Haptic Interface using Sensory Illusion Tomohiro Amemiya

Size: px
Start display at page:

Download "Haptic Interface using Sensory Illusion Tomohiro Amemiya"

Transcription

1 Haptic Interface using Sensory Illusion Tomohiro Amemiya *NTT Communication Science Labs., Japan

2 NTT Communication Science Laboratories 2/39 Introduction Outline Haptic Interface using Sensory Illusions Kinesthetic force illusion Vestibular illusion Tactile illusions Summary

3 NTT Communication Science Laboratories 3/39 A. Kitaoka (2006),

4 NTT Communication Science Laboratories 4/39 E. Adelson (2002),

5 NTT Communication Science Laboratories 5/39 Environment Interface Human Stimulation Sensation Perception Information = Stimulation Sensation Perception Information = Measurement Sensory illusions Different! = Nonlinearity between sensation and perception

6 NTT Communication Science Laboratories 6/39 Perceived World is not Identical to Physical World. Physical world A series of still photos Information compression by subtracting color difference information Illusion Basis of animation Psychological world Motion pictures Almost same as original picture Compression algorithm on JPEG Subtracting frequencies difficult for humans to hear Almost same as original sound Compression algorithm in mp3 format or Mini Disk

7 NTT Communication Science Laboratories 7/39 Human Interface using Sensory Illusion Human science To understand the distortion between the physical and psychological world Engineering To utilize the distortion to build information displays

8 [ Laval Virtual Grand Prix Award (2007) ] [ Laval Virtual VR interface Award (2007) ] Buru-Navi T. Amemiya, I. Kawabuchi, H. Ando, T. Maeda, "Double-Layer Slider-Crank Mechanism to Generate Pulling or Pushing Sensation without an External Ground", In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), , Oct T. Amemiya, H. Ando, T. Maeda, ""Lead-Me Interface" for a Pulling Sensation from Hand-held Devices", ACM Transactions on Applied Perception 5(4), 2008.

9 NTT Communication Science Laboratories 9/39 Haptics in Mobile Devices????? Relatively heavy Spatially constrained Physical constraints Both the user and device must be connected to an external ground in order to generate force

10 NTT Communication Science Laboratories 10/39 Related Work: Non-grounded Force Displays Prior non-grounded force displays: Unable to generate constant force Unable to generate translational force Gyro Effect (Yano et al., 2003) Angular Momentum (Tanaka et al., 2001) Mechanical Brake (Ando et al., 2002)

11 NTT Communication Science Laboratories 11/39 My Approach Creating a Force Sensation Periodic translational motion (=oscillation) To create a constant and translational force by non-grounded displays Not creating a physical force Exploiting characteristics of human perception

12 NTT Communication Science Laboratories 12/39 1. Exploiting Characteristics of Human Perception Psychophysical quantity Physical quantity t + T α( τ τ = t )d 0 x = α(t): acceleration T: time cycle Psychophysical quantity is not identical to physical quantity. t + T t ϕ oα( τ)dτ 0 y = ϕ(x): sigmoid curve of perception If the asymmetric oscillation is designed well, a directed force sensation can be induced.

13 NTT Communication Science Laboratories 13/39 2. Slider-crank Mechanism to Generate Asymmetric Oscillation The weaker acceleration is not noticed. The washout-effect of the weaker acceleration allows humans to be tricked into perceiving this as uni-directional force. Stimuli Illusion Perception

14 NTT Communication Science Laboratories 14/39 Buru-Navi Prototype Crank wheel Swinging arm Guide roller Connecting rod Weight Motor Crank wheel (with crown gears) Motor pinion Swinging arm

15 NTT Communication Science Laboratories 15/39 Introduction movie

16 NTT Communication Science Laboratories 16/39 Evaluation Asymmetric oscillation (test stimuli) y x Acceleration [m/s 2 ] cycle/sec Time [s] Symmetric oscillation (control stimuli) y x Acceleration [m/s 2 ] cycle/sec Time [s]

17 NTT Communication Science Laboratories 17/39 Asymmetric Oscillation Generates a Pushed/Pulled Sensation Proportion of Being pulled to x-direction [%] Asymmetric oscillation Symmetric oscillation (comparison) Frequency [cycles/sec] x x

18 NTT Communication Science Laboratories 18/39 Another Approach to Generate an Asymmetric Oscillation Spring-cam mechanism Resonant motion by linear actuators y x Cam Follower Extension Spring Cam Slider Linear Guide Phase 1 Phase 2 T. Amemiya, H. Ando, T. Maeda, "Hand-held Force Display with Spring-Cam Mechanism for Generating Asymmetric Acceleration", In Proc. of World Haptics Conference 2007, pp , 2007.

19 NTT Communication Science Laboratories 19/39 Example of Applications (1): Accessibility Collaborative research with Kyoto City Fire Department Kyoto Prefectural School for the Visually Impaired Haptic direction indicator Buru-Navi + GPS + Electric compass

20 NTT Communication Science Laboratories 20/39 Example of Applications (2): Entertainment Force feedback tray for novice waiters Buru-Navi Rotation mechanism Position and posture identification system Video processing

21 NTT Communication Science Laboratories 21/39 Tray with Force Display Buru-Navi stepper motor a belt with the belt pulley Pochette Tray

22 NTT Communication Science Laboratories Laval, France (2007) 22/39 Singapore Science Center (2008) T. Amemiya, T. Maeda, H. Ando, "Location-free Haptic Interaction for LargeArea Social Applications", Personal and Ubiquitous Computing, 2008.

23 Human Interface Using GVS T. Maeda, H. Ando, T. Amemiya, N. Nagaya, M. Sugimoto, M. Inami, "Shaking The World: Galvanic Vestibular Stimulation As A Novel Sensation Interface", In Proc. of ACM SIGGRAPH 2005 Emerging Technologies, 2005.

