Introductions to aberrations OPTI 517

Size: px
Start display at page:

Download "Introductions to aberrations OPTI 517"

Transcription

1 Introductions to aberrations OPTI 517 Lecture 11

2 Spherical aberration

3 Meridional and sagittal ray fans

4 Spherical aberration 0.25 wave f/10; f=100 mm; wave= mm

5 Spherical aberration 0.5 wave f/10; f=100 mm; wave= mm

6 Spherical aberration 1 wave f/10; f=100 mm; wave= mm

7 Spherical aberration is uniform over the field of view W Wavefront Spots

8 Interferometric representation 5 waves

9 Cases of zero spherical aberration W from a spherical surface W y 0 A S I u A y n S I 2 u/ n u'/ n' u/ n0 y=0 the aperture is zero or the surface is at an image A=0 the surface is concentric with the Gaussian image point on axis u /n-u/n=0 the conjugates are at the aplanatic points Aplanatic means free from error; freedom from spherical aberration and coma

10 Surface at image y 0

11 Concentric surface A 0

12 Aplanatic points of a spherical surface / ' 2.5 ' ' ' ' ' ' ' 0 1 ' ' 1 n r S r S n n n r S n n n r S r n n s n s n ns s n 0 / / ' / n u n u n u

13 Diffraction images Two waves of spherical aberration

14 Coma aberration

15 Meridional and sagittal ray fans

16 Roland Shack s notes

17 Coma zonal diagrams

18 Spot diagrams through focus Roland Shack s notes

19 Coma zonal diagrams Roland Shack s notes

20 Positive coma over the field of view Roland Shack s notes

21 Caustic sheets

22 Coma aberration 0.25 wave f/10; f=100 mm; wave= mm

23 Coma aberration 0.5 wave f/10; f=100 mm; wave= mm

24 Coma aberration 1.0 wave f/10; f=100 mm; wave= mm

25 Coma varies linearly over the field W 131 of view H

26 Interferometric representation 5 waves

27 Cases of zero coma aberration from a spherical surface W 131 H y 0 A 0 A W S II S II u/ n u'/ n' u/ n0 u AAy n y=0 the aperture is zero or the surface is at an image A=0 the surface is concentric with the Gaussian image point on axis Abar=0 surface is concentric with stop or pupils u /n-u/n=0 the conjugates are at the aplanatic points Aplanatic means free from error; freedom from spherical aberration and coma

28 Concentric surface with stop or pupils A 0

29 Sine condition In the absence of spherical aberration there are no linear phase errors that depend on the field of view if the sine condition is met: sin U u sin U' u' The first-order magnification is equal to the real marginal ray magnification

30 U U

31 Diffraction images 2 waves 4 waves

32 Geometrical and diffraction

33 Coma Two waves of coma through focus

34 Astigmatism aberration

35 Meridional and sagittal ray fans

36 Astigmatism Roland Shack s notes

37 Astigmatism Roland Shack s notes

38 Spots through focus Roland Shack s notes

39 Quadratic (radial) Astigmatism Theoretical behavior

40 Medial focus Roland Shack s notes

41 Astigmatism aberration wave f/10; f=100 mm; wave= mm

42 Astigmatism aberration 0. 5 wave f/10; f=100 mm; wave= mm

43 Astigmatism aberration 1.0 wave f/10; f=100 mm; wave= mm

44 Astigmatism varies as the square of the field of view W 222 H 2

45 Astigmatism Roland Shack s notes

46 Interferometric representation 5 waves

47 Cases of zero astigmatism aberration from a spherical surface W 222 H 2 y A W S III u/ n u'/ n' u/ n0 u A y n S III 2 y=0 the aperture is zero or the surface is at an image Abar=0 surface is concentric with stop or pupils u /n-u/n=0 the conjugates are at the aplanatic points Aplanatic means free from error; freedom from spherical aberration and coma. Aplanatic spherical surface is also anastigmatic Anastigmatic: free from spherical, coma and astigmatism 1 2

