An old pastime.

Size: px
Start display at page:

Download "An old pastime."

Transcription

1 Ringing the Changes

2 An old pastime

3 The mechanics of change ringing

4 Some Terminology Since you can not rapidly change which bells are rung, it is almost impossible to have church bells create a tune (with rope pulling... you can create tunes with hammers on church bells but that is a totally different thing). The church bells are arranged in tonal order with the highest pitched bell first (the treble) and the lowest pitched bell last (the tenor). The order in which the bells are rung can be modified in a very restricted way. Change ringing involves ringing the bells in all possible orders (with no repeats), and this is called an extent. Going from one order to another is called a change (or sometimes a row).

5 Some terminology n n! Approximate Time Name secs. Singles min. Minimus mins. Doubles mins. Minor 7 5,040 3 hrs. Triples 8 40, hrs.* Major 9 362,880 9 days Caters 10 3,628,800 3 months Royal 11 39,916,800 3 years Cinques ,001, years Maximus * July 27, Loughborough Bell Foundry, England actually took 17 hrs. 58 min.

6 A small example Plain Bob Minimus (with treble plain hunting depicted)

7 A little history Prior to the fourteenth century, church bells in Europe were usually hung on a spindle and chimed by pulling a rope attached to the spindle. The next two centuries saw the development, in England, of a more sophisticated method of hanging a bell, to improve the control that a ringer had over it. In the seventeenth century, the development of the slider and stay, which prevents a bell from going beyond a 360 o turn, gave ringers enough control over the bells to make change ringing possible. During WW II, church bells were needed in civil defense activities, so church bell change ringing was not allowed. This led to the rise of using hand bells for change ringing. This has remained popular even after church bells were again available.

8 The Rules

9 Following the Blue Line There are many rules that change ringers follow and one of them is that no visual aids are allowed while an extent is being rung. Ringers do not memorize thousands of permutations in order to ring extents, rather they memorize the path that their particular bell takes through the various permutations. Visually, if the permutations are listed one below the other, this path of any particular bell is called the blue line for that bell. So, for instance, if the treble bell ringer knows that the treble will be plain hunting (a typical blue line for the treble) throughout the extent, the ringer knows what to do at every change without having to know what the other bells are doing.

10 Following the Blue Line Canterbury Minimus: Treble is plain hunting. Bells 2 and 3 are doing the same work, but Tenor is not.

11 The Mathematics From the mathematical point of view change ringing amounts to generating all permutations in a systematic way according to certain restricting rules. We will approach the mathematical question in stages, getting closer and closer to acceptable solutions. Our first steps will be to satisfy rules 1) 3) and not worry about the others until these are satisfied.

12 Generating Permutations There are several algorithms for generating permutations. In some cases one wants to generate all permutations (without repetition), or generate some special permutations, or random permutations, etc. Algorithms for generating all permutations are only of limited use, since for permutations even on a small number of elements (12-14) the amount of time or storage needed to generate them becomes prohibitive. However, there are some circumstances (ours in particular) in which this is necessary. Since the number of permutations is large, one wants algorithms which can produce them efficiently on a computer.

13 Lexicographical Order One well known algorithm produces permutations in lexicographical order (alphabetical except using numbers). Letting k 1 k 2...k n represent a permutation on n letters. To obtain the next permutation in lexicographical order we: 1) Find the largest i so that k i-1 < k i. 2) For this fixed i find the largest j so that k i-1 < k j. 3) Interchange k i-1 and k j. 4) Reverse the order of the digits k i k i+1...k n.

14 Lexicographical Order Example: With n = 4, the next permutation after in this order is obtained in four steps: 1) i = 2 2) j = 3 3) Interchange k 1 with k 3 to obtain ) Reverse k 2...k 4 to obtain for another example start with : 1) i = 4 2) j = 4 3) Interchange k 3 with k 4 to obtain ) Reverse k 4...k 4 to obtain

15 Lexicographical Order The permutations on 4 symbols in this order are: We can see that this ordering will not satisfy rule 3 of change ringing (look at the second transition), so we must investigate other orderings of these permutations.

16 Factorial Representation The lexicographical ordering of permutations is so common that it is hard to even visualize any other ordering. Any non-negative integer m can be written uniquely in the following factorial form : m = a 1 1! + a 2 2! a n-1 (n-1)! where 0 a i i. The a i 's are called factorial digits and we can write m = (a 1, a 2,..., a n-1 ). Thus, 0 = (0,0,...,0) and 2000 = (0,1,1,3,4,2). For fixed n, the largest integer represented is (1,2,...,n-1) = n! - 1.

