Artificial Intelligence. Cameron Jett, William Kentris, Arthur Mo, Juan Roman

Size: px
Start display at page:

Download "Artificial Intelligence. Cameron Jett, William Kentris, Arthur Mo, Juan Roman"

Transcription

1 Artificial Intelligence Cameron Jett, William Kentris, Arthur Mo, Juan Roman

2 AI Outline Handicap for AI Machine Learning Monte Carlo Methods Group Intelligence

3 Incorporating stupidity into game AI overview Why make our intelligence less intelligent? Examples of unbeatable AI in games. How do we make our AI less intelligent? Problems in weakening AI. Conclusion.

4 Why do we need to make our game AI less intelligent? Perfect AI can be impossible to defeat. Make the game balanced for many different kinds of people. Make the game fun. Games can be frustrating when they're too difficult. We want the player to win a game without feeling like the victory was handed to them.

5 Unbeatable AI: Chess A chess game that never makes mistakes.

6 Unbeatable AI: Pool A game of pool where the AI never misses a shot.

7 Unbeatable AI: First-Person Shooter Enemies in a first-person shooter with perfect aim from any distance.

8 How do we make our AI less intelligent? Limit the number of computations an AI is allowed to perform. If a chess program performs a billion calculations before deciding on a move make it choose a move in half that many. Problems This approach decreases the realism of the AI player, making incredibly stupid mistakes that no human player would make.

9 How do we make our AI less intelligent? Changing an AI's attributes. Lowering accuracy, movement speed, cone of vision, or amount of damage it can deal. Problems This approach is better but not necessarily the best way to limit the games intelligence. This can lead to random occurrences that have unintentional consequences, if the computer gets lucky it can seem like it's unfair or cheating.

10 How do we make our AI less intelligent? Have the AI make intentional mistakes The AI must make mistakes that look natural, but result in it losing the game. Deliberately make mistakes that the player can take advantage of, and then continue trying to win. Problems This approach is more complicated than the last two attempts, but leads to a more realistic gameplay.

11 Conclusion A perfect opponent isn't fun, however an easy to defeat opponent is boring. We need a game AI that allows the player to win without feeling like the victory was given to them. We need an AI that makes the "right" kind of mistakes, those that an actual player might make. It's more difficult to write a "bad" game AI than it is to write a good one.

12 Machine Learning Overview Define "Machine Learning" Why should machines learn? How do machines learn? Methods What does this mean for game development?

13 What is Machine Learning? Machine Learning refers usually to AI An agent that improves performance with experience Ability to discover relationships between input and output Learning configuration of mazes

14 Why should machines learn? Allow machine to operate with less human interaction Weather Prediction Language Recognition Spam Filtering

15 How can machines learn? A machine learns whenever it changes its structure, program, or data Changing input based on previous results Classify input data Updates to a database Writing new code to run

16 Supervised Learning

17 Supervised Learning

18 Reinforcement Learning jp/~kanamaru/nn/cprl/

19 In Games Changing behavior of game based on player interaction Changing difficulty based on player progress Assist less experienced players Challenge more hardcore players

20 Monte Carlo Overview What are Monte Carlo Methods? Monte Carlo approach to a game Advantages Disadvantages Improvements

21 Monte Carlo Methods Repeated random sampling Coined by John Neumann, Stanislaw Ulam, and Nicholas Metropolis Used in physical and mathematical system simulations. org/wiki/file:pi_30k.gif

22 Monte Carlo approach to a game 4 in a Row(Connect 4) example Each turn run N random games. Track only initial move. Play rest of the game randomly. Track how often each move produces a victory. Go with the best move.

23 Advantages Easy to program. No high quality of domain knowledge needed. No cold starts. Space complexity is constant.

24 Disadvantages Equal probability among choices. Selection is strictly Exploitative.

25 Improvements MCTS(Monte Carlo Tree Search) UCT(Upper Confidence bounds applied to Trees)

26 Bio-Inspired Algorithms Nature has become inspiration for new metaheuristic approaches Bio-Inspired Algorithms mimic the efficiency of biological systems Bio-Inspired Algorithms generally consist of: Evolutionary Algorithms Swarm Intelligence Bacterial Foraging Algorithms

27 Swarm Intelligence Collective behavior of decentralized, selforganized systems. Comprised of simple agents, boids, interacting with one another in an environment

28 Why Swarm Intelligence? Provides us with method to have boids collaborate as a team Improve quality of playing with/against AI

29 Modeling Behaviors Recent algorithms for Group AI are typically modeled off of behaviors seen in nature. Offer intuitive solutions to difficult problems. Some popular ones include: Ant Colony Optimization, Firefly Algorithm, Krill Herd Algorithm, and others.

