SRF for ERLs What makes it special

More information

Software Design Specification for LLRF Applications at FLASH Version 1.0 Prepared by Zheqiao Geng MSK, DESY Nov. 16, 2009

Software Design Specification for LLRF Applications at FLASH Version 1.0 Prepared by Zheqiao Geng MSK, DESY Nov. 16, 2009 Software Design Specification for LLRF Applications at FLASH Version 1.0 Prepared by Zheqiao Geng MSK, DESY Nov. 16, 2009 Copyright 2009 by Zheqiao Geng. Any change of this document should be agreed by

More information

Feedback Requirements for SASE FELS. Henrik Loos, SLAC IPAC 2010, Kyoto, Japan

Feedback Requirements for SASE FELS. Henrik Loos, SLAC IPAC 2010, Kyoto, Japan Feedback Requirements for SASE FELS Henrik Loos, SLAC, Kyoto, Japan 1 1 Henrik Loos Outline Stability requirements for SASE FELs Diagnostics for beam parameters Transverse: Beam position monitors Longitudinal:

More information

THE ORION PHOTOINJECTOR: STATUS and RESULTS

THE ORION PHOTOINJECTOR: STATUS and RESULTS THE ORION PHOTOINJECTOR: STATUS and RESULTS Dennis T. Palmer SLAC / ARDB ICFA Sardinia 4 July 2002 1. Introduction 2. Beam Dynamics Simulations 3. Photoinjector 1. RF Gun 2. Solenoidal Magnet 3. Diagnostics

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration The TESLA Linear Collider Winfried Decking (DESY) for the TESLA Collaboration Outline Project Overview Highlights 2000/2001 Publication of the TDR Cavity R&D TTF Operation A0 and PITZ TESLA Beam Dynamics

More information

Design & Implementation of the LLRF System for LCLS-II. Andy Benwell (SLAC Spokesperson) LLRF 2017 October 16, 2017

Design & Implementation of the LLRF System for LCLS-II. Andy Benwell (SLAC Spokesperson) LLRF 2017 October 16, 2017 Design & Implementation of the LLRF System for LCLS-II Andy Benwell (SLAC Spokesperson) LLRF 2017 October 16, 2017 Outline LCLS II LCLS II LLRF Requirements/Parameters LLRF Team LLRF Design Testing efforts

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

EUROFEL-Report-2006-DS EUROPEAN FEL Design Study

EUROFEL-Report-2006-DS EUROPEAN FEL Design Study EUROFEL-Report-2006-DS3-034 EUROPEAN FEL Design Study Deliverable N : D 3.8 Deliverable Title: RF Amplitude and Phase Detector Task: Author: DS-3 F.Ludwig, M.Hoffmann, M.Felber, Contract N : 011935 P.Strzalkowski,

More information

RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH

RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH Introduction to the otical synchronization system and concept of RF generation for locking of Ti:Sapphire

More information

Energy Recovering Linac Issues

Energy Recovering Linac Issues Energy Recovering Linac Issues L. Merminga Jefferson Lab EIC Accelerator Workshop Brookhaven National Laboratory February 26-27, 2002 Outline Energy Recovery RF Stability in Recirculating, Energy Recovering

More information

- RF Master-Reference Update (F.Ludwig, H.Weddig - DESY, K.Czuba - TU Warsaw) - Beam Stability Update (C.Gerth, F.Ludwig, G.

- RF Master-Reference Update (F.Ludwig, H.Weddig - DESY, K.Czuba - TU Warsaw) - Beam Stability Update (C.Gerth, F.Ludwig, G. FLASH Meeting, 21/04/09 Beam Stability at FLASH - update F.Ludwig - DESY Content : - Motivation - RF Master-Reference Update (F.Ludwig, H.Weddig - DESY, K.Czuba - TU Warsaw) - Beam Stability Update (C.Gerth,

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

Femtosecond Synchronization of Laser Systems for the LCLS

Femtosecond Synchronization of Laser Systems for the LCLS Femtosecond Synchronization of Laser Systems for the LCLS, Lawrence Doolittle, Gang Huang, John W. Staples, Russell Wilcox (LBNL) John Arthur, Josef Frisch, William White (SLAC) 26 Aug 2010 FEL2010 1 Berkeley