17 Factorial Representation The factorial representation using the n-1 digits a 1,a 2,...,a n-1 can represent all the integers from 0 to n!-1, that is, n! integers. Any bijection between these representations and the set of permutations on n symbols will give an ordering of the permutations. There are many ways to set up these bijections, here we give one method due to Marshall Hall Jr. The permutations are written on the symbols 0,1,..., n-1. Given a permutation π, set a i as the number of symbols less than i which actually follow i in π. (Note that we have 0 a i i) (1,0,2) = (0, 2, 3) = 22

18 Inverse The easiest way to show that this is a bijection is to produce the inverse function. To form the permutation on the symbols 0,...,n-1 from the factorial representation (a 1, a 2,..., a n-1 ), we fill the n positions of the permutation in the following way: Work with the symbols starting with the largest (n-1) and going down to 0. Place symbol i in position a i where one counts only unoccupied positions, going from right to left and starting the count at 0. Put 0 in the last empty space. Thus, (1,0,2) would give us the following steps:

19 Johnson-Trotter Algorithm Independently, Johnson and Trotter came up with an algorithm for generating all permutations where each new permutation differs from the last one by only a switch of two adjacent symbols. This algorithm produces a list of permutations which would satisfy rule 3. The algorithm is based on the idea that if you already have a permutation on n-1 symbols, to get a permutation on n symbols you only have to put in the symbol n all come from expanding

20 Johnson-Trotter Algorithm This idea can be used to recursively generate the permutations, but we can actually generate the next permutation in this order knowing only the last one. This algorithm for generating the permutations in the Johnson- Trotter order is due to Even. To each symbol in the permutation we will associate a direction, either left or right, by writing an arrow above the symbol. A symbol is called mobile if its arrow points to a smaller symbol adjacent to it. So, in (no arrow = left arrow) only 3, 5 and 6 are mobile.

21 Johnson-Trotter (Even) The algorithm: Begin with n (all arrows pointing left). While there is a mobile symbol do the following: (1) Find the largest mobile symbol m. (2) Swap m and the adjacent symbol to which it points. (3) Switch the direction of all the arrows above the symbols larger than m. The algorithm stops when there are no mobile symbols.

22 Examples: Johnson-Trotter (Even) is largest mobile swap 3 and change direction on symbols greater than is largest mobile swap 2 and change direction on symbols greater than 2

23 Johnson-Trotter The output for n = 4 is:

24 Fibonacci Sequences How many ways (ordered) can one write a non-negative integer as a sum of 1's and 2's? For the non-negative integer n, let F(n) = F n be the answer to this question. We have: F 2 = 2 since 2 = 2 = 1+1 (2 ways) F 3 = 3 since 3 = 2+1 = 1+2 = (3 ways) F 4 = 5 since 4 = 2+2 = = = = = (5 ways) Clearly, F 1 = 1 and it makes sense to define F 0 = 1, since there is only one way to write 0 this way (use no 1's and no 2's).

25 Fibonacci Sequences Let n 2. Any of these expressions for n must end in either a 1 or a 2. For those that end in a 1, the earlier digits must add up to n-1 (and are just 1's and 2's) and any expression for n-1 consisting of just 1's and 2's with an additional 1 added at the end will give an expression for n (which ends in a 1). Similarly, those expressions that end in a 2 have earlier terms that add up to n-2. So, we must have F n = F n-1 + F n-2 for n 2. This is known as the Fibonacci recursion relation and with the initial conditions that F 0 = F 1 = 1, the sequence of integers {F n } n 0 is known as the Fibonacci sequence.

26 Fibonacci Sequences We wish to obtain an explicit formula for the n th Fibonacci number. Since the recursion relation is linear, any linear combination of solutions to the recursion is also a solution to the recursion. If the number of terms in such a linear combination equals the number of initial conditions, the coefficients of the linear combination can be determined. There are two common methods for solving linear recursion relations and we will look at both of them as applied to our situation.

27 Fibonacci Sequences Method 1: Start with the recursion relation: F n = F n-1 + F n-2 Make the subscripts exponents:(a nonsense move) F n = F n-1 + F n-2 Factor out any common factors and solve the resulting polynomial equation (for F). F 2 F 1 = 0. The solutions of this polynomial raised to the n th power are particular solutions of the recursion relation. f 1 = n and f 2 = n

28 Fibonacci Sequences Method 1 (cont.): Now we form the linear combination of these two solutions to get the general solution: F n = af 1 + bf 2 We solve for the coefficients by using the initial conditions: 1 = F 0 = a + b, and 1 = F 1 = a b To get, a = and b = , F n = n n