24 NTT Communication Science Laboratories 24/39 Illusion in Balance Sensation Vestibular auditory ossicle semicircular canal external auditory meatus eardrum Otolith eustachian tube vestibular nerve cochlear nerve cochlea??? Motion Platforms Mobile/Wearable Balance can be also controlled by thermal or galvanic vestibular stimulations.

25 NTT Communication Science Laboratories 25/39 GVS (Galvanic Vestibular Stimulation) When a weak DC current is delivered to the mastoid behind your ear, your body responds by shifting your balance toward the anode. If it is strong enough, it not only throws you off balance but alters the course of your movement.

26 NTT Communication Science Laboratories 26/39 Radio-controlled Humans Over 3,000 people have experienced this! (no accidents so far..) T. Maeda, H. Ando, T. Amemiya, N. Nagaya, M. Sugimoto, M. Inami, "Shaking The World: Galvanic Vestibular Stimulation As A Novel Sensation Interface", In Proc. of ACM SIGGRAPH 2005 Emerging Technologies, 2005.

27 NTT Communication Science Laboratories 27/39 Remote-controlled Riders

28 Nail-mounted Tactile Display H. Ando, T. Amemiya, J. Watanabe, M. Inami, T. Maeda, "The Evaluation of Nail-Mounted Tactile Display", In Proc. of World Haptics Conference 2005, 2005.(poster presentation)

29 NTT Communication Science Laboratories 29/39 Conventional tactile displays Human Tactile display Nail-mounted tactile display Tactile display Human??? ground ground Vibration actuator + Voice-coil motor Force sensor + Finger-color sensor B/W sensor Reflection sensor

30 NTT Communication Science Laboratories 30/39 Vibration during Active Touch

31 NTT Communication Science Laboratories 31/39

32 Tactile Motion Aftereffect J. Watanabe, S. Hayashi, H. Kajimoto, S. Tachi, S. Nishida, Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors, Experimental Brain Research 180 (3), pp , 2007.

33 NTT Communication Science Laboratories 33/39 Motion Aftereffect Adaptation (moving stimulus) Test stimulus Vision Illusory motion Tactile Previous Studies: Clear MAEs like in vision were NOT observed.??? Hollins (1994), Lerner (2002) Lerner (2002)

34 NTT Communication Science Laboratories 34/39 Experimental Procedure (400-ms stimulus+600-ms rest)x10 Adaptation ISOI=100 ms Four subjects Three adaptation conditions (No Upward Downward) Interval 2 sec 30 Hz 200ms ISOI Test Stimulus One of nine ISOIs Upward or Downward? ISOI Time Judgment

35 NTT Communication Science Laboratories 35/39 Experimental Result (one subject) No Adaptation Upward Adaptation Downward Adaptation

36 NTT Communication Science Laboratories 36/39 What are the differences between earlier studies and our experiments? Mechanoreceptors under the skin Epi-dermis Skin surface Meissner RA(Rapid Adaptation) Transient Respond to vibration 30 Hz Dermis Endodermis Merkel SA(Slow Adaptation) Sustained Respond to static distortion Hollins (1994) Lerner (2002) Lerner (2002) earlier studies Adapt: RA test :SA =No MAE this report Adapt: RA test : RA =reproductive MAE

37 NTT Communication Science Laboratories 37/39 Summary Sensory illusions can be tools for designing human interfaces. Kinesthetic illusions Vestibular illusions Tactile illusions In overcoming certain difficulties, sensory illusions are very effective. Virtuous circle between human science and engineering is essential for human interfaces using sensory illusions.

38 NTT Communication Science Laboratories 38/39 Members & Acknowledgement Tomohiro Amemiya, Ph.D. (NTT CS Labs.) Taro Maeda, Ph.D. (Osaka Univ.) Hideyuki Ando, Ph.D. (NTT CS Labs.) Junji Watanabe, Ph.D. (PREST, JST)

39 NTT Communication Science Laboratories 39/39 Reference T. Amemiya, H. Ando, T. Maeda, ""Lead-Me Interface" for a Pulling Sensation from Hand-held Devices", ACM Transactions on Applied Perception, Vol. 5, No. 4, T. Amemiya, T. Maeda, H. Ando, "Location-free Haptic Interaction for Large- Area Social Applications", Personal and Ubiquitous Computing, Springer, T. Amemiya, I. Kawabuchi, H. Ando, T. Maeda, "Double-Layer Slider-Crank Mechanism to Generate Pulling or Pushing Sensation without an External Ground", Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), pp , H. Ando, T. Amemiya, J. Watanabe, M. Inami, T. Maeda, "The Evaluation of Nail-Mounted Tactile Display", In Proc. of World Haptics Conference 2005, Maeda, H. Ando, T. Amemiya, N. Nagaya, M. Sugimoto, M. Inami, "Shaking The World: Galvanic Vestibular Stimulation As A Novel Sensation Interface", Proc. of ACM SIGGRAPH 2005 Emerging Technologies, J. Watanabe, S. Hayashi, H. Kajimoto, S. Tachi, S. Nishida, Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors, Experimental Brain Research 180 (3), pp , 2007.