48 Two waves of astigmatism

49 The field curves t s W u A y 2 n 1 u 4 n 2 2 W220 Ж P A y Tangential Sagittal Petzval Gaussian

50 Field curves by an optical design program

51 Eye astigmatism

52 Diffraction images Roland Shack s notes

53 Field curvature W 220 H H

54 Field curvature varies as the square of the field of view W 220 H H

55 Meridional and sagittal ray fans

56 Field curvature 1 4 u n P C 2 2 W220 Ж PA y 1 n Petzval sum: k 1 1 n' n n' ' n i1 n' nr k k 1 1 For a system of thin lenses In air: 1 ' k k i n i1 i

57 Petzval field curvature interpretation For a single lens Petzval nnr ' nr ' nr ' n' r r 2 1 n' n n' 1 n' 1 n' i Multiply by 2 h 2 or 2 2 h n' 11 1 h n' 1 t 2 Petzval n' r1 r2 2 n' h is a given height; t is the lens sag or thickness at height h Then h 2 2 Petzval Is the sag of the Petzval field curvature and is the image displacement by a parallel plate of thickness t. n'1 t n' Thus Petzval field curvature can be interpreted as the image shift due to a parallel plate of varying thickness t.

58 Petzval field curvature interpretation t h 2 2 Petzval h t t 2 t 1 Stop Telecentric lens case Field flattener case

59 Petzval field curvature: Stop at center of curvature

60 Petzval radius for a lens 1 ' k n R=t= F=100 mm Petzval radius= =nf Bk7 glass

61 Interferometric representation 5 waves

62 Field curves vertex curvature 2 W020 yi z 2 2 n' W 2 2 nu ' ' Ж 2z 1 4 n' W020 y Ж 2 2 I n ' 3 Ct 4 2 W W Ж 2 n' Cm 4 2 W W Ж n' 1 Cs 4 W W 2 Ж 2 n' CP 4 W 2 220P Ж 220P P P

63 W 311 Distortion H H H W S V A u A n 2 2 SV Ж P A y 1 n 2 SV A A y Ж Ay yp 2

64 Distortion 2.5%, 5% and 10%

65 Distortion Distortion Y y y 100

66 Interferometric representation

67 Geometrical imaging with aberrations Spot diagram concept applied to an extended object

68 Parity of the aberrations The aberrations can be classified as even and odd aberrations. Spherical aberration, astigmatism, field curvature, and longitudinal color are even aberrations. Coma, distortion, and transverse color are odd aberrations. The parity is found by observation of the algebraic power s parity of the field and aperture vectors in the aberration coefficients. The odd aberrations have the important property that in a symmetrical system they Cancel (fourth-order), each half contributes the same amount of aberration but with opposite algebraic sign. The symmetry is about the aperture stop. In comparison in a symmetrical system the even aberrations from each half of the system add, rather than cancel

69

70 Summary Discussion of the primary aberrations Use of several types of plots Main point is to gain understanding and familiarity Must be able to recognize the aberrations under a variety of representations. Must be able to appreciate how the ideal image degrades in the presence of aberration

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Aberrations I 214-11-4 Herbert Gross Winter term 214 www.iap.uni-jena.de 2 Preliminary Schedule 1 21.1. Basics Paraxial optics, imaging, Zemax handling 2 28.1. Optical systems

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

CHAPTER 1 Optical Aberrations

CHAPTER 1 Optical Aberrations CHAPTER 1 Optical Aberrations 1.1 INTRODUCTION This chapter starts with the concepts of aperture stop and entrance and exit pupils of an optical imaging system. Certain special rays, such as the chief

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner Introduction to Optical Modeling Friedrich-Schiller-University Jena Institute of Applied Physics Lecturer: Prof. U.D. Zeitner The Nature of Light Fundamental Question: What is Light? Newton Huygens / Maxwell

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Long Wave Infrared Scan Lens Design And Distortion Correction

Long Wave Infrared Scan Lens Design And Distortion Correction Long Wave Infrared Scan Lens Design And Distortion Correction Item Type text; Electronic Thesis Authors McCarron, Andrew Publisher The University of Arizona. Rights Copyright is held by the author. Digital

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

Supplemental Materials. Section 25. Aberrations

Supplemental Materials. Section 25. Aberrations OTI-201/202 Geometrical and Instrumental Optics 25-1 Supplemental Materials Section 25 Aberrations Aberrations of the Rotationally Symmetric Optical System First-order or paraxial systems are ideal optical