30 Modeling Behaviors Obviously, different algorithms are used to accomplish different goals. For example, in an RTS, must balance utility of sending units to scout, forage for resources, and stay close enough to the group to stand decent chance of survival. Additionally, must organize offensive units to collaborate attacks on enemies.

31 Ant Colony Optimization Mimics the pheromone trail used by ants; used to determine the most used path. Boids model behavior of ants to follow the most potent trail left by fellow boids.

32 Firefly Algorithm Mimics flashing behavior of fireflies; used to subdivide into small groups. Uses features of individual boids to attract boids of a similar nature; results in ability to cluster into subgroups.

33 Krill Herd Algorithm Mimics the krill s dependency on herd density while attempting to forage for food. Boids attempt to maximize friendly boid density (increase odds of survival), while collecting resources (or some other form of utility)

34 Krill in Action

35 Swarm Intelligence - Summary Swarm Intelligence Nature inspired algorithms for group behaviors Group Behaviors of boids > Individual Behaviors Different Algorithms for Different Folks Grouping/Clustering Search Optimization (Foraging) Self-preservation Next Time! In-depth look at the 3 Algorithms Applications of the 3 Algorithms (games and IRL)

36 Questions? "What is 'No', Alex?"

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far we have only been concerned with a single agent Today, we introduce an adversary! 2 Outline Games Minimax search

More information

Biologically-inspired Autonomic Wireless Sensor Networks. Haoliang Wang 12/07/2015

Biologically-inspired Autonomic Wireless Sensor Networks. Haoliang Wang 12/07/2015 Biologically-inspired Autonomic Wireless Sensor Networks Haoliang Wang 12/07/2015 Wireless Sensor Networks A collection of tiny and relatively cheap sensor nodes Low cost for large scale deployment Limited

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 AccessAbility Services Volunteer Notetaker Required Interested? Complete an online application using your WATIAM: https://york.accessiblelearning.com/uwaterloo/

More information

Learning to Play like an Othello Master CS 229 Project Report. Shir Aharon, Amanda Chang, Kent Koyanagi

Learning to Play like an Othello Master CS 229 Project Report. Shir Aharon, Amanda Chang, Kent Koyanagi Learning to Play like an Othello Master CS 229 Project Report December 13, 213 1 Abstract This project aims to train a machine to strategically play the game of Othello using machine learning. Prior to

More information

1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg)

1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg) 1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg) 6) Virtual Ecosystems & Perspectives (sb) Inspired

More information

Using Artificial intelligent to solve the game of 2048

Using Artificial intelligent to solve the game of 2048 Using Artificial intelligent to solve the game of 2048 Ho Shing Hin (20343288) WONG, Ngo Yin (20355097) Lam Ka Wing (20280151) Abstract The report presents the solver of the game 2048 base on artificial

More information

Discussion of Emergent Strategy

Discussion of Emergent Strategy Discussion of Emergent Strategy When Ants Play Chess Mark Jenne and David Pick Presentation Overview Introduction to strategy Previous work on emergent strategies Pengi N-puzzle Sociogenesis in MANTA colonies

More information

IMGD 1001: Programming Practices; Artificial Intelligence

IMGD 1001: Programming Practices; Artificial Intelligence IMGD 1001: Programming Practices; Artificial Intelligence Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu Outline Common Practices Artificial

More information

Monte Carlo based battleship agent

Monte Carlo based battleship agent Monte Carlo based battleship agent Written by: Omer Haber, 313302010; Dror Sharf, 315357319 Introduction The game of battleship is a guessing game for two players which has been around for almost a century.

More information

IMGD 1001: Programming Practices; Artificial Intelligence

IMGD 1001: Programming Practices; Artificial Intelligence IMGD 1001: Programming Practices; Artificial Intelligence by Mark Claypool (claypool@cs.wpi.edu) Robert W. Lindeman (gogo@wpi.edu) Outline Common Practices Artificial Intelligence Claypool and Lindeman,

More information

Playing Othello Using Monte Carlo

Playing Othello Using Monte Carlo June 22, 2007 Abstract This paper deals with the construction of an AI player to play the game Othello. A lot of techniques are already known to let AI players play the game Othello. Some of these techniques

More information

COMP3211 Project. Artificial Intelligence for Tron game. Group 7. Chiu Ka Wa ( ) Chun Wai Wong ( ) Ku Chun Kit ( )

COMP3211 Project. Artificial Intelligence for Tron game. Group 7. Chiu Ka Wa ( ) Chun Wai Wong ( ) Ku Chun Kit ( ) COMP3211 Project Artificial Intelligence for Tron game Group 7 Chiu Ka Wa (20369737) Chun Wai Wong (20265022) Ku Chun Kit (20123470) Abstract Tron is an old and popular game based on a movie of the same