SENSATION AND PERCEPTION

SENSATION AND PERCEPTION http://www.youtube.com/watch?v=ahg6qcgoay4 SENSATION AND PERCEPTION THE DIFFERENCE Stimuli: an energy source that causes a receptor to become alert to information (light, sound, gaseous molecules, etc)

More information

Feeding human senses through Immersion

Feeding human senses through Immersion Virtual Reality Feeding human senses through Immersion 1. How many human senses? 2. Overview of key human senses 3. Sensory stimulation through Immersion 4. Conclusion Th3.1 1. How many human senses? [TRV

More information

A Fingernail-Mounted Tactile Display for Augmented Reality Systems

A Fingernail-Mounted Tactile Display for Augmented Reality Systems Electronics and Communications in Japan, Part 2, Vol. 90, No. 4, 2007 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J87-D-II, No. 11, November 2004, pp. 2025 2033 A Fingernail-Mounted Tactile

More information

Psychology in Your Life

Psychology in Your Life Sarah Grison Todd Heatherton Michael Gazzaniga Psychology in Your Life FIRST EDITION Chapter 5 Sensation and Perception 2014 W. W. Norton & Company, Inc. Section 5.1 How Do Sensation and Perception Affect

More information

Ungrounded Kinesthetic Pen for Haptic Interaction with Virtual Environments

Ungrounded Kinesthetic Pen for Haptic Interaction with Virtual Environments The 18th IEEE International Symposium on Robot and Human Interactive Communication Toyama, Japan, Sept. 27-Oct. 2, 2009 WeIAH.2 Ungrounded Kinesthetic Pen for Haptic Interaction with Virtual Environments

More information

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Sensing self motion Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Position sensing Velocity and acceleration sensing Force sensing Vision based

More information

Tactile Actuators Using SMA Micro-wires and the Generation of Texture Sensation from Images

Tactile Actuators Using SMA Micro-wires and the Generation of Texture Sensation from Images IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November -,. Tokyo, Japan Tactile Actuators Using SMA Micro-wires and the Generation of Texture Sensation from Images Yuto Takeda

More information

Expression of 2DOF Fingertip Traction with 1DOF Lateral Skin Stretch

Expression of 2DOF Fingertip Traction with 1DOF Lateral Skin Stretch Expression of 2DOF Fingertip Traction with 1DOF Lateral Skin Stretch Vibol Yem 1, Mai Shibahara 2, Katsunari Sato 2, Hiroyuki Kajimoto 1 1 The University of Electro-Communications, Tokyo, Japan 2 Nara

More information

Haplug: A Haptic Plug for Dynamic VR Interactions

Haplug: A Haptic Plug for Dynamic VR Interactions Haplug: A Haptic Plug for Dynamic VR Interactions Nobuhisa Hanamitsu *, Ali Israr Disney Research, USA nobuhisa.hanamitsu@disneyresearch.com Abstract. We demonstrate applications of a new actuator, the

More information

Chapter 2 Introduction to Haptics 2.1 Definition of Haptics

Chapter 2 Introduction to Haptics 2.1 Definition of Haptics Chapter 2 Introduction to Haptics 2.1 Definition of Haptics The word haptic originates from the Greek verb hapto to touch and therefore refers to the ability to touch and manipulate objects. The haptic

More information

Selective Stimulation to Skin Receptors by Suction Pressure Control

Selective Stimulation to Skin Receptors by Suction Pressure Control Selective Stimulation to Skin Receptors by Suction Pressure Control Yasutoshi MAKINO 1 and Hiroyuki SHINODA 1 1 Department of Information Physics and Computing, Graduate School of Information Science and

More information

Tactile Vision Substitution with Tablet and Electro-Tactile Display

Tactile Vision Substitution with Tablet and Electro-Tactile Display Tactile Vision Substitution with Tablet and Electro-Tactile Display Haruya Uematsu 1, Masaki Suzuki 2, Yonezo Kanno 2, Hiroyuki Kajimoto 1 1 The University of Electro-Communications, 1-5-1 Chofugaoka,

More information

Simultaneous presentation of tactile and auditory motion on the abdomen to realize the experience of being cut by a sword

Simultaneous presentation of tactile and auditory motion on the abdomen to realize the experience of being cut by a sword Simultaneous presentation of tactile and auditory motion on the abdomen to realize the experience of being cut by a sword Sayaka Ooshima 1), Yuki Hashimoto 1), Hideyuki Ando 2), Junji Watanabe 3), and

More information

ISMCR2004. Abstract. 2. The mechanism of the master-slave arm of Telesar II. 1. Introduction. D21-Page 1

ISMCR2004. Abstract. 2. The mechanism of the master-slave arm of Telesar II. 1. Introduction. D21-Page 1 Development of Multi-D.O.F. Master-Slave Arm with Bilateral Impedance Control for Telexistence Riichiro Tadakuma, Kiyohiro Sogen, Hiroyuki Kajimoto, Naoki Kawakami, and Susumu Tachi 7-3-1 Hongo, Bunkyo-ku,

More information

From Encoding Sound to Encoding Touch

From Encoding Sound to Encoding Touch From Encoding Sound to Encoding Touch Toktam Mahmoodi King s College London, UK http://www.ctr.kcl.ac.uk/toktam/index.htm ETSI STQ Workshop, May 2017 Immersing a person into the real environment with Very

More information

VIRTUAL FIGURE PRESENTATION USING PRESSURE- SLIPPAGE-GENERATION TACTILE MOUSE

VIRTUAL FIGURE PRESENTATION USING PRESSURE- SLIPPAGE-GENERATION TACTILE MOUSE VIRTUAL FIGURE PRESENTATION USING PRESSURE- SLIPPAGE-GENERATION TACTILE MOUSE Yiru Zhou 1, Xuecheng Yin 1, and Masahiro Ohka 1 1 Graduate School of Information Science, Nagoya University Email: ohka@is.nagoya-u.ac.jp

More information

Virtual Chromatic Percussions Simulated by Pseudo-Haptic and Vibrotactile Feedback

Virtual Chromatic Percussions Simulated by Pseudo-Haptic and Vibrotactile Feedback Virtual Chromatic Percussions Simulated by Pseudo-Haptic and Vibrotactile Feedback Taku Hachisu The University of Electro- Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan +81 42 443 5363