29 Fibonacci Sequences Method 2: Form the (ordinary) generating function for the Fibonacci sequence: G t = n 0 F n t n We multiply by powers of t to set up a replacement using the recursion relation: t G t = F n t n 1 n 0 t 2 G t = F n t n 2 n 0 = F n 1 t n n 1 = F n 2 t n n 2

30 Fibonacci Sequences G t t G t t 2 G t = F 0 F 1 t n 2 1 t t 2 G t = F 0 F 1 t F 0 t = 1 so G t = F n t n F 0 t n 2 F n 1 t n n 2 F n 2 t n 1 1 t t 2. Now we need to write G(t) as a power series and then read off the coefficients which will be the Fibonacci numbers. The steps here involve factoring the denominator and then writing this rational function in its partial fraction form: G t = 1 1 t t = t 1 t = A 1 t B 1 t

31 Fibonacci Sequences After finding the constants, α, β, A and B we would have: G t = A n 0 t n so F n = A n B n. B n 0 t n = A n B n t n n 0 Since 1 t t 2 = (1 αt)(1 βt), we must have that αβ = -1 and α + β = 1. Thus, α and β are the roots of the quadratic x 2 -x 1. Finding A and B also involves simple manipulations that we have already seen, so F n = n n

32 Special Involutions The Fibonacci numbers arise in quite a few places where you would not expect them. In change ringing, the transition from one row to the next must either leave a bell fixed or interchange a bell with one that is adjacent to it. When thought of as a permutation, if a transition is repeated, we would fix every bell (that is, get the identity permutation). Such permutations (of order 2) are called involutions. Not all involutions give transitions (consider an involution which interchanges just two non-adjacent bells) and the identity permutation (which is an involution) does not give a proper transition.

33 Special Involutions Let t(n) be the number of change ringing transitions that are permitted with n bells. Theorem: For n 2, t(n) = F n -1. (F n is the n th Fibonacci #) Pf: It is easy to see that t(2) = 1 = F 2-1 and t(3) = 2 = F 3 1. We can then assume the result for n < k and consider t(k) with k 4. There are t(k-1) transitions which fix position k (the last position). Also, there are t(k-2) transitions which interchange positions k and k-1 and at least one other pair. Finally, a single transposition (k-1,k) (not already counted). t(k) = t(k-1) + t(k-2) + 1 = F k F k = F k - 1.

Lecture 16b: Permutations and Bell Ringing

Lecture 16b: Permutations and Bell Ringing Lecture 16b: Permutations and Bell Ringing Another application of group theory to music is change-ringing, which refers to the process whereby people playing church bells can ring the bells in every possible

More information

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation MA/CSSE 473 Day 13 Permutation Generation MA/CSSE 473 Day 13 HW 6 due Monday, HW 7 next Thursday, Student Questions Tuesday s exam Permutation generation 1 Exam 1 If you want additional practice problems

More information

Chapter 6.1. Cycles in Permutations

Chapter 6.1. Cycles in Permutations Chapter 6.1. Cycles in Permutations Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Fall 2017 1 / 27 Notations for permutations Consider a permutation in 1-line

More information

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other.

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other. A.Miller M475 Fall 2010 Homewor problems are due in class one wee from the day assigned (which is in parentheses. Please do not hand in the problems early. 1. (1-20 W A boo shelf holds 5 different English

More information

Bob Doubles (Plain Course)

Bob Doubles (Plain Course) Bob Doubles (Plain Course). 2 4 5 3 2 3 4 5 2 4 3 5 2 4 5 3 4 2 5 3 4 5 2 3 5 4 3 2 5 3 4 2 Pass treble in 4/5, next work dodge 3-4 down. 3 5 4 2 3 5 2 4 3 2 5 4 dodge 3-4 down. 3 5 2 4 Lead end. Become

More information

Ma/CS 6a Class 16: Permutations

Ma/CS 6a Class 16: Permutations Ma/CS 6a Class 6: Permutations By Adam Sheffer The 5 Puzzle Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right. The 5 Puzzle (cont.) The game

More information

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter In this paper we will examine three apparently unrelated mathematical objects One

More information

On uniquely k-determined permutations

On uniquely k-determined permutations On uniquely k-determined permutations Sergey Avgustinovich and Sergey Kitaev 16th March 2007 Abstract Motivated by a new point of view to study occurrences of consecutive patterns in permutations, we introduce

More information

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel RESTRICTED PERMUTATIONS AND POLYGONS Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, 905 Haifa, Israel {gferro,toufik}@mathhaifaacil abstract Several authors have examined

More information

Section 1.6 The Factor Game

Section 1.6 The Factor Game Section 1.6 The Factor Game Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Play the Factor Game. Factor pairs (1.1) Adding integers (1.3)

