A NEW TOOL PATH STRATEGY TAPS THE TRUE POTENTIAL OF CNC MILLING MACHINES

Size: px
Start display at page:

Download "A NEW TOOL PATH STRATEGY TAPS THE TRUE POTENTIAL OF CNC MILLING MACHINES"

Transcription

1 volume 9 issue 33

2 A NEW TOOL PATH STRATEGY TAPS THE TRUE POTENTIAL OF CNC MILLING MACHINES There s no denying that CNC milling machines represent a quantum leap in productivity over their manual brethren. Even so, numerically controlled milling machines still fall short of their true productivity potential. A bold statement, yes, but the limiting factor in material removal rates is not the machine tool itself, or the cutting tools. Rather, the limiting factor in the productivity of CNC milling machines is the input to the machines the tool paths that drive them. Tool paths force machine tools and cutting tools to perform under the worst possible conditions. Cutting tools are driven into corners where the machining load increases dramatically. Sharp directional changes require machine tools to come to complete stops, and to accelerate and decelerate rapidly and often. Feedrates are maintained at the center of the cutting tool, which does not control how fast the chips are removed, except when cutting in a straight line. Machine tool builders and cutting tool manufacturers have made many technological advances to better cope with these worst-case conditions, but until tool path logic is reinvented, these adverse conditions remain and machining productivity is limited. By Glenn Coleman, Vice President of Product Design, Surfware, Inc. 20

3 CNC MACHINING 21

4 Existing tool path generators maintain a constant stepover between cuts, and a constant feedrate at the center of the tool. These two core strategies, though unavoidable with manual milling, actually limit the utility of numerically controlled machines. NC machines have always been capable of running free of these restrictions, but the tool path engines developed by CAM software vendors and even the early computer-assisted programming languages, such as APT keep these strategies not only in play, but front and center. A brief look at these machining dynamics illustrates how a tremendous opportunity to increase productivity has been overlooked for many years. Constant Stepover There is a relationship between a stepover value and a tool s engagement angle with the material. A stepover value of 50% of the cutter diameter results in 90 of the periphery of the tool being engaged with the material. A 30% stepover equates to a tool engagement angle (TEA) of 66.42, and a 70% stepover yields a TEA of (Figure 1). For any given stepover value there is one, and only one, corresponding TEA. But this is true only when cutting in a straight line with a constant radial depth of cut. When traversing a sharp, concave corner, the TEA increases by the supplement of the angle of that corner. For example, when a tool programmed at a 70% stepover ( TEA) encounters a 135 concave angle, the TEA increases by 45 ( = 45 ) to (Figure 2). Consequently, a tool reaches full burial (180 of TEA) when the angle of the sharp, concave corner equals the original TEA. So a tool programmed at a 70% stepover reaches full engagement whenever it encounters a sharp, concave corner of or less (Figure 3). These significant increases in tool load are extremely common. A tool machining a rectangular pocket with a 50% stepover value reaches full engagement every time it makes a turn. Each such turn requires the machine to come to a complete stop, however briefly, in order to change directions, as evidenced by the circular dwell marks commonly left on the floor of a part. As the tool enters the corner, it is rapidly and significantly overloaded, increasing the push away from its natural attitude (parallel to the spindle). It then quickly comes to a stop, where it is rapidly unloaded and attempts to spring back toward its natural attitude. As the tool exits the turn, it is then rapidly reloaded, this time to its expected level. 22

5 Fig. 1 This cycle is what produces the groaning and screeching heard all day, every day, in every machine shop throughout the world. This obviously adverse machining condition is not only tolerated, but is accepted as normal. NC programmers compensate for this with some combination of slower spindle speeds, slower feedrates, smaller stepovers or shallower depths of cut, which, in all cases, cause increased machining time. Fig. 1 For 70% stepover, tool engagement angle (TEA) = when cutting in a straight line. Fig. 2 When the tool encounters a corner, the TEA is increased by 180 minus the angle of the corner. In this example, the corner angle = 135. Therefore, the TEA = ( ) = Fig. 3 Therefore, the tool is at maximum engagement (180 ) when the corner angle is straight line tool engagement angle. For 70% stepover, TEA = in a straight line. Fig. 2 Fig. 3 Constant Feedrate The other staple of existing tool path generators is to maintain a constant feedrate at the centerline of the cutter. But maintaining a constant feed at the tool s center causes a nonconstant feedrate at the periphery of the tool, where the chips are actually produced. A simple analogy can be found on a running track. An Olympic track has an inside running length of 400 meters. Most tracks have 85-meter straights, and turns that have a radius of meters. On the straights, a runner in lane 2 keeps pace with a runner in lane 1 (the inside lane) by running at the same speed. In the turns, however, the runner in lane 2 must run significantly faster to keep pace; he must cover a longer distance in the same amount of time. Now, move the runner in lane 2 to lane 8, and he must run dramatically faster to keep up, perhaps impossibly so. If the inside radius of the turn is reduced from meters to, say, 1 meter, the outside runner must now run even faster. The distance between lanes represents the radius of the endmill. The greater this value is, the greater the disparity in speed. (Imagine a track with many more lanes.) The inside radius of the track represents the tool path radius at the centerline of the tool. The smaller this value is, the greater the disparity in speed. The numbers are dramatic. For example, when a 1.00" diameter endmill, programmed at 100 ipm, traverses a concave tool path radius of 0.010", the effective feedrate at the periphery of the tool is 5,100 ipm. Reduce that tool path radius to 0.005", and the effective feedrate is 10,100 ipm. CNC MACHINING 23