More information

Telecommunication and remote-controlled

Telecommunication and remote-controlled Spatial Interfaces Editors: Frank Steinicke and Wolfgang Stuerzlinger Telexistence: Enabling Humans to Be Virtually Ubiquitous Susumu Tachi The University of Tokyo Telecommunication and remote-controlled

More information

Lecture 7: Human haptics

Lecture 7: Human haptics ME 327: Design and Control of Haptic Systems Winter 2018 Lecture 7: Human haptics Allison M. Okamura Stanford University types of haptic sensing kinesthesia/ proprioception/ force cutaneous/ tactile Related

More information

A Guide to Senses from a Manipulation Perspective

A Guide to Senses from a Manipulation Perspective very incomplete draft A Guide to Senses from a Manipulation Perspective by Wo Meijer very incomplete draft Introduction This document provides a brief overview of the human sense available to designers

More information

Chapter 4 PSY 100 Dr. Rick Grieve Western Kentucky University

Chapter 4 PSY 100 Dr. Rick Grieve Western Kentucky University Chapter 4 Sensation and Perception PSY 100 Dr. Rick Grieve Western Kentucky University Copyright 1999 by The McGraw-Hill Companies, Inc. Sensation and Perception Sensation The process of stimulating the

More information

Sensation and Perception. What We Will Cover in This Section. Sensation

Sensation and Perception. What We Will Cover in This Section. Sensation Sensation and Perception Dr. Dennis C. Sweeney 2/18/2009 Sensation.ppt 1 What We Will Cover in This Section Overview Psychophysics Sensations Hearing Vision Touch Taste Smell Kinesthetic Perception 2/18/2009

More information

IVR: Sensing Self-Motion 26/02/2015

IVR: Sensing Self-Motion 26/02/2015 IVR: Sensing Self-Motion 26/02/2015 Overview Proprioception Sensors for self-sensing in biological systems proprioception vestibular system in robotic systems velocity and acceleration sensing force sensing

More information

Haptic Perception & Human Response to Vibrations

Haptic Perception & Human Response to Vibrations Sensing HAPTICS Manipulation Haptic Perception & Human Response to Vibrations Tactile Kinesthetic (position / force) Outline: 1. Neural Coding of Touch Primitives 2. Functions of Peripheral Receptors B

More information

An Emotional Tactile Interface Completing with Extremely High Temporal Bandwidth

An Emotional Tactile Interface Completing with Extremely High Temporal Bandwidth SICE Annual Conference 2008 August 20-22, 2008, The University Electro-Communications, Japan An Emotional Tactile Interface Completing with Extremely High Temporal Bandwidth Yuki Hashimoto 1 and Hiroyuki

More information

Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display

Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display Hiroyuki Kajimoto 1,2 1 The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 Japan 2 Japan Science

More information

Proprioception & force sensing

Proprioception & force sensing Proprioception & force sensing Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jussi Rantala, Jukka

More information

Combination of Cathodic Electrical Stimulation and Mechanical Damped Sinusoidal Vibration to Express Tactile Softness in the Tapping Process *

Combination of Cathodic Electrical Stimulation and Mechanical Damped Sinusoidal Vibration to Express Tactile Softness in the Tapping Process * Combination of Cathodic Electrical Stimulation and Mechanical Damped Sinusoidal Vibration to Express Tactile Softness in the Tapping Process * Vibol Yem, Member, IEEE, and Hiroyuki Kajimoto, Member, IEEE

More information

Hiroyuki Kajimoto Satoshi Saga Masashi Konyo. Editors. Pervasive Haptics. Science, Design, and Application

Hiroyuki Kajimoto Satoshi Saga Masashi Konyo. Editors. Pervasive Haptics. Science, Design, and Application Pervasive Haptics Hiroyuki Kajimoto Masashi Konyo Editors Pervasive Haptics Science, Design, and Application 123 Editors Hiroyuki Kajimoto The University of Electro-Communications Tokyo, Japan University

More information

Wearable Haptic Display to Present Gravity Sensation

Wearable Haptic Display to Present Gravity Sensation Wearable Haptic Display to Present Gravity Sensation Preliminary Observations and Device Design Kouta Minamizawa*, Hiroyuki Kajimoto, Naoki Kawakami*, Susumu, Tachi* (*) The University of Tokyo, Japan

More information

PSYCHOLOGY. Chapter 5 SENSATION AND PERCEPTION PowerPoint Image Slideshow

PSYCHOLOGY. Chapter 5 SENSATION AND PERCEPTION PowerPoint Image Slideshow PSYCHOLOGY Chapter 5 SENSATION AND PERCEPTION PowerPoint Image Slideshow Sensation and Perception: What s the difference Sensory systems with specialized receptors respond to (transduce) various forms

More information

Figure 2. Haptic human perception and display. 2.2 Pseudo-Haptic Feedback 2. RELATED WORKS 2.1 Haptic Simulation of Tapping an Object

Figure 2. Haptic human perception and display. 2.2 Pseudo-Haptic Feedback 2. RELATED WORKS 2.1 Haptic Simulation of Tapping an Object Virtual Chromatic Percussions Simulated by Pseudo-Haptic and Vibrotactile Feedback Taku Hachisu 1 Gabriel Cirio 2 Maud Marchal 2 Anatole Lécuyer 2 Hiroyuki Kajimoto 1,3 1 The University of Electro- Communications

More information

Toward Principles for Visual Interaction Design for Communicating Weight by using Pseudo-Haptic Feedback

Toward Principles for Visual Interaction Design for Communicating Weight by using Pseudo-Haptic Feedback Toward Principles for Visual Interaction Design for Communicating Weight by using Pseudo-Haptic Feedback Kumiyo Nakakoji Key Technology Laboratory SRA Inc. 2-32-8 Minami-Ikebukuro, Toshima, Tokyo, 171-8513,