More information

Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers

Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers arxiv:math/0109219v1 [math.co] 27 Sep 2001 Eric S. Egge Department of Mathematics Gettysburg College 300 North Washington

More information

Equivalence classes of length-changing replacements of size-3 patterns

Equivalence classes of length-changing replacements of size-3 patterns Equivalence classes of length-changing replacements of size-3 patterns Vahid Fazel-Rezai Mentor: Tanya Khovanova 2013 MIT-PRIMES Conference May 18, 2013 Vahid Fazel-Rezai Length-Changing Pattern Replacements

More information

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES MARK SHATTUCK AND TAMÁS WALDHAUSER Abstract. We give combinatorial proofs for some identities involving binomial sums that have no closed

More information

THE TAYLOR EXPANSIONS OF tan x AND sec x

THE TAYLOR EXPANSIONS OF tan x AND sec x THE TAYLOR EXPANSIONS OF tan x AND sec x TAM PHAM AND RYAN CROMPTON Abstract. The report clarifies the relationships among the completely ordered leveled binary trees, the coefficients of the Taylor expansion

More information

Section 8.1. Sequences and Series

Section 8.1. Sequences and Series Section 8.1 Sequences and Series Sequences Definition A sequence is a list of numbers. Definition A sequence is a list of numbers. A sequence could be finite, such as: 1, 2, 3, 4 Definition A sequence

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989 A Coloring Problem Ira M. Gessel Department of Mathematics Brandeis University Waltham, MA 02254 Revised May 4, 989 Introduction. Awell-known algorithm for coloring the vertices of a graph is the greedy

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 Massachusetts Institute of Technology 6.4J/8.6J, Fall 5: Mathematics for Computer Science November 9 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised November 3, 5, 3 minutes Solutions to Problem

More information

MAT3707. Tutorial letter 202/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/202/1/2017

MAT3707. Tutorial letter 202/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/202/1/2017 MAT3707/0//07 Tutorial letter 0//07 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Semester Department of Mathematical Sciences SOLUTIONS TO ASSIGNMENT 0 BARCODE Define tomorrow university of south africa

More information

Second Annual University of Oregon Programming Contest, 1998

Second Annual University of Oregon Programming Contest, 1998 A Magic Magic Squares A magic square of order n is an arrangement of the n natural numbers 1,...,n in a square array such that the sums of the entries in each row, column, and each of the two diagonals

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 43 The Multiplication Principle Theorem Let S be a set of k-tuples (s 1,

More information

THE 15-PUZZLE (AND RUBIK S CUBE)

THE 15-PUZZLE (AND RUBIK S CUBE) THE 15-PUZZLE (AND RUBIK S CUBE) KEITH CONRAD 1. Introduction A permutation puzzle is a toy where the pieces can be moved around and the object is to reassemble the pieces into their beginning state We

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.2 Possibility Trees and the Multiplication Rule Copyright Cengage Learning. All rights reserved. Possibility

More information

Permutation group and determinants. (Dated: September 19, 2018)

Permutation group and determinants. (Dated: September 19, 2018) Permutation group and determinants (Dated: September 19, 2018) 1 I. SYMMETRIES OF MANY-PARTICLE FUNCTIONS Since electrons are fermions, the electronic wave functions have to be antisymmetric. This chapter

More information

X = {1, 2,...,n} n 1f 2f 3f... nf

X = {1, 2,...,n} n 1f 2f 3f... nf Section 11 Permutations Definition 11.1 Let X be a non-empty set. A bijective function f : X X will be called a permutation of X. Consider the case when X is the finite set with n elements: X {1, 2,...,n}.

More information

Surreal Numbers and Games. February 2010

Surreal Numbers and Games. February 2010 Surreal Numbers and Games February 2010 1 Last week we began looking at doing arithmetic with impartial games using their Sprague-Grundy values. Today we ll look at an alternative way to represent games

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen, Lewis H. Liu, Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 7, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

Dyck paths, standard Young tableaux, and pattern avoiding permutations

Dyck paths, standard Young tableaux, and pattern avoiding permutations PU. M. A. Vol. 21 (2010), No.2, pp. 265 284 Dyck paths, standard Young tableaux, and pattern avoiding permutations Hilmar Haukur Gudmundsson The Mathematics Institute Reykjavik University Iceland e-mail:

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 006 Senior Preliminary Round Problems & Solutions 1. Exactly 57.4574% of the people replied yes when asked if they used BLEU-OUT face cream. The fewest

More information

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Benjamin Caffrey 212 N. Blount St. Madison, WI 53703 bjc.caffrey@gmail.com Eric S. Egge Department of Mathematics and

More information

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES FLORIAN BREUER and JOHN MICHAEL ROBSON Abstract We introduce a game called Squares where the single player is presented with a pattern of black and white

