OPTO 5320 VISION SCIENCE I

Size: px
Start display at page:

Download "OPTO 5320 VISION SCIENCE I"

Transcription

1 OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Ronald S. Harwerth, OD, PhD Office: Room 2160 Office hours: By appointment Telephone: rharwerth@uh.edu

2 VISION SCIENCE I: Monocular Sensory Processes of Vision I. Color Vision A. Introduction - Normal color vision B. Colorimetry C. Retinal fundamentals D. Neural mechanisms E. Genetic color vision anomalies F. Clinical color vision tests G. Acquired color vision defects

3 I. Introduction A. What defines color vision? B. What defines normal trichromatic color vision? II. Scotopic vs. photopic vision III. Discriminations that depend on wavelength A. Color naming B. Wavelength discrimination C. Saturation discrimination D. Brightness discrimination 1. Heterochromatic photometry 2. Increment-threshold spectral sensitivity

4 What is normal color vision? Understanding normal color vision involves 1) physics of light 2) photobiology 3) neurobiology 4) perception The figure (Enigma) produces an illusion of motion when the center yellow spot is fixated. The illusion requires neural processing in extrastriate area V5, a color processing area.

5 How is chromatic vision different from achromatic vision?

6 Chromatic and achromatic information in normal vision Normal vision is a combination of chromatic and achromatic information. The Arnolfini Portrait painted by Jan van Eyck in 1434

7 Color Vision What defines color vision? Spectral response properties of vision. Discriminations based on wavelength.

8 Color Vision is a Property of the Cone Photoreceptors Cone phase - colored Human eye is duplex - rod and cone photoreceptors. Rod phase - colorless Time in the dark (min)

9 Color Vision is a Property of the Cone System Polyak s drawing of the primate retina to show the regional distribution of cones and rods, with an absence of rods in the central fovea. Osterberg s data on the densities of the different photoreceptor populations in the human retina show that the cone density is highest in the foveal pit and falls rapidly outside the fovea to a fairly even density into the peripheral retina.

10 Spectral response properties Photochromatic interval Photopic threshold Purkinje shift Scotopic vs. photopic vision Photopic thresholds are higher, especially in the shorter wavelengths - photochromatic (colorless) interval - mesopic vision. Lowest photopic thresholds are at longer wavelengths than scotopic - Purkinje shift. Scotopic threshold Wavelength (nm)

11 Spectral response properties The spectral response properties of individual cones are determined by the photopigments in the outer segments. Trichromatic vision requires cone photopigments with three different spectral responses. With three photopigments, any spectral stimulus can be matched by the appropriate intensities of three primaries, i.e., trichromacy. Subsequent neural processes form the perceptual spectral response properties.

12 Why Three Photopigments are Required for Trichromatic Color Vision. The absorption spectrum represents the probability of quantum capture as a function of wavelength. The quantum nature of light (E = h ) where: E = energy of a quantum h = Plank s constant = the frequency of light Quantum capture at two wavelengths can be equalized by appropriate intensities A photopigment only can signal intensity (the Principle of Univariance)

13 Matching Intensities of Two Wavelengths in a Retina with Two Photopigments Quantum capture at two wavelengths cannot be equalized by any combination of intensities. The intensities at two wavelengths may be adjusted so that the quanta caught are identical for either of the photopigments, but there is no intensity setting that equates the effects of both photopigments at the same time.

14 Color Matching of Wavelength in a Retina with Two Photopigments Requires Two Primaries. It is always possible to find intensities for two wavelengths so that the effects of their mixture will be identical to the effects of a third stimulus. The example illustrates the mixture of two wavelengths ( 2 and 3 ) to match a stimulus with a wavelength at 1.. Color matching for a retina with three photopigments requires three primaries.

15 Cone Photopigments for Color Vision Human color vision is based on three cone photopigments Short-wavelength sensitive (SW cones or blue cones) Middle-wavelength sensitive (MW cones or green cones) Long-wavelength sensitive (LW cones or red cones)

16 Photopigments and Color Vision Human color vision is based on the relative absorbance of three cone photopigments, but not all of color perception can be explained by the light absorbed by photopigments. A Land Mondrian is an example.