More information

Performance of the TTF Photoinjector Laser System

Performance of the TTF Photoinjector Laser System Performance of the TTF Photoinjector Laser System S. Schreiber, DESY Laser Issues for Electron Photoinjectors, October 23-25, 22, Stanford, California, USA & I. Will, A. Liero, W. Sandner, MBI Berlin Overview

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

LC Technology Hans Weise / DESY

LC Technology Hans Weise / DESY LC Technology Hans Weise / DESY All you need is... Luminosity! L σ 2 N e x σ y σ y σ x L n b f rep Re-writing reflects the LC choices... L P E b c. m. N e σ σ x y... beam power... bunch population... Ac-to-beam

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

LCLS-II LLRF Prototype Testing and Characterization. Larry Doolittle, Brian Chase, Joshua Einstein-Curtis, Carlos Serrano LLRF 17,

LCLS-II LLRF Prototype Testing and Characterization. Larry Doolittle, Brian Chase, Joshua Einstein-Curtis, Carlos Serrano LLRF 17, LCLS-II LLRF Prototype Testing and Characterization Larry Doolittle, Brian Chase, Joshua Einstein-Curtis, Carlos Serrano LLRF 17, 2017-10-16 Outline A little background on LCLS-II LLRF Design - DSP algorithms

More information

SRF EXPERIENCE WITH THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE

SRF EXPERIENCE WITH THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE SRF EXPERIENCE WITH THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE M. Liepe, S. Belomestnykh, E. Chojnacki, Z. Conway, V. Medjidzade, H. Padamsee, P. Quigley, J. Sears, V. Shemelin, V. Veshcherevich,

More information

EXPERIMENTAL RESULT OF LORENTZ DETUNING IN STF PHASE-1 AT KEK-STF

EXPERIMENTAL RESULT OF LORENTZ DETUNING IN STF PHASE-1 AT KEK-STF EXPERIMENTAL RESULT OF LORENTZ DETUNING IN STF PHASE-1 AT KEK-STF Y. Yamamoto #, H. Hayano, E. Kako, T. Matsumoto, S. Michizono, T. Miura, S. Noguchi, M. Satoh, T. Shishidio, K. Watanabe, KEK, Tsukuba,

More information

Calibrating the Cavity Voltage. Presentation of an idea

Calibrating the Cavity Voltage. Presentation of an idea Calibrating the Cavity Voltage. Presentation of an idea Stefan Wilke, DESY MHF-e 21st ESLS rf meeting Kraków, 15th/16th nov 2017 Accelerators at DESY. linear and circular Page 2 Accelerators at DESY. linear

More information

Direct Digital Down/Up Conversion for RF Control of Accelerating Cavities

Direct Digital Down/Up Conversion for RF Control of Accelerating Cavities Direct Digital Down/Up Conversion for RF Control of Accelerating Cavities C. Hovater, T. Allison, R. Bachimanchi, J. Musson and T. Plawski Introduction As digital receiver technology has matured, direct

More information

Cavity development for TESLA

Cavity development for TESLA Cavity development for TESLA Lutz.Lilje@desy.de DESY -FDET- Cavity basics History: Limitations and solutions»material inclusions»weld defects»field emission»increased surface resistance at high field Performance

More information

Field Stability Issue for Normal Conducting Cavity under Beam Loading

Field Stability Issue for Normal Conducting Cavity under Beam Loading Field Stability Issue for Normal Conducting Cavity under Beam Loading Rihua Zeng, 3- - Introduction There is cavity field blip at the beginning of beam loading (~several ten micro-seconds) under PI control

More information

Slide Title. Bulleted Text

Slide Title. Bulleted Text Slide Title 1 Slide Outline Title Brief view of the C-AD Complex Review of the RHIC LLRF Upgrade Platform Generic Implementation of a Feedback Loop RHIC Bunch by Bunch Longitudinal Damper Cavity Controller

More information

LLRF Controls and Feedback: Free-Electron Lasers and Energy Recovery Linacs

LLRF Controls and Feedback: Free-Electron Lasers and Energy Recovery Linacs Proceedings of the CAS CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, Hamburg, Germany, 31 May 10 June 2016, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol.