More information

Tennessee Senior Bridge Mathematics

Tennessee Senior Bridge Mathematics A Correlation of to the Mathematics Standards Approved July 30, 2010 Bid Category 13-130-10 A Correlation of, to the Mathematics Standards Mathematics Standards I. Ways of Looking: Revisiting Concepts

More information

Some algorithmic and combinatorial problems on permutation classes

Some algorithmic and combinatorial problems on permutation classes Some algorithmic and combinatorial problems on permutation classes The point of view of decomposition trees PhD Defense, 2009 December the 4th Outline 1 Objects studied : Permutations, Patterns and Classes

More information

Harmonic numbers, Catalan s triangle and mesh patterns

Harmonic numbers, Catalan s triangle and mesh patterns Harmonic numbers, Catalan s triangle and mesh patterns arxiv:1209.6423v1 [math.co] 28 Sep 2012 Sergey Kitaev Department of Computer and Information Sciences University of Strathclyde Glasgow G1 1XH, United

More information

Pin-Permutations and Structure in Permutation Classes

Pin-Permutations and Structure in Permutation Classes and Structure in Permutation Classes Frédérique Bassino Dominique Rossin Journées de Combinatoire de Bordeaux, feb. 2009 liafa Main result of the talk Conjecture[Brignall, Ruškuc, Vatter]: The pin-permutation

More information

Avoiding consecutive patterns in permutations

Avoiding consecutive patterns in permutations Avoiding consecutive patterns in permutations R. E. L. Aldred M. D. Atkinson D. J. McCaughan January 3, 2009 Abstract The number of permutations that do not contain, as a factor (subword), a given set

More information

Adventures with Rubik s UFO. Bill Higgins Wittenberg University

Adventures with Rubik s UFO. Bill Higgins Wittenberg University Adventures with Rubik s UFO Bill Higgins Wittenberg University Introduction Enro Rubik invented the puzzle which is now known as Rubik s Cube in the 1970's. More than 100 million cubes have been sold worldwide.

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Staircase Rook Polynomials and Cayley s Game of Mousetrap

Staircase Rook Polynomials and Cayley s Game of Mousetrap Staircase Rook Polynomials and Cayley s Game of Mousetrap Michael Z. Spivey Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington 98416-1043 USA mspivey@ups.edu Phone:

More information

Pythagorean Theorem Unit

Pythagorean Theorem Unit Pythagorean Theorem Unit TEKS covered: ~ Square roots and modeling square roots, 8.1(C); 7.1(C) ~ Real number system, 8.1(A), 8.1(C); 7.1(A) ~ Pythagorean Theorem and Pythagorean Theorem Applications,

More information

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors.

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors. Permutation Groups 5-9-2013 A permutation of a set X is a bijective function σ : X X The set of permutations S X of a set X forms a group under function composition The group of permutations of {1,2,,n}

More information

Simple permutations and pattern restricted permutations

Simple permutations and pattern restricted permutations Simple permutations and pattern restricted permutations M.H. Albert and M.D. Atkinson Department of Computer Science University of Otago, Dunedin, New Zealand. Abstract A simple permutation is one that

More information

Gray code for permutations with a fixed number of cycles

Gray code for permutations with a fixed number of cycles Discrete Mathematics ( ) www.elsevier.com/locate/disc Gray code for permutations with a fixed number of cycles Jean-Luc Baril LE2I UMR-CNRS 5158, Université de Bourgogne, B.P. 47 870, 21078 DIJON-Cedex,

More information

UNC Charlotte 2012 Algebra

UNC Charlotte 2012 Algebra March 5, 2012 1. In the English alphabet of capital letters, there are 15 stick letters which contain no curved lines, and 11 round letters which contain at least some curved segment. How many different

More information

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA Graphs of Tilings Patrick Callahan, University of California Office of the President, Oakland, CA Phyllis Chinn, Department of Mathematics Humboldt State University, Arcata, CA Silvia Heubach, Department

More information

Algebra. Recap: Elements of Set Theory.