17 What Defines Normal Trichromatic Color Vision? 1. Three normal cone photopigments 2. Normal color matching functions 3. Normal color naming of spectral colors 4. Normal discrimination functions for the three perceptual attributes of the physical properties of color. Physical Wavelength Purity Intensity Perceptual Hue Saturation Brightness

18 Color Matching Functions A subject s discrimination of colors when they are added by physical superimposition or temporal mixture Any colored stimulus can be matched in its hue saturation and brightness by a combination of three properly chosen primaries. Color mixture by subtraction is a different process.

19 Discriminations that Vary with Wavelength

20 Color Naming Blue Green Yellow Red Across 100 languages, 11 basic color names have been identified. The English equivalents are white, black, grey, blue, green, yellow, red, purple, orange, brown, pink. Spectral colors can be named by combinations of four fundamentals Bluish Green?? Color score: Based on 3 points per sample, where: pure color = 3 dominant color = 2 modifier color = 1 Example for?? sample % red = 100 * (total red_score) / (trials *3)

21 Percent color score Color Naming Color naming requires 4 responses classes (blue, green, yellow, red) with modifiers e.g., greenish blue. Certain wavelengths elicit essentially pure color names. Some combinations do not occur as a single color, i.e., red / green and blue / yellow form opponent pairs

22 Wavelength Discrimination The smallest difference in wavelengths that is perceived as a difference in hue. C1 S C2 Wavelength discrimination for S = 520 nm = (C1 + C2) / 2 Wavelength (nm)

23 Wavelength Discrimination Normal color vision: Very small differences in wavelength (1 2 nm) can be discriminated on the basis of hue. Finest discrimination at 490 nm and 590 nm. Poorer discrimination in the middle of the visible spectrum (530 nm) and at the ends of spectrum Wavelength (nm)

24 Saturation Discrimination (colorimetric purity) Saturation discrimination is an ability to perceive differences between pure spectral color and colors with some white content. S C1 C2 Colorimetric purity (p ) for S = 520 nm p = L / (Lw + L ) where: L = luminance of S Lw = luminance of added white light

25 Saturation Discrimination (colorimetric purity) Wavelength (nm) Wavelengths in the region of nm (yellows) appear less saturated than those nearer the ends of the visible spectrum (blue or red).

26 Brightness Discrimination (luminous efficiency) C3 S C1 C2 Methods (step-by-step procedures): 1) heterochromatic brightness matching 2) flicker photometry 3) minimally distinct-border Relative luminous efficiency (V ) for C1 with respect to S = 520 nm V = (L(s) - L(c1)) / (L(s)) where: L(s) = luminance of S L(c1) = luminance C1 to match S

27 Brightness Discrimination (luminous efficiency) Ferry Porter law (CFF ~ log(i)). Critical flicker fusion is directly proportional to the logarithm of the light intensity Borders are least distinct when the boundary separates stimuli of equal luminance Maximum luminous efficiency for wavelengths near 555 nm. The V function is the basis of photometry. Flicker photometry or minimally distinct border methods produce smooth unimodal V functions, which represent the sum of the responses of the MW- and LW-cones.

28 Brightness Discrimination (increment-threshold spectral sensitivity) There are multiple detecting mechanisms in the retina, but the most sensitive mechanisms are used at any time. An adaptation field can be used to vary the sensitivity of the underlying mechanisms. Adaptation field Test field 1) White adaptation field (background) to obtain static photopic state. 2) Threshold - the smallest perceptible light increment of the monochromatic test field added to the adapting background. 3) Sensitivity = log (1 / threshold intensity).

29 Brightness Discrimination (increment-threshold spectral sensitivity) For normal color vision, increment-threshold spectral sensitivity functions have three peaks in the visible spectrum (440, 520, & 620 nm). The three peaks are produced by neural (subtractive) combinations of the responses of the three cone photopigments, but they are not the photopigment sensitivity functions.

30 Introduction - Normal color vision Recap Color properties of photopic vision Purkinje shift and photochromatic interval Discrimination functions for normal color vision Color matching Color naming Hue discrimination Saturation discrimination Brightness discrimination Luminous efficiency Spectral sensitivity

Achromatic and chromatic vision, rods and cones.

Achromatic and chromatic vision, rods and cones. Achromatic and chromatic vision, rods and cones. Andrew Stockman NEUR3045 Visual Neuroscience Outline Introduction Rod and cone vision Rod vision is achromatic How do we see colour with cone vision? Vision

More information

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision.