More information

Status of superconducting module development suitable for cw operation: ELBE cryostats

Status of superconducting module development suitable for cw operation: ELBE cryostats Status of superconducting module development suitable for cw operation: ELBE cryostats, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A. Winter Forschungszentrum

More information

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II*

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* THB04 Proceedings of FEL2014, Basel, Switzerland ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* Josef Frisch, Paul Emma, Alan Fisher, Patrick Krejcik, Henrik Loos, Timothy Maxwell, Tor Raubenheimer,

More information

Digital Self Excited Loop Implementation and Experience. Trent Allison Curt Hovater John Musson Tomasz Plawski

Digital Self Excited Loop Implementation and Experience. Trent Allison Curt Hovater John Musson Tomasz Plawski Digital Self Excited Loop Implementation and Experience Trent Allison Curt Hovater John Musson Tomasz Plawski Overview Why Self Excited Loop? Algorithm Building Blocks Hardware and Sampling Digital Signal

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

HIGHER ORDER MODES FOR BEAM DIAGNOSTICS IN THIRD HARMONIC 3.9 GHZ ACCELERATING MODULES *

HIGHER ORDER MODES FOR BEAM DIAGNOSTICS IN THIRD HARMONIC 3.9 GHZ ACCELERATING MODULES * HIGHER ORDER MODES FOR BEAM DIAGNOSTICS IN THIRD HARMONIC 3.9 GHZ ACCELERATING MODULES * N. Baboi #, N. Eddy, T. Flisgen, H.-W. Glock, R. M. Jones, I. R. R. Shinton, and P. Zhang # # Deutsches Elektronen-Synchrotron

More information

Design and performance of LLRF system for CSNS/RCS *

Design and performance of LLRF system for CSNS/RCS * Design and performance of LLRF system for CSNS/RCS * LI Xiao 1) SUN Hong LONG Wei ZHAO Fa-Cheng ZHANG Chun-Lin Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Abstract:

More information

LLRF Operation and Performance of the European XFEL. An overview

LLRF Operation and Performance of the European XFEL. An overview LLRF Operation and Performance of the European XFEL. An overview Mathieu Omet LLRF, Barcelona, 16.10.2017 Contents > Introduction > LLRF commissioning > Energy Reach > LLRF performance > Summary / Outlook

More information

PUBLICATION. A Novel Approach for Automatic Control of Piezoelectric Elements Used for Lorentz Force Detuning Compensation

PUBLICATION. A Novel Approach for Automatic Control of Piezoelectric Elements Used for Lorentz Force Detuning Compensation EuCARD-CON-21-4 European Coordination for Accelerator Research and Development PUBLICATION A Novel Approach for Automatic Control of Piezoelectric Elements Used for Lorentz Force Detuning Compensation

More information

Structures for RIA and FNAL Proton Driver

Structures for RIA and FNAL Proton Driver Structures for RIA and FNAL Proton Driver Speaker: Mike Kelly 12 th International Workshop on RF Superconductivity July 11-15, 2005 Argonne National Laboratory A Laboratory Operated by The University of

More information

An Iterative Learning Algorithm for Control of an Accelerator Based Free Electron Laser

An Iterative Learning Algorithm for Control of an Accelerator Based Free Electron Laser Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-, 8 WeB5.5 An Iterative Learning Algorithm for Control of an Accelerator Based Free Electron Laser S. Kichhoff, C.

More information

Behavior of the TTF2 RF Gun with long pulses and high repetition rates

Behavior of the TTF2 RF Gun with long pulses and high repetition rates Behavior of the TTF2 RF Gun with long pulses and high repetition rates J. Baehr 1, I. Bohnet 1, J.-P. Carneiro 2, K. Floettmann 2, J. H. Han 1, M. v. Hartrott 3, M. Krasilnikov 1, O. Krebs 2, D. Lipka

More information

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac LCLS-II TN-16-05 9/12/2016 A. Lunin, T. Khabiboulline, N. Solyak, A. Sukhanov, V. Yakovlev April 10, 2017 LCLSII-TN-16-06