6 In our track analogy, a runner in an outside lane simply falls behind under these circumstances. Clearly, the periphery of a cutting tool has no such option: The effective feed per tooth becomes tremendously out of sync with the spindle speed. As a result, the chips cannot clear, and the tool breaks. Recent tool path innovations that add small radius arcs to keep the machine from coming to a stop (most HSM algorithms), or small-radius circular moves to keep from fully burying the tool ( trochoidal milling), actually cause dramatic increases in stress and wear on the machine tool and the cutting tool. To compensate for this phenomenon, whether it is realized or not, NC programmers reduce the programmed feedrate, which, of course, slows the entire tool path. If feedrates aren t slowed enough, machine operators must diligently man the feed override control to slow the tool in the corners, which is an additional drain on productivity. Such tool path deficiencies force machine tool builders, cutting tool manufacturers and NC programmers to compensate for the CAM software industry s lack of vision. Efforts to develop software to automate the NC programming process, with the apparent goal of eliminating NC programmers (a bad idea), divert attention from where it should be. CAM software should leverage the tremendous capabilities of numerically controlled milling machines and modern cutting tools to reduce machine cycle time. This has finally happened. A True Revolution A completely new, patent-pending, tool path engine has been developed that maintains the tool s engagement angle with the material at or below a user-controlled threshold. This software completely disregards the stepover value, other than using it to calculate a TEA. Since the TEA is controlled, rather than the stepover, the tool paths look completely unlike the tool paths generated with traditional methods, with the shape of the machined feature not evident until the final cuts. The constant machining load on the tool enables the use of significantly more aggressive machining parameters. In addition, the system automatically manipulates the programmed feedrate to maintain an effective feedrate throughout the entire tool path. Every unique, concave radius in the tool path has a unique, appropriately adjusted feedrate. In the above example of the 1.00" diameter endmill traversing the 0.005" radius, the tool path engine adjusts the feedrate at the center of the tool to 0.99 ipm, which maintains the speed at the periphery of the tool at a constant and uninterrupted 24

7 Surfware, Inc ipm. Dramatically increased programmed feedrates can now be used. Tests reveal that the feeds and speeds recommended by cutting tool manufacturers are now obsolete. At the recent EASTEC show in Springfield, MA, this new tool path engine was used to drive a Haas VF-2SS a high-speed VMC with a 12,000-rpm spindle and 1,400-ipm rapids. Using a 0.500" diameter, 3-flute, solid carbide endmill, a freeform shape was milled from 6061 aluminum. The tool ran at 12,000 rpm, with a 0.500" depth of cut, 0.375" programmed stepover and a programmed feedrate of 756 ipm! This is triple the recommended feed per tooth for the tool, and the machining was so smooth as to be almost inaudible. Due to the much lower machining loads, the stress on the tool was drastically reduced. After three days of machining, the cutter still looked new. Since this new tool path engine precisely controls the TEA, the tool never encounters excess material. Therefore, the shape of the part is irrelevant. For a given tool in a given workpiece material, any combination of spindle speed, feedrate, depth of cut and stepover that yields the desired combination of material removal rates and cutting tool life when cutting in a straight line on the edge of a block can safely be used on any part, regardless of its shape. With this software, it is now possible to fully utilize the full capability of numerically controlled machines. Tool paths no longer limit material removal rates. Rather than force machine tools and cutting tools to operate under worst-case conditions, this new tool path engine turns all conditions into best-case conditions. This new patent-pending technology, called TrueMill, is only available in SURFCAM Velocity by Surfware, Inc. CNC MACHINING 25

8 RELENTLESS.

ESPRIT ProfitMilling A Technical Overview

ESPRIT ProfitMilling A Technical Overview ESPRIT ProfitMilling A Technical Overview Contents ProfitMilling : What is it? Benefits to Manufacturers Traditional Roughing Limitations ProfitMilling Advantages Benefits of ProfitMilling Energy Consumption

More information

Practical Tips For High Speed Machining Of Dies And Molds

Practical Tips For High Speed Machining Of Dies And Molds Reprinted From: Modern Machine Shop Magazine Practical Tips For High Speed Machining Of Dies And Molds In die/mold work, the programmer can make the HSM process dramatically more effective. Here are some

More information

CNC Applications. Programming Machining Centers

CNC Applications. Programming Machining Centers CNC Applications Programming Machining Centers Planning and Programming Just as with the turning center, you must follow a series of steps to create a successful program: 1. Examine the part drawing thoroughly

More information

NUMERICAL CONTROL.

NUMERICAL CONTROL. NUMERICAL CONTROL http://www.toolingu.com/definition-300200-12690-tool-offset.html NC &CNC Numeric Control (NC) and Computer Numeric Control (CNC) are means by which machine centers are used to produce

More information

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Turning and Related Operations Drilling and Related Operations Milling Machining Centers and Turning Centers Other Machining Operations High Speed Machining

More information

Motion Manipulation Techniques

Motion Manipulation Techniques Motion Manipulation Techniques You ve already been exposed to some advanced techniques with basic motion types (lesson six) and you seen several special motion types (lesson seven) In this lesson, we ll

More information

Lesson 2 Understanding Turning Center Speeds and Feeds

Lesson 2 Understanding Turning Center Speeds and Feeds Lesson 2 Understanding Turning Center Speeds and Feeds Speed and feed selection is one of the most important basic-machining-practice-skills a programmer must possess. Poor selection of spindle speed and

More information

CNC Machinery. Module 5: CNC Programming / Milling. IAT Curriculum Unit PREPARED BY. August 2009

CNC Machinery. Module 5: CNC Programming / Milling. IAT Curriculum Unit PREPARED BY. August 2009 CNC Machinery Module 5: CNC Programming / Milling PREPARED BY IAT Curriculum Unit August 2009 Institute of Applied Technology, 2009 ATM313-CNC Module 5: CNC Programming / Milling Module Objectives: 1.