More information

SmartTouch: Electric Skin to Touch the Untouchable

SmartTouch: Electric Skin to Touch the Untouchable SmartTouch: Electric Skin to Touch the Untouchable Hiroyuki Kajimoto (1) Masahiko Inami (2) Naoki Kawakami (1) Susumu Tachi (1) (1)Graduate School of Information Science and Technology, The University

More information

Detection of external stimuli Response to the stimuli Transmission of the response to the brain

Detection of external stimuli Response to the stimuli Transmission of the response to the brain Sensation Detection of external stimuli Response to the stimuli Transmission of the response to the brain Perception Processing, organizing and interpreting sensory signals Internal representation of the

More information

Speech, Hearing and Language: work in progress. Volume 12

Speech, Hearing and Language: work in progress. Volume 12 Speech, Hearing and Language: work in progress Volume 12 2 Construction of a rotary vibrator and its application in human tactile communication Abbas HAYDARI and Stuart ROSEN Department of Phonetics and

More information

Exploring Surround Haptics Displays

Exploring Surround Haptics Displays Exploring Surround Haptics Displays Ali Israr Disney Research 4615 Forbes Ave. Suite 420, Pittsburgh, PA 15213 USA israr@disneyresearch.com Ivan Poupyrev Disney Research 4615 Forbes Ave. Suite 420, Pittsburgh,

More information

Vibrotactile Apparent Movement by DC Motors and Voice-coil Tactors

Vibrotactile Apparent Movement by DC Motors and Voice-coil Tactors Vibrotactile Apparent Movement by DC Motors and Voice-coil Tactors Masataka Niwa 1,2, Yasuyuki Yanagida 1, Haruo Noma 1, Kenichi Hosaka 1, and Yuichiro Kume 3,1 1 ATR Media Information Science Laboratories

More information

Sensation. Our sensory and perceptual processes work together to help us sort out complext processes

Sensation. Our sensory and perceptual processes work together to help us sort out complext processes Sensation Our sensory and perceptual processes work together to help us sort out complext processes Sensation Bottom-Up Processing analysis that begins with the sense receptors and works up to the brain

More information

Perceptual Force on the Wrist under the Hanger Reflex and Vibration

Perceptual Force on the Wrist under the Hanger Reflex and Vibration Perceptual Force on the Wrist under the Hanger Reflex and Vibration Takuto Nakamura 1, Narihiro Nishimura 1, Taku Hachisu 2, Michi Sato 1, Vibol Yem 1, and Hiroyuki Kajimoto 1 1 The University of Electro-Communications,1-5-1

More information

Evaluation of Five-finger Haptic Communication with Network Delay

Evaluation of Five-finger Haptic Communication with Network Delay Tactile Communication Haptic Communication Network Delay Evaluation of Five-finger Haptic Communication with Network Delay To realize tactile communication, we clarify some issues regarding how delay affects

More information

Haptic User Interfaces Fall Contents TACTILE SENSING & FEEDBACK. Tactile sensing. Tactile sensing. Mechanoreceptors 2/3. Mechanoreceptors 1/3

Haptic User Interfaces Fall Contents TACTILE SENSING & FEEDBACK. Tactile sensing. Tactile sensing. Mechanoreceptors 2/3. Mechanoreceptors 1/3 Contents TACTILE SENSING & FEEDBACK Jukka Raisamo Multimodal Interaction Research Group Tampere Unit for Computer Human Interaction Department of Computer Sciences University of Tampere, Finland Tactile

More information

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»!

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! The speaker is Anatole Lécuyer, senior researcher at Inria, Rennes, France; More information about him at : http://people.rennes.inria.fr/anatole.lecuyer/

More information

Proceedings of the 33rd ISR (International Symposium on Robotics) October 7 11,

Proceedings of the 33rd ISR (International Symposium on Robotics) October 7 11, Method for eliciting tactile sensation using vibrating stimuli in tangential direction : Effect of frequency, amplitude and wavelength of vibrating stimuli on roughness perception NaoeTatara, Masayuki

More information

A Tactile Display using Ultrasound Linear Phased Array

A Tactile Display using Ultrasound Linear Phased Array A Tactile Display using Ultrasound Linear Phased Array Takayuki Iwamoto and Hiroyuki Shinoda Graduate School of Information Science and Technology The University of Tokyo 7-3-, Bunkyo-ku, Hongo, Tokyo,

More information

Designing Pseudo-Haptic Feedback Mechanisms for Communicating Weight in Decision Making Tasks

Designing Pseudo-Haptic Feedback Mechanisms for Communicating Weight in Decision Making Tasks Appeared in the Proceedings of Shikakeology: Designing Triggers for Behavior Change, AAAI Spring Symposium Series 2013 Technical Report SS-12-06, pp.107-112, Palo Alto, CA., March 2013. Designing Pseudo-Haptic

More information

TACTILE SENSING & FEEDBACK

TACTILE SENSING & FEEDBACK TACTILE SENSING & FEEDBACK Jukka Raisamo Multimodal Interaction Research Group Tampere Unit for Computer-Human Interaction Department of Computer Sciences University of Tampere, Finland Contents Tactile

More information

INVESTIGATION OF VHI AFFECTED BY THE DENSITY OF MECHANORECEPTIVE UNITS FOR VIRTUAL SENSATION

INVESTIGATION OF VHI AFFECTED BY THE DENSITY OF MECHANORECEPTIVE UNITS FOR VIRTUAL SENSATION INVESTIGATION OF VHI AFFECTED BY THE DENSITY OF MECHANORECEPTIVE UNITS FOR VIRTUAL SENSATION N.Rajaei 1, M.Ohka 1, T.Miyaoka 2, Hanafiah Yussof 3, Ahmad Khushairy Makhtar 3, Siti Nora Basir 3 1 Graduate

More information

Wearable Tactile Device using Mechanical and Electrical Stimulation for Fingertip Interaction with Virtual World