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian The Brownie Camera Lens Design OPTI 517 http://www.history.roch ester.edu/class/kodak/k odak.htm George Eastman (1854-1932), was an ingenious man who contributed greatly to the field of photography. He

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN CHAPTER 33 ABERRATION CURVES IN LENS DESIGN Donald C. O Shea Georgia Institute of Technology Center for Optical Science and Engineering and School of Physics Atlanta, Georgia Michael E. Harrigan Eastman

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT # Some lens design methods Dave Shafer David Shafer Optical Design Fairfield, CT 06824 #203-259-1431 shaferlens@sbcglobal.net Where do we find our ideas about how to do optical design? You probably won t

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131, About the Author The author studied Technical Physics at the Technical University of Delft, The Netherlands. He obtained a master s degree in 1965 with a thesis on the fabrication of lasers. After military

More information

Optimisation. Lecture 3

Optimisation. Lecture 3 Optimisation Lecture 3 Objectives: Lecture 3 At the end of this lecture you should: 1. Understand the use of Petzval curvature to balance lens components 2. Know how different aberrations depend on field

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 7: Distortion and coma 2014-12-11 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental

More information

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON Lens Design Fundamentals Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

Exercise 1 - Lens bending

Exercise 1 - Lens bending Exercise 1 - Lens bending Most of the aberrations change with the bending of a lens. This is demonstrated in this exercise. a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term Lens Design II Lecture 2: Structural modifications 26--26 Herbert Gross Winter term 26 www.iap.uni-jena.de 2 Preliminary Schedule 9.. Aberrations and optimization Repetition 2 26.. Structural modifications

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term Lens Design II Lecture 8: Special correction topics 2018-12-12 Herbert Gross Winter term 2018 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2018 1 17.10. Aberrations and optimization Repetition

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2015-12-08 Herbert Gross Winter term 2015 www.iap.uni-jena.de Preliminary Schedule 2 1 20.10. Aberrations and optimization Repetition 2 27.10. Structural

More information

UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES

UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES COURSE TITLE: BED (SCIENCE) UNIT TITLE: WAVES AND OPTICS UNIT CODE: SPH 103 UNIT AUTHOR: PROF. R.O. GENGA DEPARTMENT OF PHYSICS UNIVERSITY

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

OPTI 517 Image Quality. Richard Juergens

OPTI 517 Image Quality. Richard Juergens OPTI 517 Image Quality Richard Juergens 520-577-6918 rcjuergens@msn.com Why is Image Quality Important? Resolution of detail Smaller blur sizes allow better reproduction of image details Addition of noise

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross Overview 2 1. Basics 2012-04-18 2. Materials 2012-04-25 3. Components 2012-05-02 4. Paraxial

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction I 203-0-22 Herbert Gross Summer term 202 www.iap.uni-jena.de Preliminary time schedule 2 6.0. Introduction Introduction, Zemax interface, menues, file handling,

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Research Article Spherical Aberration Correction Using Refractive-Diffractive Lenses with an Analytic-Numerical Method

Research Article Spherical Aberration Correction Using Refractive-Diffractive Lenses with an Analytic-Numerical Method Hindawi Publishing Corporation Advances in Optical Technologies Volume 2010, Article ID 783206, 5 pages doi:101155/2010/783206 Research Article Spherical Aberration Correction Using Refractive-Diffractive

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 26--2 Herbert Gross Winter term 25 www.iap.uni-ena.de Preliminary Schedule 2 2.. Aberrations and optimization Repetition 2 27.. Structural modifications Zero operands,

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 4: Optimization III 2013-11-04 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 15.10. Introduction Paraxial optics, ideal lenses, optical systems,

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

Lens Design II Seminar 6 (Solutions)

Lens Design II Seminar 6 (Solutions) 2017-01-04 Prof. Herbert Gross Yi Zhong, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design II Seminar 6 (Solutions) 6.1. Correction

More information

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter:

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter: October 7, 1997 Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA 02138 Dear Peter: This is the report on all of the HIREX analysis done to date, with corrections