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision. LECTURE 4 SENSORY ASPECTS OF VISION We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision. At the beginning of the course,

More information

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science Slide 1 the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour Sir Isaac Newton (1730) Slide 2 Light

More information

The best retinal location"

The best retinal location How many photons are required to produce a visual sensation? Measurement of the Absolute Threshold" In a classic experiment, Hecht, Shlaer & Pirenne (1942) created the optimum conditions: -Used the best

More information

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision Colour Vision I: The receptoral basis of colour vision Colour Vision 1 - receptoral What is colour? Relating a physical attribute to sensation Principle of Trichromacy & metamers Prof. Kathy T. Mullen

More information

CS 544 Human Abilities

CS 544 Human Abilities CS 544 Human Abilities Color Perception and Guidelines for Design Preattentive Processing Acknowledgement: Some of the material in these lectures is based on material prepared for similar courses by Saul

More information

Color Outline. Color appearance. Color opponency. Brightness or value. Wavelength encoding (trichromacy) Color appearance

Color Outline. Color appearance. Color opponency. Brightness or value. Wavelength encoding (trichromacy) Color appearance Color Outline Wavelength encoding (trichromacy) Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

Color, Vision, & Perception. Outline

Color, Vision, & Perception. Outline Color, Vision, & Perception CS 160, Fall 97 Professor James Landay September 24, 1997 9/24/97 1 Outline Administrivia Review Human visual system Color perception Color deficiency Guidelines for design

More information

Physiology of Vision The Eye as a Sense Organ. Rodolfo T. Rafael,M.D. Topics

Physiology of Vision The Eye as a Sense Organ. Rodolfo T. Rafael,M.D. Topics Physiology of Vision The Eye as a Sense Organ Rodolfo T. Rafael,M.D. www.clinicacayanga.dailyhealthupdates.com 1 Topics Perception of Light Perception of Color Visual Fields Perception of Movements of

More information

Visibility, Performance and Perception. Cooper Lighting

Visibility, Performance and Perception. Cooper Lighting Visibility, Performance and Perception Kenneth Siderius BSc, MIES, LC, LG Cooper Lighting 1 Vision It has been found that the ability to recognize detail varies with respect to four physical factors: 1.Contrast

More information

Digital Image Processing

Digital Image Processing Digital Image Processing IMAGE PERCEPTION & ILLUSION Hamid R. Rabiee Fall 2015 Outline 2 What is color? Image perception Color matching Color gamut Color balancing Illusions What is Color? 3 Visual perceptual

More information

Color Perception. Color, What is It Good For? G Perception October 5, 2009 Maloney. perceptual organization. perceptual organization

Color Perception. Color, What is It Good For? G Perception October 5, 2009 Maloney. perceptual organization. perceptual organization G892223 Perception October 5, 2009 Maloney Color Perception Color What s it good for? Acknowledgments (slides) David Brainard David Heeger perceptual organization perceptual organization 1 signaling ripeness

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

excite the cones in the same way.

excite the cones in the same way. Humans have 3 kinds of cones Color vision Edward H. Adelson 9.35 Trichromacy To specify a light s spectrum requires an infinite set of numbers. Each cone gives a single number (univariance) when stimulated

More information

Question From Last Class

Question From Last Class Question From Last Class What is it about matter that determines its color? e.g., what's the difference between a surface that reflects only long wavelengths (reds) and a surfaces the reflects only medium

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

What is Color. Color is a fundamental attribute of human visual perception.

What is Color. Color is a fundamental attribute of human visual perception. Color What is Color Color is a fundamental attribute of human visual perception. By fundamental we mean that it is so unique that its meaning cannot be fully appreciated without direct experience. How

More information

CGT 511 Perception. Facts. Facts. Facts. When perceiving visual information

CGT 511 Perception. Facts. Facts. Facts. When perceiving visual information CGT 511 Perception Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Facts When perceiving visual information light is the most important factor light is mostly reflected or scattered

More information

Visual Perception. Jeff Avery

Visual Perception. Jeff Avery Visual Perception Jeff Avery Source Chapter 4,5 Designing with Mind in Mind by Jeff Johnson Visual Perception Most user interfaces are visual in nature. So, it is important that we understand the inherent

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Visual Perception. human perception display devices. CS Visual Perception