Wearable Tactile Device using Mechanical and Electrical Stimulation for Fingertip Interaction with Virtual World Wearable Tactile Device using Mechanical and Electrical Stimulation for Fingertip Interaction with Virtual World Vibol Yem* Hiroyuki Kajimoto The University of Electro-Communications, Tokyo, Japan ABSTRACT

More information

Sound rendering in Interactive Multimodal Systems. Federico Avanzini

Sound rendering in Interactive Multimodal Systems. Federico Avanzini Sound rendering in Interactive Multimodal Systems Federico Avanzini Background Outline Ecological Acoustics Multimodal perception Auditory visual rendering of egocentric distance Binaural sound Auditory

More information

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors ACTUATORS AND SENSORS Joint actuating system Servomotors Sensors JOINT ACTUATING SYSTEM Transmissions Joint motion low speeds high torques Spur gears change axis of rotation and/or translate application

More information

Motion Perception II Chapter 8

Motion Perception II Chapter 8 Motion Perception II Chapter 8 Lecture 14 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2019 Eye movements: also give rise to retinal motion. important to distinguish motion due to

More information

Comparison of Haptic and Non-Speech Audio Feedback

Comparison of Haptic and Non-Speech Audio Feedback Comparison of Haptic and Non-Speech Audio Feedback Cagatay Goncu 1 and Kim Marriott 1 Monash University, Mebourne, Australia, cagatay.goncu@monash.edu, kim.marriott@monash.edu Abstract. We report a usability

More information

Sensory and Perception. Team 4: Amanda Tapp, Celeste Jackson, Gabe Oswalt, Galen Hendricks, Harry Polstein, Natalie Honan and Sylvie Novins-Montague

Sensory and Perception. Team 4: Amanda Tapp, Celeste Jackson, Gabe Oswalt, Galen Hendricks, Harry Polstein, Natalie Honan and Sylvie Novins-Montague Sensory and Perception Team 4: Amanda Tapp, Celeste Jackson, Gabe Oswalt, Galen Hendricks, Harry Polstein, Natalie Honan and Sylvie Novins-Montague Our Senses sensation: simple stimulation of a sense organ

More information

the human chapter 1 Traffic lights the human User-centred Design Light Vision part 1 (modified extract for AISD 2005) Information i/o

the human chapter 1 Traffic lights the human User-centred Design Light Vision part 1 (modified extract for AISD 2005) Information i/o Traffic lights chapter 1 the human part 1 (modified extract for AISD 2005) http://www.baddesigns.com/manylts.html User-centred Design Bad design contradicts facts pertaining to human capabilities Usability

More information

The Effect of Frequency Shifting on Audio-Tactile Conversion for Enriching Musical Experience

The Effect of Frequency Shifting on Audio-Tactile Conversion for Enriching Musical Experience The Effect of Frequency Shifting on Audio-Tactile Conversion for Enriching Musical Experience Ryuta Okazaki 1,2, Hidenori Kuribayashi 3, Hiroyuki Kajimioto 1,4 1 The University of Electro-Communications,

More information

Aviation Medicine Seminar Series. Aviation Medicine Seminar Series

Aviation Medicine Seminar Series. Aviation Medicine Seminar Series Aviation Medicine Seminar Series Aviation Medicine Seminar Series Bruce R. Gilbert, M.D., Ph.D. Associate Clinical Professor of Urology Weill Cornell Medical College Stony Brook University Medical College

More information

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1 VR Software Class 4 Dr. Nabil Rami http://www.simulationfirst.com/ein5255/ Audio Output Can be divided into two elements: Audio Generation Audio Presentation Page 4-1 Audio Generation A variety of audio

More information

CHAPTER 4. Sensation & Perception. Lecture Overview. Introduction to Sensation & Perception PSYCHOLOGY PSYCHOLOGY PSYCHOLOGY. Understanding Sensation

CHAPTER 4. Sensation & Perception. Lecture Overview. Introduction to Sensation & Perception PSYCHOLOGY PSYCHOLOGY PSYCHOLOGY. Understanding Sensation CHAPTER 4 Sensation & Perception How many senses do we have? Name them. Lecture Overview Understanding Sensation How We See & Hear Our Other Senses Understanding Perception Introduction to Sensation &

More information

702. Investigation of attraction force and vibration of a slipper in a tactile device with electromagnet

702. Investigation of attraction force and vibration of a slipper in a tactile device with electromagnet 702. Investigation of attraction force and vibration of a slipper in a tactile device with electromagnet Arūnas Žvironas a, Marius Gudauskis b Kaunas University of Technology, Mechatronics Centre for Research,

More information

Touching and Walking: Issues in Haptic Interface

Touching and Walking: Issues in Haptic Interface Touching and Walking: Issues in Haptic Interface Hiroo Iwata 1 1 Institute of Engineering Mechanics and Systems, University of Tsukuba, 80, Tsukuba, 305-8573 Japan iwata@kz.tsukuba.ac.jp Abstract. This

More information

A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration

A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration Nan Cao, Hikaru Nagano, Masashi Konyo, Shogo Okamoto 2 and Satoshi Tadokoro Graduate School

More information

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 4 & 5 SEPTEMBER 2008, UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA, SPAIN MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL

More information

MOBILE AND UBIQUITOUS HAPTICS

MOBILE AND UBIQUITOUS HAPTICS MOBILE AND UBIQUITOUS HAPTICS Jussi Rantala and Jukka Raisamo Tampere Unit for Computer-Human Interaction School of Information Sciences University of Tampere, Finland Contents Haptic communication Affective

More information

Spatial Audio & The Vestibular System!