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

ME 297 L4-2 Optical design flow Analysis

ME 297 L4-2 Optical design flow Analysis ME 297 L4-2 Optical design flow Analysis Nayer Eradat Fall 2011 SJSU 1 Are we meeting the specs? First order requirements (after scaling the lens) Distortion Sharpness (diffraction MTF-will establish depth

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS The competent and intelligent optical design of today s state-of-the-art products requires an understanding of optical aberrations. This accessible

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2017-12-04 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2017 1 16.10. Aberrations and optimization Repetition

More information

The Basic Scheme of the Afocal System and Composition Variants of the Objectives Based on It

The Basic Scheme of the Afocal System and Composition Variants of the Objectives Based on It Journal of Physics: Conference Series The Basic Scheme of the Afocal System and Composition Variants of the Objectives Based on It To cite this article: Gavriluk A V et al 006 J. Phys.: Conf. Ser. 48 945

More information

Conformal optical system design with a single fixed conic corrector

Conformal optical system design with a single fixed conic corrector Conformal optical system design with a single fixed conic corrector Song Da-Lin( ), Chang Jun( ), Wang Qing-Feng( ), He Wu-Bin( ), and Cao Jiao( ) School of Optoelectronics, Beijing Institute of Technology,

More information

Optical Zoom System Design for Compact Digital Camera Using Lens Modules

Optical Zoom System Design for Compact Digital Camera Using Lens Modules Journal of the Korean Physical Society, Vol. 50, No. 5, May 2007, pp. 1243 1251 Optical Zoom System Design for Compact Digital Camera Using Lens Modules Sung-Chan Park, Yong-Joo Jo, Byoung-Taek You and

More information

Double-curvature surfaces in mirror system design

Double-curvature surfaces in mirror system design Double-curvature surfaces in mirror system design Jose M. Sasian, MEMBER SPIE University of Arizona Optical Sciences Center Tucson, Arizona 85721 E-mail: sasian@ccit.arizona.edu Abstract. The use in mirror

More information

j Jacobi matrix 295 Index flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f

j Jacobi matrix 295 Index flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f 749 a Abbe number 41, 222, 269, 490, 502 aberrations 2, 216 astigmatism 13, 28 axial chromatic aberration 13, 269 axial color 13, 269 chromatic aberrations 2, 13, 187, 268, 280 chromatic difference in

More information

OPAC 202 Optical Design and Inst.

OPAC 202 Optical Design and Inst. OPAC 202 Optical Design and Inst. Topic 9 Aberrations Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Apr 2018 Sayfa 1 Introduction The influences

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Study on Imaging Quality of Water Ball Lens

Study on Imaging Quality of Water Ball Lens 2017 2nd International Conference on Mechatronics and Information Technology (ICMIT 2017) Study on Imaging Quality of Water Ball Lens Haiyan Yang1,a,*, Xiaopan Li 1,b, 1,c Hao Kong, 1,d Guangyang Xu and1,eyan

More information

Angular motion point spread function model considering aberrations and defocus effects

Angular motion point spread function model considering aberrations and defocus effects 1856 J. Opt. Soc. Am. A/ Vol. 23, No. 8/ August 2006 I. Klapp and Y. Yitzhaky Angular motion point spread function model considering aberrations and defocus effects Iftach Klapp and Yitzhak Yitzhaky Department

More information

CHAPTER 1 OPTIMIZATION

CHAPTER 1 OPTIMIZATION CHAPTER 1 OPTIMIZATION For the first 40 years of the twentieth century, optical design was done using a mixture of Seidel theory, a little ray tracing, and a great deal of experimental work. All of the

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 6-- Herbert Gross Winter term 6 www.iap.uni-jena.de Preliminar Schedule 9.. Aberrations and optimiation Repetition 6.. Structural modifications Zero operands, lens splitting,

More information

Lens Design I Seminar 1

Lens Design I Seminar 1 Xiang Lu, Ralf Hambach Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 1 Warm-Up (20min) Setup a single, symmetric, biconvex lens

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2015-05-11 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. Properties

More information

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Edited by Herbert Gross Volume 3: Aberration Theory and Correction of Optical Systems Herbert Cross, Hannfried Zügge, Martin Peschka, Fritz Blechinger BICENTENNIAL BICENTENNIA