Visual Perception. human perception display devices. CS Visual Perception Visual Perception human perception display devices 1 Reference Chapters 4, 5 Designing with the Mind in Mind by Jeff Johnson 2 Visual Perception Most user interfaces are visual in nature. So, it is important

More information

Radiometry vs. Photometry. Radiometric and photometric units

Radiometry vs. Photometry. Radiometric and photometric units Radiometry vs. Photometry Radiometry -- the measurement and specification of the power (energy) of a source of electromagnetic radiation.! total energy or numbers of quanta Photometry -- the measurement

More information

Fundamental Optics of the Eye and Rod and Cone vision

Fundamental Optics of the Eye and Rod and Cone vision Fundamental Optics of the Eye and Rod and Cone vision Andrew Stockman Revision Course in Basic Sciences for FRCOphth. Part 1 Outline The eye Visual optics Image quality Measuring image quality Refractive

More information

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Vision Module 13 2 Vision Vision The Stimulus Input: Light Energy The

More information

Visual Perception of Images

Visual Perception of Images Visual Perception of Images A processed image is usually intended to be viewed by a human observer. An understanding of how humans perceive visual stimuli the human visual system (HVS) is crucial to the

More information

Visual optics, rods and cones and retinal processing

Visual optics, rods and cones and retinal processing Visual optics, rods and cones and retinal processing Andrew Stockman MSc Neuroscience course Outline The eye Visual optics Image quality Measuring image quality Rods and cones Univariance Trichromacy Chromatic

More information

Visual System I Eye and Retina

Visual System I Eye and Retina Visual System I Eye and Retina Reading: BCP Chapter 9 www.webvision.edu The Visual System The visual system is the part of the NS which enables organisms to process visual details, as well as to perform

More information

Additive. Subtractive

Additive. Subtractive Physics 106 Additive Subtractive Subtractive Mixing Rules: Mixing Cyan + Magenta, one gets Blue Mixing Cyan + Yellow, one gets Green Mixing Magenta + Yellow, one gets Red Mixing any two of the Blue, Red,

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38 Images CS 4620 Lecture 38 w/ prior instructor Steve Marschner 1 Announcements A7 extended by 24 hours w/ prior instructor Steve Marschner 2 Color displays Operating principle: humans are trichromatic match

More information

The human visual system

The human visual system The human visual system Vision and hearing are the two most important means by which humans perceive the outside world. 1 Low-level vision Light is the electromagnetic radiation that stimulates our visual

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York Human Visual System Prof. George Wolberg Dept. of Computer Science City College of New York Objectives In this lecture we discuss: - Structure of human eye - Mechanics of human visual system (HVS) - Brightness

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I 4 Topics to Cover Light and EM Spectrum Visual Perception Structure Of Human Eyes Image Formation on the Eye Brightness Adaptation and

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

History of Computer Vision and Human Vision System

History of Computer Vision and Human Vision System History of Computer Vision and Human Vision System 簡韶逸 Shao-Yi Chien Department of Electrical Engineering National Taiwan University Fall 2018 1 History of Computer Vision 2 1960s--1970s In 1966, Minsky

More information

Reflectance curves of some common foods. Spectral colors. What is colour? 11/4/11

Reflectance curves of some common foods. Spectral colors. What is colour? 11/4/11 Colour Vision I: The re0nal basis of colour vision and the inherited colour vision deficiencies Prof. Kathy T. ullen What is colour? What physical aspect of the world does our sense of colour inform us

More information

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color.

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 Tamara Munzner Color http://www.ugrad.cs.ubc.ca/~cs314/vjan2016 Vision/Color 2 RGB Color triple (r, g, b) represents colors with amount

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

Radiometry vs. Photometry. Radiometric and photometric units

Radiometry vs. Photometry. Radiometric and photometric units Radiometry vs. Photometry Radiometry -- the measurement and specification of the power (energy) of a source of electromagnetic radiation. total energy or numbers of quanta Photometry -- the measurement

More information

Colour, Vision & Perception

Colour, Vision & Perception Colour, Vision & Perception Colour is a matter of Physics (colour) Physiology (vision) Psychology (perception) Colour is a matter of Physics (colour) Physiology (vision) Psychology (perception) Isaac Newton

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013.