More information

Diamond Machine Works Achieves Breakthrough Capabilities in High Precision Parts

Diamond Machine Works Achieves Breakthrough Capabilities in High Precision Parts Diamond Machine Works Achieves Breakthrough Capabilities in High Precision Parts THE BUSINESS Aircraft parts manufacturer THE CLIENT Diamond Machine Works Seattle, Washington CAM SYSTEM Mastercam RESELLER

More information

What Does A CNC Machining Center Do?

What Does A CNC Machining Center Do? Lesson 2 What Does A CNC Machining Center Do? A CNC machining center is the most popular type of metal cutting CNC machine because it is designed to perform some of the most common types of machining operations.

More information

HAAS AUTOMATION, INC. PROGRAMMING MILL SERIES WORKBOOK ANSWERS HAAS AUTOMATION, INC STURGIS ROAD OXNARD, CA

HAAS AUTOMATION, INC. PROGRAMMING MILL SERIES WORKBOOK ANSWERS HAAS AUTOMATION, INC STURGIS ROAD OXNARD, CA HAAS AUTOMATION, INC. MILL SERIES PROGRAMMING WORKBOOK HAAS AUTOMATION, INC. 2800 STURGIS ROAD OXNARD, CA 93030 www.haascnc.com 800-331-6746 ANSWERS PROGRAMMING HAAS AUTOMATION INC. 2800 Sturgis Road Oxnard,

More information

NCG CAM V11. NCG CAM for High Speed Machining. High Speed, Precision Accuracy

NCG CAM V11. NCG CAM for High Speed Machining. High Speed, Precision Accuracy NCG CAM V11 NCG CAM for High Speed Machining High Speed, Precision Accuracy NCG CAM for High Speed Machining Key Benefits of NCG CAM NCG CAM is perfect for the high speed machining of moulds, dies, prototypes

More information

Engraving with a Rigid Tool Engraving Tool Feeds and Speeds

Engraving with a Rigid Tool Engraving Tool Feeds and Speeds Engraving with a Rigid Tool Engraving Tool Feeds and Speeds Material 3000 RPM 6000 RPM 7500 RPM 10000 RPM Aluminum/Aluminum Alloys 6 12 15 20 Brass/Bronze 6 12 15 20 Copper/Copper Alloys 6 12 15 20 Cast

More information

Getting Started. Terminology. CNC 1 Training

Getting Started. Terminology. CNC 1 Training CNC 1 Training Getting Started What You Need for This Training Program This manual 6 x 4 x 3 HDPE 8 3/8, two flute, bottom cutting end mill, 1 Length of Cut (LOC). #3 Center Drill 1/4 drill bit and drill

More information

CAD/CAM/CAE Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing. Part-10 CNC Milling Programming

CAD/CAM/CAE Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing. Part-10 CNC Milling Programming CAD/CAM/CAE Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing Part-10 CNC Milling Programming To maximize the power of modern CNC milling machines, a programmer has to master

More information

Design Guide: CNC Machining VERSION 3.4

Design Guide: CNC Machining VERSION 3.4 Design Guide: CNC Machining VERSION 3.4 CNC GUIDE V3.4 Table of Contents Overview...3 Tolerances...4 General Tolerances...4 Part Tolerances...5 Size Limitations...6 Milling...6 Lathe...6 Material Selection...7

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

Crank Shaft die machining with Millstar extra long tool

Crank Shaft die machining with Millstar extra long tool The Productivity Enhancer Cutting Edge Solutions Crank Shaft die machining with Millstar extra long tool Objective The trial was conducted to demonstrate the engineering capabilities of Millstar & high-speed

More information

G02 CW / G03 CCW Circular Interpolation Motion (Group 01) - Mill

G02 CW / G03 CCW Circular Interpolation Motion (Group 01) - Mill Haas Technical Documentation G02 CW / G03 CCW Circular Interpolation Motion (Group 01) - Mill Scan code to get the latest version of this document Translation Available G02 CW / G03 CCW Circular Interpolation

More information

Cutting Tools Overview #2 - Turning

Cutting Tools Overview #2 - Turning Cutting Tools Overview #2 - Turning Last month's column was an overview of some of the different types of tools used in the milling process. This month we are going to discuss some of the most common cutting

More information

STUB ACME - INTERNAL AND EXTERNAL

STUB ACME - INTERNAL AND EXTERNAL STUB ACME - INTERNAL AND EXTERNAL SOLID CARBIDE SINGLE PROFILE ACME Q A 29º B C S Solid carbide for maximum tool rigidity coating for increased performance Single start threads only SPECIALTY PORT - CAVITY

More information

Modern Machining Techniques for Mouldmaking

Modern Machining Techniques for Mouldmaking Modern Machining Techniques for Mouldmaking S. Docker, P.J. Dickin Delcam plc, Small Heath Business Park, Birmingham B10 0HJ, UK Abstract The increased globalisation of the mouldmaking industry has made