Algebra. Recap: Elements of Set Theory. January 14, 2018 Arrangements and Derangements. Algebra. Recap: Elements of Set Theory. Arrangements of a subset of distinct objects chosen from a set of distinct objects are permutations [order matters]

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

Warm-Up 14 Solutions. Peter S. Simon. January 12, 2005

Warm-Up 14 Solutions. Peter S. Simon. January 12, 2005 Warm-Up 14 Solutions Peter S. Simon January 12, 2005 Problem 1 Ten cards are numbered and lying face up in a row, as shown. David turns over every card that is a multiple of 2. Then he turns over every

More information

The Sign of a Permutation Matt Baker

The Sign of a Permutation Matt Baker The Sign of a Permutation Matt Baker Let σ be a permutation of {1, 2,, n}, ie, a one-to-one and onto function from {1, 2,, n} to itself We will define what it means for σ to be even or odd, and then discuss

More information

Comparisons for Determinants of Special Matrices by Algorithm Proposed

Comparisons for Determinants of Special Matrices by Algorithm Proposed ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 6, No. 1, 2011, pp. 049-054 Comparisons for Determinants of Special Matrices by Algorithm Proposed Lugen M. Zake 1, Haslinda

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Counting Things Solutions

Counting Things Solutions Counting Things Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 7, 006 Abstract These are solutions to the Miscellaneous Problems in the Counting Things article at:

More information

CMPS 12A Introduction to Programming Programming Assignment 5 In this assignment you will write a Java program that finds all solutions to the n-queens problem, for. Begin by reading the Wikipedia article

More information

m-partition Boards and Poly-Stirling Numbers

m-partition Boards and Poly-Stirling Numbers 47 6 Journal of Integer Sequences, Vol. (00), Article 0.. m-partition Boards and Poly-Stirling Numbers Brian K. Miceli Department of Mathematics Trinity University One Trinity Place San Antonio, T 78-700

More information

Pre-Algebra Unit 1: Number Sense Unit 1 Review Packet

Pre-Algebra Unit 1: Number Sense Unit 1 Review Packet Pre-Algebra Unit 1: Number Sense Unit 1 Review Packet Target 1: Writing Repeating Decimals in Rational Form Remember the goal is to get rid of the repeating decimal so we can write the number in rational

More information

LECTURE 8: DETERMINANTS AND PERMUTATIONS

LECTURE 8: DETERMINANTS AND PERMUTATIONS LECTURE 8: DETERMINANTS AND PERMUTATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Determinants In the last lecture, we saw some applications of invertible matrices We would now like to describe how

More information

MA/CSSE 473 Day 14. Permutations wrap-up. Subset generation. (Horner s method) Permutations wrap up Generating subsets of a set

MA/CSSE 473 Day 14. Permutations wrap-up. Subset generation. (Horner s method) Permutations wrap up Generating subsets of a set MA/CSSE 473 Day 14 Permutations wrap-up Subset generation (Horner s method) MA/CSSE 473 Day 14 Student questions Monday will begin with "ask questions about exam material time. Exam details are Day 16

More information

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday NON-OVERLAPPING PERMUTATION PATTERNS MIKLÓS BÓNA Abstract. We show a way to compute, to a high level of precision, the probability that a randomly selected permutation of length n is nonoverlapping. As

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

1. Answer: 250. To reach 90% in the least number of problems involves Jim getting everything

1. Answer: 250. To reach 90% in the least number of problems involves Jim getting everything . Answer: 50. To reach 90% in the least number of problems involves Jim getting everything 0 + x 9 correct. Let x be the number of questions he needs to do. Then = and cross 50 + x 0 multiplying and solving

More information

It is important that you show your work. The total value of this test is 220 points.

It is important that you show your work. The total value of this test is 220 points. June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

Evacuation and a Geometric Construction for Fibonacci Tableaux

Evacuation and a Geometric Construction for Fibonacci Tableaux Evacuation and a Geometric Construction for Fibonacci Tableaux Kendra Killpatrick Pepperdine University 24255 Pacific Coast Highway Malibu, CA 90263-4321 Kendra.Killpatrick@pepperdine.edu August 25, 2004

More information

1. Answer: 250. To reach 90% in the least number of problems involves Jim getting everything

1. Answer: 250. To reach 90% in the least number of problems involves Jim getting everything 8 th grade solutions:. Answer: 50. To reach 90% in the least number of problems involves Jim getting everything 0 + x 9 correct. Let x be the number of questions he needs to do. Then = and cross 50 + x

More information

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018 Mathematical Foundations of omputer Science Lecture Outline ugust 30, 2018 ounting ounting is a part of combinatorics, an area of mathematics which is concerned with the arrangement of objects of a set

More information

Sequences. like 1, 2, 3, 4 while you are doing a dance or movement? Have you ever group things into

Sequences. like 1, 2, 3, 4 while you are doing a dance or movement? Have you ever group things into Math of the universe Paper 1 Sequences Kelly Tong 2017/07/17 Sequences Introduction Have you ever stamped your foot while listening to music? Have you ever counted like 1, 2, 3, 4 while you are doing a

More information

Honors Algebra 2 Assignment Sheet - Chapter 1

Honors Algebra 2 Assignment Sheet - Chapter 1 Assignment Sheet - Chapter 1 #01: Read the text and the examples in your book for the following sections: 1.1, 1., and 1.4. Be sure you read and understand the handshake problem. Also make sure you copy