More information

Basic Wavefront Aberration Theory for Optical Metrology

Basic Wavefront Aberration Theory for Optical Metrology APPLIED OPTICS AND OPTICAL ENGINEERING, VOL. Xl CHAPTER 1 Basic Wavefront Aberration Theory for Optical Metrology JAMES C. WYANT Optical Sciences Center, University of Arizona and WYKO Corporation, Tucson,

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

WIEN Software for Design of Columns Containing Wien Filters and Multipole Lenses

WIEN Software for Design of Columns Containing Wien Filters and Multipole Lenses WIEN Software for Design of Columns Containing Wien Filters and Multipole Lenses An integrated workplace for analysing and optimising the column optics Base Package (WIEN) Handles round lenses, quadrupoles,

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical Imaging Systems

Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical Imaging Systems Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical maging Systems James H. Burge *, Chunyu Zhao, Sheng Huei Lu College of Optical Sciences University of Arizona Tucson, AZ USA

More information

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

More information

Theory of mirror telescopes. K. Schwarzschild.

Theory of mirror telescopes. K. Schwarzschild. Investigations into geometrical optics. II Theory of mirror telescopes. by K. Schwarzschild. Presented by F. Klein during the meeting of 22 January 1905. 1. Introduction. 1. In the competition between

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

Techniques of Designing Eyepieces using ATMOS. Rick Blakley October 28, 2012

Techniques of Designing Eyepieces using ATMOS. Rick Blakley October 28, 2012 Techniques of Designing Eyepieces using ATMOS Rick Blakley uranoport@msn.com October 28, 2012 1 1) Introduction: Ray tracing eyepieces requires skills of the sort one must muster for tracing any design,

More information

Design of Large Working Area F-Theta Lens. Gong Chen

Design of Large Working Area F-Theta Lens. Gong Chen 1 Design of Large Working Area F-Theta Lens by Gong Chen 2 ABSTRACT F-Theta lenses are different from normal camera lenses. It is one of the most important parts of laser scanning system. Besides, F-Theta

More information

Opto Engineering S.r.l.

Opto Engineering S.r.l. TUTORIAL #1 Telecentric Lenses: basic information and working principles On line dimensional control is one of the most challenging and difficult applications of vision systems. On the other hand, besides

More information

附录 В 手工计算参考答案 附录 В 手工计算参考答案 336

附录 В 手工计算参考答案 附录 В 手工计算参考答案 336 附录 A 参考文献 透镜设计 Kingslake,Rudolph,Lens Design Fundamentals. New York:Academic press,1978. Kingslake,Rudolph. A History of the Photographic Lens. Boston:Academic Press 1989. Malacara,Daniels and Malacara,Zacarias,Handbook

More information

The optical analysis of the proposed Schmidt camera design.

The optical analysis of the proposed Schmidt camera design. The optical analysis of the proposed Schmidt camera design. M. Hrabovsky, M. Palatka, P. Schovanek Joint Laboratory of Optics of Palacky University and Institute of Physics of the Academy of Sciences of

More information

The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces

The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces James T. McCann OFC - Diamond Turning Division 69T Island Street, Keene New Hampshire

More information

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 8.1

More information

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations Overview Pinhole camera Principles of operation Limitations 1 Terminology The pinhole camera The first camera - camera obscura - known to Aristotle. In 3D, we can visualize the blur induced by the pinhole

More information

Optical design of a high resolution vision lens

Optical design of a high resolution vision lens Optical design of a high resolution vision lens Paul Claassen, optical designer, paul.claassen@sioux.eu Marnix Tas, optical specialist, marnix.tas@sioux.eu Prof L.Beckmann, l.beckmann@hccnet.nl Summary:

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Evaluation of Performance of the Toronto Ultra-Cold Atoms Laboratory s Current Axial Imaging System

Evaluation of Performance of the Toronto Ultra-Cold Atoms Laboratory s Current Axial Imaging System Page 1 5/7/2007 Evaluation of Performance of the Toronto Ultra-Cold Atoms Laboratory s Current Axial Imaging System Vincent Kan May 7, 2007 University of Toronto Department of Physics Supervisor: Prof.

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information