Spatial Audio & The Vestibular System! ! Spatial Audio & The Vestibular System! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 13! stanford.edu/class/ee267/!! Updates! lab this Friday will be released as a video! TAs

More information

Computer Haptics and Applications

Computer Haptics and Applications Computer Haptics and Applications EURON Summer School 2003 Cagatay Basdogan, Ph.D. College of Engineering Koc University, Istanbul, 80910 (http://network.ku.edu.tr/~cbasdogan) Resources: EURON Summer School

More information

Lecture 8: Tactile devices

Lecture 8: Tactile devices ME 327: Design and Control of Haptic Systems Winter 2018 Lecture 8: Tactile devices Allison M. Okamura Stanford University tactile haptic devices tactile feedback goal is to stimulate the skin in a programmable

More information

Touch. Touch & the somatic senses. Josh McDermott May 13,

Touch. Touch & the somatic senses. Josh McDermott May 13, The different sensory modalities register different kinds of energy from the environment. Touch Josh McDermott May 13, 2004 9.35 The sense of touch registers mechanical energy. Basic idea: we bump into

More information

Human Factors / Ergonomics. Human limitations, abilities Human-Machine System Sensory input limitations Decision making limitations Summary

Human Factors / Ergonomics. Human limitations, abilities Human-Machine System Sensory input limitations Decision making limitations Summary Human Factors / Ergonomics Human limitations, abilities Human-Machine System Sensory input limitations Decision making limitations Summary Definition of Human Factors abilities, limitations, and other

More information

The EarSpring Model for the Loudness Response in Unimpaired Human Hearing

The EarSpring Model for the Loudness Response in Unimpaired Human Hearing The EarSpring Model for the Loudness Response in Unimpaired Human Hearing David McClain, Refined Audiometrics Laboratory, LLC December 2006 Abstract We describe a simple nonlinear differential equation

More information

Reconsideration of Ouija Board Motion in Terms of Haptic Illusions (Ⅲ) -Experiment with 1-DoF Linear Rail Device-

Reconsideration of Ouija Board Motion in Terms of Haptic Illusions (Ⅲ) -Experiment with 1-DoF Linear Rail Device- Reconsideration of Ouija Board Motion in Terms of Haptic Illusions (Ⅲ) -Experiment with 1-DoF Linear Rail Device- Takahiro Shitara, Yuriko Nakai, Haruya Uematsu, Vibol Yem, and Hiroyuki Kajimoto, The University

More information

HamsaTouch: Tactile Vision Substitution with Smartphone and Electro-Tactile Display

HamsaTouch: Tactile Vision Substitution with Smartphone and Electro-Tactile Display HamsaTouch: Tactile Vision Substitution with Smartphone and Electro-Tactile Display Hiroyuki Kajimoto The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, JAPAN kajimoto@kaji-lab.jp

More information

Optical Marionette: Graphical Manipulation of Human s Walking Direction

Optical Marionette: Graphical Manipulation of Human s Walking Direction Optical Marionette: Graphical Manipulation of Human s Walking Direction Akira Ishii, Ippei Suzuki, Shinji Sakamoto, Keita Kanai Kazuki Takazawa, Hiraku Doi, Yoichi Ochiai (Digital Nature Group, University

More information

Department of Robotics Ritsumeikan University

Department of Robotics Ritsumeikan University Department of Robotics Ritsumeikan University Shinichi Hirai Dept. Robotics Ritsumeikan Univ. Hanoi Institute of Technology Hanoi, Vietnam, Dec. 20, 2008 http://www.ritsumei.ac.jp/se/rm/robo/index-e.htm

More information

Human Senses : Vision week 11 Dr. Belal Gharaibeh

Human Senses : Vision week 11 Dr. Belal Gharaibeh Human Senses : Vision week 11 Dr. Belal Gharaibeh 1 Body senses Seeing Hearing Smelling Tasting Touching Posture of body limbs (Kinesthetic) Motion (Vestibular ) 2 Kinesthetic Perception of stimuli relating

More information

Application of eye tracking and galvanic vestibular inputs for enhancing human performance

Application of eye tracking and galvanic vestibular inputs for enhancing human performance Application of eye tracking and galvanic vestibular inputs for enhancing human performance Gaurav Gary N. Pradhan, PhD Aerospace Medicine & Vestibular Research Laboratory (AMVRL) Financial Disclosure Patent:

More information

Elements of Haptic Interfaces

Elements of Haptic Interfaces Elements of Haptic Interfaces Katherine J. Kuchenbecker Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania kuchenbe@seas.upenn.edu Course Notes for MEAM 625, University

More information

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Output Devices - II

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Output Devices - II Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Output Devices - II Realidade Virtual e Aumentada 2017/2018 Beatriz Sousa Santos The human senses need specialized interfaces

More information

Building a Cognitive Model of Tactile Sensations Based on Vibrotactile Stimuli

Building a Cognitive Model of Tactile Sensations Based on Vibrotactile Stimuli Building a Cognitive Model of Tactile Sensations Based on Vibrotactile Stimuli Yuichi Muramatsu and Mihoko Niitsuma Department of Precision Mechanics Chuo University Tokyo, Japan Abstract We investigated

More information

Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery

Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery Claudio Pacchierotti Domenico Prattichizzo Katherine J. Kuchenbecker Motivation Despite its expected clinical

More information

Input-output channels

Input-output channels Input-output channels Human Computer Interaction (HCI) Human input Using senses Sight, hearing, touch, taste and smell Sight, hearing & touch have important role in HCI Input-Output Channels Human output

More information

Design of New Micro Actuator for Tactile Display

Design of New Micro Actuator for Tactile Display Proceedings of the 17th World Congress The International Federation of Automatic Control Design of New Micro Actuator for Tactile Display Tae-Heon Yang*, Sang Youn Kim**, and Dong-Soo Kwon*** * Department