More information

Superconducting cavity driving with FPGA controller

Superconducting cavity driving with FPGA controller TESLA-FEL 26-7 Superconducting cavity driving with FPGA controller Tomasz Czarski, Waldemar Koprek, Krzysztof T. Poźniak, Ryszard S. Romaniuk, Warsaw University of Technology Stefan Simrock, Alexander

More information

H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group

H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group 7+(7(6/$;)(/352-(&7 H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group $EVWUDFW The overall layout of the X-Ray FEL to be built in international collaboration at DESY will

More information

Phase Drift Budget Analysis for 12 GeV 1497 MHz LLRF System

Phase Drift Budget Analysis for 12 GeV 1497 MHz LLRF System Phase Drift Budget Analysis for 12 GeV 1497 MHz LLRF System John Musson 28-Sept-7 Introduction The 12 GeV upgrade effort included the creation of LLRF Requirements, directed at achieving.4% gradient regulation,.5

More information

Tuning systems for superconducting cavities at Saclay

Tuning systems for superconducting cavities at Saclay Tuning systems for superconducting cavities at Saclay 1 MACSE: 1990: tuner in LHe bath at 1.8K TTF: 1995 tuner at 1.8K in the insulating vacuum SOLEIL: 1999 tuner at 4 K in the insulating vacuum Super-3HC:

More information

Bunch-by-Bunch Broadband Feedback for the ESRF

Bunch-by-Bunch Broadband Feedback for the ESRF Bunch-by-Bunch Broadband Feedback for the ESRF ESLS RF meeting / Aarhus 21-09-2005 J. Jacob, E. Plouviez, J.-M. Koch, G. Naylor, V. Serrière Goal: Active damping of longitudinal and transverse multibunch

More information

Digital Phase Control Techniques for Accelerator Cavities.

Digital Phase Control Techniques for Accelerator Cavities. Digital Phase Control Techniques for Accelerator Cavities. Amos Dexter, Imran Tahir, Graeme Burt and Richard Carter Lancaster University Engineering Department Abstract RF cavities used for the acceleration

More information

Development of utca Hardware for BAM system at FLASH and XFEL

Development of utca Hardware for BAM system at FLASH and XFEL Development of utca Hardware for BAM system at FLASH and XFEL Samer Bou Habib, Dominik Sikora Insitute of Electronic Systems Warsaw University of Technology Warsaw, Poland Jaroslaw Szewinski, Stefan Korolczuk

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

Automatic phase calibration for RF cavities using beam-loading signals. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 18 Oct 2017

Automatic phase calibration for RF cavities using beam-loading signals. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 18 Oct 2017 Automatic phase calibration for RF cavities using beam-loading signals Jonathan Edelen LLRF 2017 Workshop (Barcelona) 18 Oct 2017 Introduction How do we meet 10-4 energy stability for PIP-II? 2 11/9/2017

More information

Linac Coherent Light Source (LCLS) Low Level RF Status LCLS FAC. October 30, 2007

Linac Coherent Light Source (LCLS) Low Level RF Status LCLS FAC. October 30, 2007 Linac Coherent Light Source (LCLS) Low Level RF Status LCLS Emma LCLS RF Gun, L0, and L1 Emma Dual Feed L0A L0B L0A 57MV 19MV/m L0B 72MV 24MV/m Off Axis Injector Vault Injector Transverse Accelerator 55cm

More information

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Overview ALICE (Accelerators and Lasers In Combined Experiments)

More information

Digital Logic, Algorithms, and Functions for the CEBAF Upgrade LLRF System Hai Dong, Curt Hovater, John Musson, and Tomasz Plawski

Digital Logic, Algorithms, and Functions for the CEBAF Upgrade LLRF System Hai Dong, Curt Hovater, John Musson, and Tomasz Plawski Digital Logic, Algorithms, and Functions for the CEBAF Upgrade LLRF System Hai Dong, Curt Hovater, John Musson, and Tomasz Plawski Introduction: The CEBAF upgrade Low Level Radio Frequency (LLRF) control