More information

Mach4 CNC Controller Lathe Programming Guide Version 1.0

Mach4 CNC Controller Lathe Programming Guide Version 1.0 Mach4 CNC Controller Lathe Programming Guide Version 1.0 1 Copyright 2014 Newfangled Solutions, Artsoft USA, All Rights Reserved The following are registered trademarks of Microsoft Corporation: Microsoft,

More information

PROGRAMMING January 2005

PROGRAMMING January 2005 PROGRAMMING January 2005 CANNED CYCLES FOR DRILLING TAPPING AND BORING A canned cycle is used to simplify programming of a part. Canned cycles are defined for the most common Z-axis repetitive operation

More information

Figure 1: NC Lathe menu

Figure 1: NC Lathe menu Click To See: How to Use Online Documents SURFCAM Online Documents 685)&$0Ã5HIHUHQFHÃ0DQXDO 5 /$7+( 5.1 INTRODUCTION The lathe mode is used to perform operations on 2D geometry, turned on two axis lathes.

More information

Computer Aided Manufacturing

Computer Aided Manufacturing Computer Aided Manufacturing CNC Milling used as representative example of CAM practice. CAM applies to lathes, lasers, waterjet, wire edm, stamping, braking, drilling, etc. CAM derives process information

More information

Efficient CNC Milling by Adjusting Material Removal Rate

Efficient CNC Milling by Adjusting Material Removal Rate Efficient CNC Milling by Adjusting Material Removal Rate Majid Tolouei-Rad Abstract This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining

More information

A Review on Optimization of Process Parameters for Material Removal Rate and Surface Roughness for SS 202 Material During Face Milling Operation

A Review on Optimization of Process Parameters for Material Removal Rate and Surface Roughness for SS 202 Material During Face Milling Operation IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 A Review on Optimization of Process Parameters for Material Removal Rate

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 5: Milling Processes DR. SOTIRIS L. OMIROU Milling Machining - Definition Milling machining is one of the very common manufacturing processes used in machinery

More information

for Solidworks TRAINING GUIDE LESSON-9-CAD

for Solidworks TRAINING GUIDE LESSON-9-CAD for Solidworks TRAINING GUIDE LESSON-9-CAD Mastercam for SolidWorks Training Guide Objectives You will create the geometry for SolidWorks-Lesson-9 using SolidWorks 3D CAD software. You will be working

More information

SprutCAM. CAM Software Solution for Your Manufacturing Needs

SprutCAM. CAM Software Solution for Your Manufacturing Needs SprutCAM SprutCAM is is a CAM system for for NC NC program program generation for machining using; multi-axis milling, milling, turning, turn/mill, turn/mill, Wire Wire EDM numerically EDM numerically

More information

CAD/CAM Software & High Speed Machining

CAD/CAM Software & High Speed Machining What is CAD/CAM Software? Computer Aided Design. In reference to software, it is the means of designing and creating geometry and models that can be used in the process of product manufacturing. Computer

More information

Numerical Control (NC) and The A(4) Level of Automation

Numerical Control (NC) and The A(4) Level of Automation Numerical Control (NC) and The A(4) Level of Automation Chapter 40 40.1 Introduction Numeric Control (NC) and Computer Numeric Control (CNC) are means by which machine centers are used to produce repeatable

More information

A STUDY OF THE EFFECTS OF CUTTER PATH STRATEGIES AND CUTTING SPEED VARIATIONS IN MILLING OF THIN WALLED PARTS

A STUDY OF THE EFFECTS OF CUTTER PATH STRATEGIES AND CUTTING SPEED VARIATIONS IN MILLING OF THIN WALLED PARTS A STUDY OF THE EFFECTS OF CUTTER PATH STRATEGIES AND CUTTING SPEED VARIATIONS IN MILLING OF THIN WALLED PARTS B.Jabbaripour 1, M.H.Sadeghi 2, Sh.Faridvand 3 1- PHD. Student of mechanical engineering, Tarbiat

More information

Techniques With Motion Types

Techniques With Motion Types Techniques With Motion Types The vast majority of CNC programs require but three motion types: rapid, straight line, and circular interpolation. And these motion types are well discussed in basic courses.

More information

Multiplex W-200 S E R I E S W-200 W-200Y

Multiplex W-200 S E R I E S W-200 W-200Y Multiplex W-200 S E R I E S W-200 W-200Y Advanced features of the MAZATROL SmoothG CNC Z1 Y1 (W-200Y) Y2 (W-200Y) Z2 Touch screen operation Operate similar to your smart phone / tablet X1 X2 PC with Windows

More information

NZX NLX

NZX NLX NZX2500 4000 6000 NLX1500 2000 2500 Table of contents: 1. Introduction...1 2. Required add-ins...1 2.1. How to load an add-in ESPRIT...1 2.2. AutoSubStock (optional) (for NLX configuration only)...3 2.3.