More information

Discrimination of Virtual Haptic Textures Rendered with Different Update Rates

Discrimination of Virtual Haptic Textures Rendered with Different Update Rates Discrimination of Virtual Haptic Textures Rendered with Different Update Rates Seungmoon Choi and Hong Z. Tan Haptic Interface Research Laboratory Purdue University 465 Northwestern Avenue West Lafayette,

More information

Takeharu Seno 1,3,4, Akiyoshi Kitaoka 2, Stephen Palmisano 5 1

Takeharu Seno 1,3,4, Akiyoshi Kitaoka 2, Stephen Palmisano 5 1 Perception, 13, volume 42, pages 11 1 doi:1.168/p711 SHORT AND SWEET Vection induced by illusory motion in a stationary image Takeharu Seno 1,3,4, Akiyoshi Kitaoka 2, Stephen Palmisano 1 Institute for

More information

Human Factors. We take a closer look at the human factors that affect how people interact with computers and software:

Human Factors. We take a closer look at the human factors that affect how people interact with computers and software: Human Factors We take a closer look at the human factors that affect how people interact with computers and software: Physiology physical make-up, capabilities Cognition thinking, reasoning, problem-solving,

More information

Fibratus tactile sensor using reflection image

Fibratus tactile sensor using reflection image Fibratus tactile sensor using reflection image The requirements of fibratus tactile sensor Satoshi Saga Tohoku University Shinobu Kuroki Univ. of Tokyo Susumu Tachi Univ. of Tokyo Abstract In recent years,

More information

Tele-Nursing System with Realistic Sensations using Virtual Locomotion Interface

Tele-Nursing System with Realistic Sensations using Virtual Locomotion Interface 6th ERCIM Workshop "User Interfaces for All" Tele-Nursing System with Realistic Sensations using Virtual Locomotion Interface Tsutomu MIYASATO ATR Media Integration & Communications 2-2-2 Hikaridai, Seika-cho,

More information

Haptic Media Construction and Utilization of Human-harmonized "Tangible" Information Environment

Haptic Media Construction and Utilization of Human-harmonized Tangible Information Environment Haptic Media Construction and Utilization of Human-harmonized "Tangible" Information Environment Susumu Tachi *1,*2, Kouta Minamizawa *1, Masahiro Furukawa *1, Charith Lasantha Fernando *1 *1 Keio University,

More information

Force versus Frequency Figure 1.

Force versus Frequency Figure 1. An important trend in the audio industry is a new class of devices that produce tactile sound. The term tactile sound appears to be a contradiction of terms, in that our concept of sound relates to information

More information

Unit 4: Sensation and Perception

Unit 4: Sensation and Perception Unit 4: Sensation and Perception What are the function of THERMORECPTORS? Thermoreceptors are responsible for the sensation of non-painful warmth or cold sensations. They have ion channels that change

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality Marc Erich Latoschik AI & VR Lab Artificial Intelligence Group University of Bielefeld Virtual Reality (or VR for short) Virtual Reality (or VR for short)

More information

Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback Yosuke Kurihara 1, 2, Taku Hachisu 1, 3, Katherine J. Kuchenbecker 2, Hiroyuki Kajimoto 1,4 1 The University of Electro-Communications,

More information

Tactile sensing system using electro-tactile feedback

Tactile sensing system using electro-tactile feedback University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Tactile sensing system using electro-tactile

More information

Development of A Finger Mounted Type Haptic Device Using A Plane Approximated to Tangent Plane

Development of A Finger Mounted Type Haptic Device Using A Plane Approximated to Tangent Plane Development of A Finger Mounted Type Haptic Device Using A Plane Approximated to Tangent Plane Makoto Yoda Department of Information System Science Graduate School of Engineering Soka University, Soka

More information

A Design Study for the Haptic Vest as a Navigation System

A Design Study for the Haptic Vest as a Navigation System Received January 7, 2013; Accepted March 19, 2013 A Design Study for the Haptic Vest as a Navigation System LI Yan 1, OBATA Yuki 2, KUMAGAI Miyuki 3, ISHIKAWA Marina 4, OWAKI Moeki 5, FUKAMI Natsuki 6,

More information

HAPTIC USER INTERFACES Final lecture

HAPTIC USER INTERFACES Final lecture HAPTIC USER INTERFACES Final lecture Roope Raisamo School of Information Sciences University of Tampere, Finland Content A little more about crossmodal interaction The next steps in the course 1 2 CROSSMODAL

More information

Texture recognition using force sensitive resistors

Texture recognition using force sensitive resistors Texture recognition using force sensitive resistors SAYED, Muhammad, DIAZ GARCIA,, Jose Carlos and ALBOUL, Lyuba Available from Sheffield Hallam University Research

More information

Visual perception modulated by galvanic vestibular stimulation

Visual perception modulated by galvanic vestibular stimulation Visual perception modulated by galvanic vestibular stimulation Naohisa NGY *, Maki SUGIMOTO *, Hideaki NII *, Michiteru KITZKI * and Masahiko INMI *,*3 * Graduate School of The University of lectro-ommunications

More information

Ultrasound Tactile Display for Stress Field Reproduction -Examination of Non-Vibratory Tactile Apparent Movement-

Ultrasound Tactile Display for Stress Field Reproduction -Examination of Non-Vibratory Tactile Apparent Movement- Ultrasound Tactile Display for Stress Field Reproduction -Examination of Non-Vibratory Tactile Apparent Movement- Takayuki Iwamoto and Hiroyuki Shinoda Graduate School of Information Science and Technology,

More information

VIRTUAL REALITY Introduction. Emil M. Petriu SITE, University of Ottawa

VIRTUAL REALITY Introduction. Emil M. Petriu SITE, University of Ottawa VIRTUAL REALITY Introduction Emil M. Petriu SITE, University of Ottawa Natural and Virtual Reality Virtual Reality Interactive Virtual Reality Virtualized Reality Augmented Reality HUMAN PERCEPTION OF

More information