More information

Waveguide Arc Restrike Test Results Abstract Background

Waveguide Arc Restrike Test Results Abstract Background Waveguide Arc Restrike Test Results Tom Powers, Doug Curry, Kirk Davis, Larry King, and Mike Tiefenback Thomas Jefferson National Accelerator Facility (Test dates July 6, 2004 through September 2, 2004)

More information

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements O. Napoly LC02, SLAC, Feb. 5, 2002 Higher Order Modes Measurements with Beam at the TTF Linac TTF Measurements A collective effort including most of Saclay, Orsay and DESY TTF physicists : S. Fartoukh,

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF Project X Cavity RF and mechanical design T. Khabiboulline, FNAL/TD/SRF TTC meeting on CW-SRF, 2013 Project X Cavity RF and mechanical design T 1 High ß Low ß 0.5 HWR SSR1 SSR2 0 1 10 100 1 10 3 1 10 4

More information

Low Level RF Systems

Low Level RF Systems Low Level RF Systems Tom Powers Jan. 2015 (Slides stolen from: Powers LLRF workshop 2011, Plawski LLRF workshop 2013, Power/Hovater LBL light source working group 2012, Powers, HOM workshop 2012. LLRF

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

COMPLEX ENVELOPE CONTROL OF PULSED ACCELERATING FIELD

COMPLEX ENVELOPE CONTROL OF PULSED ACCELERATING FIELD Tomasz Czarski COMPLEX ENVELOPE CONTROL OF PULSED ACCELERATING FIELD IN SUPERCONDUCTING CAVITY RESONATORS L = 9 λ/2 ~ 1037 particle (z,τ) E 0 (z) 0 z Institute of Electronic Systems Publishing House of

More information

Superconducting RF for Energy-Recovery Linacs

Superconducting RF for Energy-Recovery Linacs Superconducting RF for Energy-Recovery Linacs M. Liepe LEPP, Cornell University, Ithaca, NY 14853, USA J. Knobloch BESSY GmbH, D-12489 Berlin, Germany Abstract Since superconducting RF for particle accelerators

More information

RF Power Consumption in the ESS Spoke LINAC

RF Power Consumption in the ESS Spoke LINAC FREIA Report 23/ January 23 DEPARTMENT OF PHYSICS AND ASTRONOMY UPPSALA UNIVERSITY RF Power Consumption in the ESS Spoke LINAC ESS TDR Contribution V.A. Goryashko, V. Ziemann, T. Lofnes, R. Ruber Uppsala

More information

Predictions of LER-HER limits

Predictions of LER-HER limits Predictions of LER-HER limits PEP-II High Current Performance T. Mastorides, C. Rivetta, J.D. Fox, D. Van Winkle Accelerator Technology Research Div., SLAC 2e 34 Meeting, May 2, 27 Contents In this presentation

More information

ERLP Status. Mike Dykes

ERLP Status. Mike Dykes ERLP Status Mike Dykes Content ASTeC RF & Diagnostics Group Work of the Group 4GLS ERLP Photo-injector Accelerating Modules Summary High Power RF Engineering Andy Moss SRS Support; DIAMOND; ERLP; MICE;

More information

INTRA-TRAIN LONGITUDINAL FEEDBACK FOR BEAM STABILIZATION AT FLASH

INTRA-TRAIN LONGITUDINAL FEEDBACK FOR BEAM STABILIZATION AT FLASH INTRA-TRAIN LONGITUDINAL FEEDBACK FOR BEAM STABILIZATION AT FLASH W. Koprek*, C. Behrens, M. K. Bock, M. Felber, P. Gessler, K. Hacker, H. Schlarb, C. Schmidt, B. Steffen, S. Wesch, DESY, Hamburg, Germany

More information

Test of two Nb superstructure prototypes

Test of two Nb superstructure prototypes SLAC-PUB-1413 Test of two Nb superstructure prototypes J. Sekutowicz, P. Castro, A. Gössel, G. Kreps, R. Lange, A. Matheisen, W.-D. Möller, H.-B. Peters, D. Proch, H. Schlarb, S. Schreiber, S. Simrock,