More information

Miyano Evolution Line

Miyano Evolution Line Evolution Line CNC Turning center with 2 spindles, 2 turrets and 1 -axis slide BNJ-34/42/51 "Evolution and Innovation" is the Future What could not be done can be done. -axis movement is added to the traditional

More information

527F CNC Control. User Manual Calmotion LLC, All rights reserved

527F CNC Control. User Manual Calmotion LLC, All rights reserved 527F CNC Control User Manual 2006-2016 Calmotion LLC, All rights reserved Calmotion LLC 21720 Marilla St. Chatsworth, CA 91311 Phone: (818) 357-5826 www.calmotion.com NC Word Summary NC Word Summary A

More information

Machining Titanium. Losing the Headache by Using the Right Approach (Part 2)

Machining Titanium. Losing the Headache by Using the Right Approach (Part 2) Machining Titanium Losing the Headache by Using the Right Approach (Part 2) Author Biography Brian List Research & Development Team Leader Brian List currently leads the research and development group

More information

Product Information Report Maximizing Drill Bit Performance

Product Information Report Maximizing Drill Bit Performance Overview Drills perform three functions when making a hole: Forming the chip The drill point digs into the material and pushes up a piece of it. Cutting the chip The cutting lips take the formed chip away

More information

Table of Contents. Preface 9 Prerequisites 9. Key Concept 1: Know Your Machine From A Programmer s Viewpoint 13. Table of Contents

Table of Contents. Preface 9 Prerequisites 9. Key Concept 1: Know Your Machine From A Programmer s Viewpoint 13. Table of Contents Preface 9 Prerequisites 9 Basic machining practice experience 9 Controls covered 10 Limitations 10 Programming method 10 The need for hands -on practice 10 Instruction method 11 Scope 11 Key Concepts approach

More information

ENGI 7962 Mastercam Lab Mill 1

ENGI 7962 Mastercam Lab Mill 1 ENGI 7962 Mastercam Lab Mill 1 Starting a Mastercam file: Once the SolidWorks models is complete (all sketches are Fully Defined), start up Mastercam and select File, Open, Files of Type, SolidWorks Files,

More information

Preview Sample. Date: September 1, 2010 Author: Matthew Manton and Duane Weidinger ISBN:

Preview Sample. Date: September 1, 2010 Author: Matthew Manton and Duane Weidinger ISBN: Computer Numerical Control Workbook Generic Lathe Published by CamInstructor Incorporated 330 Chandos Crt. Kitchener, Ontario N2A 3C2 www.caminstructor.com Date: September 1, 2010 Author: Matthew Manton

More information

Thread Mills. Solid Carbide Thread Milling Cutters

Thread Mills. Solid Carbide Thread Milling Cutters Thread Mills Solid Carbide Thread Milling Cutters Thread milling cutters by Features and Benefits: Sub-micro grain carbide substrate Longer tool life with tighter tolerances More cost-effective than indexable

More information

Pro/NC. Prerequisites. Stats

Pro/NC. Prerequisites. Stats Pro/NC Pro/NC tutorials have been developed with great emphasis on the practical application of the software to solve real world problems. The self-study course starts from the very basic concepts and

More information

CAMWorks How To Create CNC G-Code for CO2 Dragsters. III.1. Save the rough tool path for the bottom of the CO2 Dragster as Dragster bottom 001 rough.

CAMWorks How To Create CNC G-Code for CO2 Dragsters. III.1. Save the rough tool path for the bottom of the CO2 Dragster as Dragster bottom 001 rough. In this chapter we will create the smooth G-Code tool path for the bottom of our CO2 Dragster. The smooth tool path is necessary to create a finish that requires minimal work to for the designer to later

More information

HAAS AUTOMATION, INC.

HAAS AUTOMATION, INC. PROGRAMMING WORKBOOK HAAS AUTOMATION, INC. 2800 Sturgis Rd. Oxnard, CA 93030 January 2005 JANUARY 2005 PROGRAMMING HAAS AUTOMATION INC. 2800 Sturgis Road Oxnard, California 93030 Phone: 805-278-1800 www.haascnc.com

More information

FOR IMMEDIATE RELEASE

FOR IMMEDIATE RELEASE FOR IMMEDIATE RELEASE Contact: Seco Tools AB Björnbacksvägen 2 73782 Fagersta Sweden Bettina LIEBL Phone: +49 211 2401-313 E-mail: bettina.liebl@secotools.com www.secotools.com MEP takes the edge off aerospace

More information

UNIT 5 CNC MACHINING. known as numerical control or NC.

UNIT 5 CNC MACHINING. known as numerical control or NC. UNIT 5 www.studentsfocus.com CNC MACHINING 1. Define NC? Controlling a machine tool by means of a prepared program is known as numerical control or NC. 2. what are the classifications of NC machines? 1.point

More information

SolidCAM imachining. imachining Tool paths

SolidCAM imachining. imachining Tool paths SolidCAM imachining SolidCAM imachining is an intelligent High Speed Machining CAM software, designed to produce fast and safe CNC programs to machine mechanical parts. The word fast here means significantly

More information

Touch Screen CNC Control

Touch Screen CNC Control Touch Screen CNC Control FEATURES Nearly four decades ago, Rottler pioneered automation and programming by utilizing electronics and computers. Today, the SAD Surfacing machines incorporate the latest

More information

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate s Geometry & Milling Processes There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate All three of these will be discussed in later lessons What is a cutting

More information

NOVA LABS CNC 101: SHOPSABRE OPERATION AND SAFETY

NOVA LABS CNC 101: SHOPSABRE OPERATION AND SAFETY NOVA LABS CNC 101: SHOPSABRE OPERATION AND SAFETY What is unique about our ShopSabre RC4 CNC? Creates large projects Computer operated from digital model or drawing Dimensions are accurate to +/- 0.004in

More information

METRIC THREAD MILLS SINGLE PROFILE (SPTM) - SOLID CARBIDE. Scientific Cutting Tools, Inc. Q A C OAL 60º THREAD MILLS METRIC

METRIC THREAD MILLS SINGLE PROFILE (SPTM) - SOLID CARBIDE. Scientific Cutting Tools, Inc. Q A C OAL 60º THREAD MILLS METRIC METRIC SINGLE PROFILE (SPTM) - SOLID CARBIDE METRIC Q A B 60º C S With just 19 varieties of Thread Mills, fine and coarse threads ranging from M1.2 to M30+ can be milled SPECIALTY PORT - CAVITY INDEXABLE

More information

AUTOMATED MACHINE TOOLS & CUTTING TOOLS

AUTOMATED MACHINE TOOLS & CUTTING TOOLS CAD/CAM COURSE TOPIC OF DISCUSSION AUTOMATED MACHINE TOOLS & CUTTING TOOLS 1 CNC systems are used in a number of manufacturing processes including machining, forming, and fabrication Forming & fabrication

More information

Figure N 1- Characteristic angles of a drill

Figure N 1- Characteristic angles of a drill Basic of drill In these technical descriptions for simplicity we use the term drill instead of the more complete name twist drill bits. The drill is the tool universally used to make holes in any material.