More information

MAT points Impact on Course Grade: approximately 10%

MAT points Impact on Course Grade: approximately 10% MAT 409 Test #3 60 points Impact on Course Grade: approximately 10% Name Score Solve each problem based on the information provided. It is not necessary to complete every calculation. That is, your responses

More information

Radical Expressions and Graph (7.1) EXAMPLE #1: EXAMPLE #2: EXAMPLE #3: Find roots of numbers (Objective #1) Figure #1:

Radical Expressions and Graph (7.1) EXAMPLE #1: EXAMPLE #2: EXAMPLE #3: Find roots of numbers (Objective #1) Figure #1: Radical Expressions and Graph (7.1) Find roots of numbers EXAMPLE #1: Figure #1: Find principal (positive) roots EXAMPLE #2: Find n th roots of n th powers (Objective #3) EXAMPLE #3: Figure #2: 7.1 Radical

More information

arxiv: v1 [cs.ds] 17 Jul 2013

arxiv: v1 [cs.ds] 17 Jul 2013 Complete Solutions for a Combinatorial Puzzle in Linear Time Lei Wang,Xiaodong Wang,Yingjie Wu, and Daxin Zhu May 11, 014 arxiv:1307.4543v1 [cs.ds] 17 Jul 013 Abstract In this paper we study a single player

More information

Mathematics Enhancement Programme TEACHING SUPPORT: Year 3

Mathematics Enhancement Programme TEACHING SUPPORT: Year 3 Mathematics Enhancement Programme TEACHING UPPORT: Year 3 1. Question and olution Write the operations without brackets if possible so that the result is the same. Do the calculations as a check. The first

More information

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Ira M. Gessel Department of Mathematics Brandeis University Sapienza Università di Roma July 10, 2013 Exponential generating functions

More information

Full Transcript for An Introduction to the Montessori Math Curriculum

Full Transcript for An Introduction to the Montessori Math Curriculum Full Transcript for An Introduction to the Montessori Math Curriculum A young girl's small hands grasping beautiful objects sensing the world around her. Shapes dimensions relationships amounts all represented

More information

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI 1. Hensel Lemma for nonsingular solutions Although there is no analogue of Lagrange s Theorem for prime power moduli, there is an algorithm for determining

More information

Permutation Groups. Definition and Notation

Permutation Groups. Definition and Notation 5 Permutation Groups Wigner s discovery about the electron permutation group was just the beginning. He and others found many similar applications and nowadays group theoretical methods especially those

More information

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008 1 Connected Permutations, Hypermaps and Weighted Dyck Words 2 Why? Graph embeddings Nice bijection by Patrice Ossona de Mendez and Pierre Rosenstiehl. Deduce enumerative results. Extensions? 3 Cycles (or

More information

PRMO Official Test / Solutions

PRMO Official Test / Solutions Date: 19 Aug 2018 PRMO Official Test - 2018 / Solutions 1. 17 ANSWERKEY 1. 17 2. 8 3. 70 4. 12 5. 84 6. 18 7. 14 8. 80 9. 81 10. 24 11. 29 12. 88 13. 24 14. 19 15. 21 16. 55 17. 30 18. 16 19. 33 20. 17

More information

You ve seen them played in coffee shops, on planes, and

You ve seen them played in coffee shops, on planes, and Every Sudoku variation you can think of comes with its own set of interesting open questions There is math to be had here. So get working! Taking Sudoku Seriously Laura Taalman James Madison University

More information

Asymptotic behaviour of permutations avoiding generalized patterns

Asymptotic behaviour of permutations avoiding generalized patterns Asymptotic behaviour of permutations avoiding generalized patterns Ashok Rajaraman 311176 arajaram@sfu.ca February 19, 1 Abstract Visualizing permutations as labelled trees allows us to to specify restricted

More information

In the game of Chess a queen can move any number of spaces in any linear direction: horizontally, vertically, or along a diagonal.

In the game of Chess a queen can move any number of spaces in any linear direction: horizontally, vertically, or along a diagonal. CMPS 12A Introduction to Programming Winter 2013 Programming Assignment 5 In this assignment you will write a java program finds all solutions to the n-queens problem, for 1 n 13. Begin by reading the

More information

Lecture 17 z-transforms 2

Lecture 17 z-transforms 2 Lecture 17 z-transforms 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/3 1 Factoring z-polynomials We can also factor z-transform polynomials to break down a large system into

More information

Remember that represents the set of all permutations of {1, 2,... n}

Remember that represents the set of all permutations of {1, 2,... n} 20180918 Remember that represents the set of all permutations of {1, 2,... n} There are some basic facts about that we need to have in hand: 1. Closure: If and then 2. Associativity: If and and then 3.