More information

RF Control of Heavy Ion Linear Accelerators An Introduction

RF Control of Heavy Ion Linear Accelerators An Introduction RF Control of Heavy Ion Linear Accelerators An Introduction RF Control- essential functions Typical Architecture of RF system Reference Phase Distriubution- an example High power RF system RF system architectures

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

RF Locking of Femtosecond Lasers

RF Locking of Femtosecond Lasers RF Locking of Femtosecond Lasers Josef Frisch, Karl Gumerlock, Justin May, Steve Smith SLAC Work supported by DOE contract DE-AC02-76SF00515 1 Overview FEIS 2013 talk discussed general laser locking concepts

More information

Functional block diagram for SIS8300. Christian Schmidt for the LLRF team Collaboration workshop

Functional block diagram for SIS8300. Christian Schmidt for the LLRF team Collaboration workshop Functional block diagram for SIS8300 Christian Schmidt for the LLRF team Collaboration workshop 2012 7.08.2012 Outline > Motivation and general comments > Preprocessing LLRF ADC board Block diagram Current

More information

For my parents

For my parents Ì Ò Ð ÍÒ Ú Ö ØÝ Ó ÄÓ Þ Ì ÙÐØÝ Ó Ð ØÖ Ð Ð ØÖÓÒ ÓÑÔÙØ Ö Ò ÓÒØÖÓÐ Ò Ò Ö Ò Ô ÖØÑ ÒØ Ó Å ÖÓ Ð ØÖÓÒ Ò ÓÑÔÙØ Ö Ë Ò È Û È ÛÐ ÅË Ð Ö Ø Ò Ð ØÖ Ð ØÖ Ò Ø ÑÔÐ ØÙ Ò Ô Ð Ö Ø ÓÒ ÓÒ Ô ÖØ Ð Ñ Ò Ù Ð ØÖ Ð ØÖ Ò Ø ØÖ Ò ÒØ Ø

More information

10th ESLS RF Meeting September ALBA RF System. F. Perez. on behalf of the ALBA RF Group. ALBA RF System 1/21

10th ESLS RF Meeting September ALBA RF System. F. Perez. on behalf of the ALBA RF Group. ALBA RF System 1/21 ALBA RF System F. Perez on behalf of the ALBA RF Group ALBA RF System 1/21 Synchrotron Light Source in Cerdanyola (Barcelona, Spain) 3 GeV accelerator 30 beamlines (7 on day one) 50-50 Spanish Government

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

DEVELOPMENT OF A DLLRF USING COMERCIAL UTCA PLATFORM

DEVELOPMENT OF A DLLRF USING COMERCIAL UTCA PLATFORM ACDIV-2017-11 May 2017 DEVELOPMENT OF A DLLRF USING COMERCIAL UTCA PLATFORM A. Salom, E. Morales, F. Pérez - ALBA Synchrotron Abstract The Digital LLRF of ALBA has been implemented using commercial cpci

More information

OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS, PULSED AND CW*

OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS, PULSED AND CW* Presented at the 13th International Workshop on RF Superconductivity, Beijing, China, 2007 SRF 071120-04 OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS, PULSED AND CW* S. Belomestnykh #, CLASSE, Cornell

More information

Does the short pulse mode need energy recovery?

Does the short pulse mode need energy recovery? Does the short pulse mode need energy recovery? Rep. rate Beam power @ 5GeV 1nC @ 100MHz 500MW Absolutely 1nC @ 10MHz 1nC @ 1MHz 50MW 5MW Maybe 1nC @ 100kHz 0.5MW No Most applications we have heard about

More information

5.5 SNS Superconducting Linac

5.5 SNS Superconducting Linac JP0150514 ICANS - XV 15 th Meeting of the International Collaboration on Advanced Neutron Sources November 6-9, 2000 Tsukuba, Japan Ronald M. Sundelin Jefferson Lab* 5.5 SNS Superconducting Linac 12000

More information

Initial Beam Phasing of the SRF Cavities in LCLS-II

Initial Beam Phasing of the SRF Cavities in LCLS-II Introduction Initial Beam Phasing of the SRF Cavities in LCLS-II P. Emma Nov. 28, 2016 One of the more challenging aspects of commissioning the LCLS-II accelerator is in the initial phasing of the SRF

More information