More information

Figure 1: NC EDM menu

Figure 1: NC EDM menu Click To See: How to Use Online Documents SURFCAM Online Documents 685)&$0Ã5HIHUHQFHÃ0DQXDO 6 :,5(('0 6.1 INTRODUCTION SURFCAM s Wire EDM mode is used to produce toolpaths for 2 Axis and 4 Axis EDM machines.

More information

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling Inserts Application and Technical Information Minimum Bore iameters for Thread Milling UN-ISO-BSW tpi 48 3 4 0 16 1 10 8 7 6 5 4.5 4 Technical ata Accessories Vintage Cutters Widia Cutters Thread Milling

More information

2 ¾ D Machining On a 4 Axis RF-30 Mill/Drill, version 1.4

2 ¾ D Machining On a 4 Axis RF-30 Mill/Drill, version 1.4 2 ¾ D Machining On a 4 Axis RF-30 Mill/Drill, version 1.4 By R. G. Sparber Copyleft protects this document. 1 It would not be hard to make this part with a 5 axis screw machine and the related 3D software

More information

When the machine makes a movement based on the Absolute Coordinates or Machine Coordinates, instead of movements based on work offsets.

When the machine makes a movement based on the Absolute Coordinates or Machine Coordinates, instead of movements based on work offsets. Absolute Coordinates: Also known as Machine Coordinates. The coordinates of the spindle on the machine based on the home position of the static object (machine). See Machine Coordinates Absolute Move:

More information

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7.

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7. Content Metal Cutting - 5 Assoc Prof Zainal Abidin Ahmad Dept. of Manufacturing & Industrial Engineering Faculty of Mechanical Engineering Universiti Teknologi Malaysia 7. MILLING Introduction Horizontal

More information

Processing and Quality Assurance Equipment

Processing and Quality Assurance Equipment Processing and Quality Assurance Equipment The machine tool, the wash station, and the coordinate measuring machine (CMM) are the principal processing equipment. These machines provide the essential capability

More information

Prof. Steven S. Saliterman Introductory Medical Device Prototyping

Prof. Steven S. Saliterman Introductory Medical Device Prototyping Introductory Medical Device Prototyping Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ You must complete safety instruction before using tools and equipment in

More information

SAMSUNG Machine Tools PL 1600G/1600CG GANG CNC TURNING CENTER

SAMSUNG Machine Tools PL 1600G/1600CG GANG CNC TURNING CENTER SAMSUNG Machine Tools PL 1600G/1600CG GANG CNC TURNING CENTER SAMSUNG Machine Tools GANG CNC TURNING CENTER PL 1600G/1600CG Best fit on Both High Speed Machining and Automation System. Automation Ready

More information

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling Chapter 24 Machining Processes Used to Produce Various Shapes: Milling Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and shapes that can be produced with the machining processes

More information

DOVETAIL FIXTURES. What is Raptor? Strong by design. ADAPTERS & RISERS. Less waste and easy setup. Tested and Proven. SPARE KITS CUTTERS &

DOVETAIL FIXTURES. What is Raptor? Strong by design. ADAPTERS & RISERS. Less waste and easy setup. Tested and Proven. SPARE KITS CUTTERS & What is Raptor? One of the challenges to manufacturing with 4 and 5-Axis CNC Machines has traditionally been how to hold the workpiece. We ve solved this problem for you with Raptor workholding products.

More information

Table of Contents. Table of Contents. Preface 11 Prerequisites... 12

Table of Contents. Table of Contents. Preface 11 Prerequisites... 12 Table of Contents Preface 11 Prerequisites... 12 Basic machining practice experience... 12 Controls covered... 12 Limitations... 13 The need for hands -on practice... 13 Instruction method... 13 Scope...

More information

Trade of Toolmaking. Module 6: Introduction to CNC Unit 2: Part Programming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 6 Unit 2

Trade of Toolmaking. Module 6: Introduction to CNC Unit 2: Part Programming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 6 Unit 2 Trade of Toolmaking Module 6: Introduction to CNC Unit 2: Part Programming Phase 2 Published by SOLAS 2014 Unit 2 1 Table of Contents Document Release History... 3 Unit Objective... 4 Introduction... 4

More information

Flip for User Guide. Metric. When Reliability Matters

Flip for User Guide. Metric. When Reliability Matters Flip for User Guide Metric by When Reliability Matters Mastercam HSM Performance Pack Tutorial 1 Mastercam HSM Performance Pack Tutorial Tutorial I... 2 Getting started... 2 Tools used... 2 Roughing...