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Tamara Munzner Vision/Color Reading for Color RB Chap Color FCG Sections 3.2-3.3 FCG Chap 20 Color FCG Chap 21.2.2 Visual Perception

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

How do photoreceptors work?

How do photoreceptors work? How do photoreceptors work? Convert energy from light into nerve signals No easy feat!! 200 femtoseconds!! Phototransduction Isomerization Opsin - transducin Transducin - PDE PDE - cgmp to GMP Low cgmp

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

Overview of Human Cognition and its Impact on User Interface Design (Part 2)

Overview of Human Cognition and its Impact on User Interface Design (Part 2) Overview of Human Cognition and its Impact on User Interface Design (Part 2) Brief Recap Gulf of Evaluation What is the state of the system? Gulf of Execution What specific inputs needed to achieve goals?

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Colorimetry and Color Modeling

Colorimetry and Color Modeling Color Matching Experiments 1 Colorimetry and Color Modeling Colorimetry is the science of measuring color. Color modeling, for the purposes of this Field Guide, is defined as the mathematical constructs

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors.

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors. Section 2: Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4 Further reading Angel, section 1.4 Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Spencer, Shirley, Zimmerman, and Greenberg. Physically-based glare effects for

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 4: Color Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 4 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

HW- Finish your vision book!

HW- Finish your vision book! March 1 Table of Contents: 77. March 1 & 2 78. Vision Book Agenda: 1. Daily Sheet 2. Vision Notes and Discussion 3. Work on vision book! EQ- How does vision work? Do Now 1.Find your Vision Sensation fill-in-theblanks

More information

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot Chapter 6 Vision Exam 1 Anatomy of vision Primary visual cortex (striate cortex, V1) Prestriate cortex, Extrastriate cortex (Visual association coretx ) Second level association areas in the temporal and

More information

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this Vision Science I Exam 1 23 September 2016 1) The plot to the right shows the spectrum of a light source. Which of the following sources is this spectrum most likely to be taken from? A) The direct sunlight

More information

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones.

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones. Announcements 1 st exam (next Thursday): Multiple choice (about 22), short answer and short essay don t list everything you know for the essay questions Book vs. lectures know bold terms for things that

More information

The Photoreceptor Mosaic

The Photoreceptor Mosaic The Photoreceptor Mosaic Aristophanis Pallikaris IVO, University of Crete Institute of Vision and Optics 10th Aegean Summer School Overview Brief Anatomy Photoreceptors Categorization Visual Function Photoreceptor

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

Sensation, Part 4 Gleitman et al. (2011), Chapter 4

Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 20, 2014 T. M. D'Zmura 1 From last time T. M. D'Zmura 2 Rod Transduction

More information

Simple reaction time as a function of luminance for various wavelengths*

Simple reaction time as a function of luminance for various wavelengths* Perception & Psychophysics, 1971, Vol. 10 (6) (p. 397, column 1) Copyright 1971, Psychonomic Society, Inc., Austin, Texas SIU-C Web Editorial Note: This paper originally was published in three-column text

More information

Vision. Sensation & Perception. Functional Organization of the Eye. Functional Organization of the Eye. Functional Organization of the Eye

Vision. Sensation & Perception. Functional Organization of the Eye. Functional Organization of the Eye. Functional Organization of the Eye Vision Sensation & Perception Part 3 - Vision Visible light is the form of electromagnetic radiation our eyes are designed to detect. However, this is only a narrow band of the range of energy at different

More information

Vision IV. Overview of Topics. Overview of Topics. Colour Vision

Vision IV. Overview of Topics. Overview of Topics. Colour Vision Vision IV Colour Vision Chapter 11 in Chaudhuri 1 1 Overview of Topics Overview of Topics "Avoid vertebrates because they are too complicated, avoid colour vision because it is much too complicated, and

More information

19. Vision and color

19. Vision and color 19. Vision and color 1 Reading Glassner, Principles of Digital Image Synthesis, pp. 5-32. Watt, Chapter 15. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, pp. 45-50 and 69-97,

More information

The perception of light and colour and the physiology of vision-part V. The colour triangle

The perception of light and colour and the physiology of vision-part V. The colour triangle Proc. Indian Acad. Sci. AS2 305-313 (1960) The perception of light and colour and the physiology of vision-part V. The colour triangle SIR C V RAMAN (Memoir No. 125 of the Raman Research Institute, Bangalore-6)