More information

Combinatorics. PIE and Binomial Coefficients. Misha Lavrov. ARML Practice 10/20/2013

Combinatorics. PIE and Binomial Coefficients. Misha Lavrov. ARML Practice 10/20/2013 Combinatorics PIE and Binomial Coefficients Misha Lavrov ARML Practice 10/20/2013 Warm-up Po-Shen Loh, 2013. If the letters of the word DOCUMENT are randomly rearranged, what is the probability that all

More information

CK-12 Algebra II with Trigonometry Concepts 1

CK-12 Algebra II with Trigonometry Concepts 1 1.1 Subsets of Real Numbers 1. Rational Number. Irrational Number. Rational Number 4. Whole Number 5. Integer 6. Irrational Number 7. Real, Rational, Integer, Whole, and Natural Number 8. Real and Rational

More information

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap European Journal of Combinatorics 30 (2009) 532 539 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Staircase rook polynomials

More information

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally

More information

OXFORD DIOCESAN GUILD OF CHURCH BELL RINGERS. Educational Leaflet. No. 12 SURPRISE MINOR: CAMBRIDGE TO LONDON. Part 2 BUILDING ON CAMBRIDGE MINOR

OXFORD DIOCESAN GUILD OF CHURCH BELL RINGERS. Educational Leaflet. No. 12 SURPRISE MINOR: CAMBRIDGE TO LONDON. Part 2 BUILDING ON CAMBRIDGE MINOR OXFORD DIOCESAN GUILD OF CHURCH BELL RINGERS Educational Leaflet No. 12 1. Primrose Surprise Minor SURPRISE MINOR: CAMBRIDGE TO LONDON Part 2 BUILDING ON CAMBRIDGE MINOR Part 3 LONDON SURPRISE MINOR 1992

More information

CMath 55 PROFESSOR KENNETH A. RIBET. Final Examination May 11, :30AM 2:30PM, 100 Lewis Hall

CMath 55 PROFESSOR KENNETH A. RIBET. Final Examination May 11, :30AM 2:30PM, 100 Lewis Hall CMath 55 PROFESSOR KENNETH A. RIBET Final Examination May 11, 015 11:30AM :30PM, 100 Lewis Hall Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided

More information

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence.

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence. Section 4.4 Linear Congruences Definition: A congruence of the form ax b (mod m), where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence. The solutions

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

Math Fundamentals for Statistics (Math 52) Unit 2:Number Line and Ordering. By Scott Fallstrom and Brent Pickett The How and Whys Guys.

Math Fundamentals for Statistics (Math 52) Unit 2:Number Line and Ordering. By Scott Fallstrom and Brent Pickett The How and Whys Guys. Math Fundamentals for Statistics (Math 52) Unit 2:Number Line and Ordering By Scott Fallstrom and Brent Pickett The How and Whys Guys Unit 2 Page 1 2.1: Place Values We just looked at graphing ordered

More information

Chained Permutations. Dylan Heuer. North Dakota State University. July 26, 2018

Chained Permutations. Dylan Heuer. North Dakota State University. July 26, 2018 Chained Permutations Dylan Heuer North Dakota State University July 26, 2018 Three person chessboard Three person chessboard Three person chessboard Three person chessboard - Rearranged Two new families

More information

Introduction to Fractions

Introduction to Fractions Introduction to Fractions A fraction is a quantity defined by a numerator and a denominator. For example, in the fraction ½, the numerator is 1 and the denominator is 2. The denominator designates how

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

Heuristic Search with Pre-Computed Databases

Heuristic Search with Pre-Computed Databases Heuristic Search with Pre-Computed Databases Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Use pre-computed partial results to improve the efficiency of heuristic

More information

MAS336 Computational Problem Solving. Problem 3: Eight Queens

MAS336 Computational Problem Solving. Problem 3: Eight Queens MAS336 Computational Problem Solving Problem 3: Eight Queens Introduction Francis J. Wright, 2007 Topics: arrays, recursion, plotting, symmetry The problem is to find all the distinct ways of choosing

More information

Activity Sheet #1 Presentation #617, Annin/Aguayo,

Activity Sheet #1 Presentation #617, Annin/Aguayo, Activity Sheet #1 Presentation #617, Annin/Aguayo, Visualizing Patterns: Fibonacci Numbers and 1,000-Pointed Stars n = 5 n = 5 n = 6 n = 6 n = 7 n = 7 n = 8 n = 8 n = 8 n = 8 n = 10 n = 10 n = 10 n = 10

More information