More information

THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS

THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS Mladen Bošnjaković Dragomir Moškun Marko Jerković M.Sc. Mladen Bošnjaković, Slavonski Brod University of Applied Science, Dr. M. Budaka

More information

Chatter Control For The Rest Of Us

Chatter Control For The Rest Of Us Reprinted From: Magazine Chatter Control For The Rest Of Us A shop making prototype molds illustrates how to find stable milling speeds quickly using a systematic pattern of test cuts. When Kevin Berry

More information

SHOP NOTES. GPocket Guide and Reference Charts. for CNC Machinists. Made in the U.S.A.

SHOP NOTES. GPocket Guide and Reference Charts. for CNC Machinists. Made in the U.S.A. SHOP NOTES GPocket Guide and Reference Charts for CNC Machinists Made in the U.S.A. WHAT S INSIDE THIS BOOKLET? Decimal Equivalent Chart / Millimeter to Inch Chart Haas Mill G-Codes / Haas Mill M-Codes

More information

UN THREAD MILLS SINGLE PROFILE (SPTM) - SOLID CARBIDE. Scientific Cutting Tools, Inc. OAL 60º THREAD MILLS

UN THREAD MILLS SINGLE PROFILE (SPTM) - SOLID CARBIDE. Scientific Cutting Tools, Inc. OAL 60º THREAD MILLS UN SINGLE PROFILE (SPTM) - SOLID CARBIDE UN Q A B 60º C S Fine and coarse threads ranging from #00 to 1¼ + can be milled using the 19 varieties of these single profile thread mills. SPECIALTY PORT - CAVITY

More information

Uncover peak performance in HSM

Uncover peak performance in HSM Uncover peak performance in HSM White Paper A practical approach to identify feeds and speeds settings for peak and stable high-speed machining performance This white paper introduces a practical no-cost

More information

Performance. CNC Turning & Milling Machine. Conversational CAM 3.11 Instruction Manual

Performance. CNC Turning & Milling Machine. Conversational CAM 3.11 Instruction Manual Performance CNC Turning & Milling Machine Conversational CAM 3.11 Instruction Manual Legacy Woodworking Machinery 435 W. 1000 N. Springville, UT 84663 Performance Axis CNC Machine 2 Content Warranty and

More information

Flip for User Guide. Inches. When Reliability Matters

Flip for User Guide. Inches. When Reliability Matters Flip for User Guide Inches by When Reliability Matters Mastercam HSM Performance Pack Tutorial 1 Mastercam HSM Performance Pack Tutorial Tutorial I... 2 Getting started... 2 Tools used... 2 Roughing...

More information

CNC Applications. History and Terminology

CNC Applications. History and Terminology CNC Applications History and Terminology Background & Definitions (Chapter 1) Requirements for a skilled machinist Serve a 4 year apprenticeship including classes in algebra, trigonometry, print reading,

More information

Table 5.1: Drilling canned cycles. Action at the bottom of the hole. Cancels drilling canned cycle Intermittent or continuous feed.

Table 5.1: Drilling canned cycles. Action at the bottom of the hole. Cancels drilling canned cycle Intermittent or continuous feed. 5.18 CANNED CYCLES FOR DRILLING On a lathe, equipped with live tooling (which allows a tool, obviously a drilling or a similar tool, to rotate at the specified RPM, as in a milling machine) and an additional

More information

SUMMARY. Valves, pipes and manifold-type parts are ideal candidates for Turn-Cut.

SUMMARY. Valves, pipes and manifold-type parts are ideal candidates for Turn-Cut. SUMMARY Turn-Cut is a programming option available on Okuma horizontal machining centers that allows the machine to create bores and diameters that include circular and/or angular features. It allows users

More information

Projects. 5 For each component, produce a drawing showing the intersection BO.O. C'BORE 18 DIA x 5 DEEP FROM SECTION ON A - A

Projects. 5 For each component, produce a drawing showing the intersection BO.O. C'BORE 18 DIA x 5 DEEP FROM SECTION ON A - A Projects ~ Figure Pl Project 1 If you have worked systematically through the assignments in this workbook, you should now be able to tackle the following milling and turning projects. It is suggested that

More information

Features. Excellent Repeatability >> Applications >>

Features. Excellent Repeatability >> Applications >> Chamfer Mill 45 >> Nine9 chamfer mill is designed for chamfering and countersinking with an indexable insert. The insert is a specifically designed for use in high speed machining ; the multiple flutes

More information

imachining for Super Alloys & Hard Materials Amod Onkar SolidCAM Ltd.

imachining for Super Alloys & Hard Materials Amod Onkar SolidCAM Ltd. imachining for Super Alloys & Hard Materials Amod Onkar SolidCAM Ltd. Hard Materials & Difficult to Cut Materials Titanium Inconel Stainless Steel Stellite Hastelloy Tungsten Prehardened Tool Steel (>45

More information

RESHARPENING & INSPECTION

RESHARPENING & INSPECTION 755 E. Debra Lane, Anaheim, CA 92805 (714) 780-0730 (714) 780-0735 Fax Technical Support Page Case for Resharpening: When the product finish becomes worse, the cutting edge must get dulled, chips become

More information

CNC Programming Guide MILLING

CNC Programming Guide MILLING CNC Programming Guide MILLING Foreword The purpose of this guide is to help faculty teach CNC programming without tears. Most books currently available on CNC programming are not only inadequate, but also

More information

Block Delete techniques (also called optional block skip)

Block Delete techniques (also called optional block skip) Block Delete techniques (also called optional block skip) Many basic courses do at least acquaint novice programmers with the block delete function As you probably know, when the control sees a slash code