More information

Radiometric and Photometric Measurements with TAOS PhotoSensors

Radiometric and Photometric Measurements with TAOS PhotoSensors INTELLIGENT OPTO SENSOR DESIGNER S NUMBER 21 NOTEBOOK Radiometric and Photometric Measurements with TAOS PhotoSensors contributed by Todd Bishop March 12, 2007 ABSTRACT Light Sensing applications use two

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Vision. Definition. Sensing of objects by the light reflected off the objects into our eyes

Vision. Definition. Sensing of objects by the light reflected off the objects into our eyes Vision Vision Definition Sensing of objects by the light reflected off the objects into our eyes Only occurs when there is the interaction of the eyes and the brain (Perception) What is light? Visible

More information

Vision and color. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Vision and color. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Vision and color University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Glassner, Principles of Digital Image Synthesis, pp. 5-32. Watt, Chapter 15. Brian Wandell. Foundations

More information

Light and Colour. Light as part of the EM spectrum. Light as part of the EM spectrum

Light and Colour. Light as part of the EM spectrum. Light as part of the EM spectrum Light and Colour Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light as part of the EM spectrum Visible light can be seen as part

More information

Chapter Six Chapter Six

Chapter Six Chapter Six Chapter Six Chapter Six Vision Sight begins with Light The advantages of electromagnetic radiation (Light) as a stimulus are Electromagnetic energy is abundant, travels VERY quickly and in fairly straight

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

Outline 2/21/2013. The Retina

Outline 2/21/2013. The Retina Outline 2/21/2013 PSYC 120 General Psychology Spring 2013 Lecture 9: Sensation and Perception 2 Dr. Bart Moore bamoore@napavalley.edu Office hours Tuesdays 11:00-1:00 How we sense and perceive the world

More information

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements Announcements 1. This week's topic will be COLOR VISION. DEPTH PERCEPTION will be covered next week. 2. All slides (and my notes for each slide) will be posted on the class web page at the end of the week.

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3355 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 4: Colour Graphics Lecture 4: Slide 1 Ways of looking at colour 1. Physics 2. Human visual receptors 3. Subjective assessment Graphics Lecture 4: Slide 2 The physics

More information

Lecture Color Image Processing. by Shahid Farid

Lecture Color Image Processing. by Shahid Farid Lecture Color Image Processing by Shahid Farid What is color? Why colors? How we see objects? Photometry, Radiometry and Colorimetry Color measurement Chromaticity diagram Shahid Farid, PUCIT 2 Color or

More information

Vision IV. Overview of Topics. Evolution of Vision. Overview of Topics. Colour Vision

Vision IV. Overview of Topics. Evolution of Vision. Overview of Topics. Colour Vision Overview of Topics Vision IV Colour Vision Chapter 11 in Chaudhuri "Avoid vertebrates because they are too complicated, avoid colour vision because it is much too complicated, and avoid the combination

More information

Light is a form of electromagnetic radiation which produces in humans the sensory response called vision.

Light is a form of electromagnetic radiation which produces in humans the sensory response called vision. Light is a form of electromagnetic radiation which produces in humans the sensory response called vision. Light The visible spectrum extends from violet at 400 nm to red at 700 nm. The Eye The eyes are

More information

The Effect of Background Luminance on Cone Sensitivity Functions

The Effect of Background Luminance on Cone Sensitivity Functions October 1969 Vol. 30/10 Investigative Ophthalmology & Visual Science Articles The Effect of Background Luminance on Cone Sensitivity Functions Tsaiyoo Yeh, Vivionne C. Smith, and Joel Pokorny Implementations

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 5, 2017 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

Image Processing. Michael Kazhdan ( /657) HB Ch FvDFH Ch. 13.1

Image Processing. Michael Kazhdan ( /657) HB Ch FvDFH Ch. 13.1 Image Processing Michael Kazhdan (600.457/657) HB Ch. 14.4 FvDFH Ch. 13.1 Outline Human Vision Image Representation Reducing Color Quantization Artifacts Basic Image Processing Human Vision Model of Human

More information

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1 Color Fredo Durand Many slides by Victor Ostromoukhov Color Vision 1 Today: color Disclaimer: Color is both quite simple and quite complex There are two options to teach color: pretend it all makes sense

More information