More information

Prasanth. Lathe Machining

Prasanth. Lathe Machining Lathe Machining Overview Conventions What's New? Getting Started Open the Part to Machine Create a Rough Turning Operation Replay the Toolpath Create a Groove Turning Operation Create Profile Finish Turning

More information

THREAD CUTTING & FORMING

THREAD CUTTING & FORMING THREAD CUTTING & FORMING Threading, Thread Cutting and Thread Rolling: Machining Threads on External Diameters (shafts) Tapping: Machining Threads on Internal Diameters (holes) Size: Watch to 10 shafts

More information

An intro to CNC Machining

An intro to CNC Machining An intro to CNC Machining CNC stands for Computer Numeric Control. CNC machining involves using a machine controlled by a computer to machine material. Generally the machine is either a milling machine

More information

EFFECTS OF INTERPOLATION TYPE ON THE FEED-RATE CHARACTERISTIC OF MACHINING ON A REAL CNC MACHINE TOOL

EFFECTS OF INTERPOLATION TYPE ON THE FEED-RATE CHARACTERISTIC OF MACHINING ON A REAL CNC MACHINE TOOL Engineering MECHANICS, Vol. 19, 2012, No. 4, p. 205 218 205 EFFECTS OF INTERPOLATION TYPE ON THE FEED-RATE CHARACTERISTIC OF MACHINING ON A REAL CNC MACHINE TOOL Petr Vavruška* The article is focused on

More information

Comparison of 5-Axis and 3-Axis Finish Machining of Hydroforming Die Inserts

Comparison of 5-Axis and 3-Axis Finish Machining of Hydroforming Die Inserts Int J Adv Manuf Technol (2001) 17:562 569 2001 Springer-Verlag London Limited Comparison of 5-Axis and 3-Axis Finish Machining of Hydroforming Die Inserts P. Gray 1, S. Bedi 1, F. Ismail 1, N. Rao 1 and

More information

6000 CNC CONTROL HELP MENU S

6000 CNC CONTROL HELP MENU S 6000 CNC CONTOL HEL MENU S The HEL MENU S are access by pressing. This can be done from either Manual or Edit. F1 HEL Manual mold soft keys Edit mold soft keys First Help screen Note: The center of the

More information

CNC MACHINING OF MONOBLOCK PROPELLERS TO FINAL FORM AND FINISH. Bodo Gospodnetic

CNC MACHINING OF MONOBLOCK PROPELLERS TO FINAL FORM AND FINISH. Bodo Gospodnetic CNC MACHINING OF MONOBLOCK PROPELLERS TO FINAL FORM AND FINISH Bodo Gospodnetic Dominis Engineering Ltd. 5515 Canotek Rd., Unit 15 Gloucester, Ontario Canada K1J 9L1 tel.: (613) 747-0193 fax.: (613) 746-3321

More information

NCG CAM for Micro Machining

NCG CAM for Micro Machining NCG CAM V11 Part courtesy of Datron Technology, UK NCG CAM for Micro Machining High Speed, Precision Accuracy NCG CAM for Micro Machining Key Benefits of NCG CAM NCG CAM is perfect for the high speed machining

More information

CAMWorks How To Create CNC G-Code for CO2 Dragsters

CAMWorks How To Create CNC G-Code for CO2 Dragsters Creating the Left Side Smooth Finish Tool Path. This chapter will focus on the steps for creating the left side smooth finish tool path. The objective of this chapter is to create to an accurate and highly

More information

GANESH GBM-2616 CNC Bed Mill With Class-7 Super-Precision Spindle Bearings and Box Ways

GANESH GBM-2616 CNC Bed Mill With Class-7 Super-Precision Spindle Bearings and Box Ways 20869 Plummer St. Chatsworth, CA 91311 Toll Free: 888-542-6374 (US only) Phone: 818-349-9166 I Fax: 818-349-7286 www.ganeshmachinery.com GANESH GBM-2616 CNC Bed Mill With Class-7 Super-Precision Spindle

More information

Lathe Series Training Manual. Haas CNC Lathe Programming

Lathe Series Training Manual. Haas CNC Lathe Programming Haas Factory Outlet A Division of Productivity Inc Lathe Series Training Manual Haas CNC Lathe Programming Revised 050914; Rev3-1/29/15; Rev4-31017 This Manual is the Property of Productivity Inc The document

More information

What is the CONTINUOUS DUTY (S1) power rating of the spindle? What is the CONTINUOUS DUTY (S1) torque rating of the spindle?

What is the CONTINUOUS DUTY (S1) power rating of the spindle? What is the CONTINUOUS DUTY (S1) torque rating of the spindle? Today there is a wide variety of CNC dental machining centers available to suite a variety of needs and choosing the right one for you can seem to be a daunting task. Knowing the construction characteristics

More information

CNC LATHE TURNING CENTER PL-20A

CNC LATHE TURNING CENTER PL-20A CNC LATHE TURNING CENTER PL-20A CNC LATHE TURNING CENTER For High Precision, High Speed and High Productivity MAIN FEATURE Introducing the latest and strongest CNC Lathe PL20A that has satisfied the requirements

More information

Application Case. Delta Industrial Automation Products for Vertical CNC Machining Centers with Automatic Tool Changers (ATC)

Application Case. Delta Industrial Automation Products for Vertical CNC Machining Centers with Automatic Tool Changers (ATC) Case Delta Industrial Automation Products for Vertical CNC Machining Centers with Automatic Tool Changers (ATC) Issued by Solution Center Date July, 2014 Pages 5 Applicable to Key words NC311 Series CNC

More information