More information

Monte Carlo Tree Search

Monte Carlo Tree Search Monte Carlo Tree Search 1 By the end, you will know Why we use Monte Carlo Search Trees The pros and cons of MCTS How it is applied to Super Mario Brothers and Alpha Go 2 Outline I. Pre-MCTS Algorithms

More information

Learning Artificial Intelligence in Large-Scale Video Games

Learning Artificial Intelligence in Large-Scale Video Games Learning Artificial Intelligence in Large-Scale Video Games A First Case Study with Hearthstone: Heroes of WarCraft Master Thesis Submitted for the Degree of MSc in Computer Science & Engineering Author

More information

CSC321 Lecture 23: Go

CSC321 Lecture 23: Go CSC321 Lecture 23: Go Roger Grosse Roger Grosse CSC321 Lecture 23: Go 1 / 21 Final Exam Friday, April 20, 9am-noon Last names A Y: Clara Benson Building (BN) 2N Last names Z: Clara Benson Building (BN)

More information

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2014 ABSTRACT The use of Artificial Intelligence

More information

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska AI in Tabletop Games Team 13 Josh Charnetsky Zachary Koch CSE 352 - Professor Anita Wasilewska Works Cited Kurenkov, Andrey. a-brief-history-of-game-ai.png. 18 Apr. 2016, www.andreykurenkov.com/writing/a-brief-history-of-game-ai/

More information

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH Santiago Ontañón so367@drexel.edu Recall: Adversarial Search Idea: When there is only one agent in the world, we can solve problems using DFS, BFS, ID,

More information

SWARM INTELLIGENCE. Mario Pavone Department of Mathematics & Computer Science University of Catania

SWARM INTELLIGENCE. Mario Pavone Department of Mathematics & Computer Science University of Catania Worker Ant #1: I'm lost! Where's the line? What do I do? Worker Ant #2: Help! Worker Ant #3: We'll be stuck here forever! Mr. Soil: Do not panic, do not panic. We are trained professionals. Now, stay calm.

More information

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel Foundations of AI 6. Adversarial Search Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard & Bernhard Nebel Contents Game Theory Board Games Minimax Search Alpha-Beta Search

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search COMP19: Artificial Intelligence COMP19: Artificial Intelligence Dr. Annabel Latham Room.05 Ashton Building Department of Computer Science University of Liverpool Lecture 1: Game Playing 1 Overview Last

More information

biologically-inspired computing lecture 20 Informatics luis rocha 2015 biologically Inspired computing INDIANA UNIVERSITY

biologically-inspired computing lecture 20 Informatics luis rocha 2015 biologically Inspired computing INDIANA UNIVERSITY lecture 20 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0

More information

By David Anderson SZTAKI (Budapest, Hungary) WPI D2009

By David Anderson SZTAKI (Budapest, Hungary) WPI D2009 By David Anderson SZTAKI (Budapest, Hungary) WPI D2009 1997, Deep Blue won against Kasparov Average workstation can defeat best Chess players Computer Chess no longer interesting Go is much harder for

More information

Swarm AI: A Solution to Soccer

Swarm AI: A Solution to Soccer Swarm AI: A Solution to Soccer Alex Kutsenok Advisor: Michael Wollowski Senior Thesis Rose-Hulman Institute of Technology Department of Computer Science and Software Engineering May 10th, 2004 Definition

More information

Andrei Behel AC-43И 1

Andrei Behel AC-43И 1 Andrei Behel AC-43И 1 History The game of Go originated in China more than 2,500 years ago. The rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture

More information

CS221 Final Project Report Learn to Play Texas hold em

CS221 Final Project Report Learn to Play Texas hold em CS221 Final Project Report Learn to Play Texas hold em Yixin Tang(yixint), Ruoyu Wang(rwang28), Chang Yue(changyue) 1 Introduction Texas hold em, one of the most popular poker games in casinos, is a variation

More information

Artificial Intelligence ( CS 365 ) IMPLEMENTATION OF AI SCRIPT GENERATOR USING DYNAMIC SCRIPTING FOR AOE2 GAME

Artificial Intelligence ( CS 365 ) IMPLEMENTATION OF AI SCRIPT GENERATOR USING DYNAMIC SCRIPTING FOR AOE2 GAME Artificial Intelligence ( CS 365 ) IMPLEMENTATION OF AI SCRIPT GENERATOR USING DYNAMIC SCRIPTING FOR AOE2 GAME Author: Saurabh Chatterjee Guided by: Dr. Amitabha Mukherjee Abstract: I have implemented

More information

Lecture 5: Game Playing (Adversarial Search)

Lecture 5: Game Playing (Adversarial Search) Lecture 5: Game Playing (Adversarial Search) CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA February 21, 2018 Amarda Shehu (580) 1 1 Outline

More information

HUJI AI Course 2012/2013. Bomberman. Eli Karasik, Arthur Hemed

HUJI AI Course 2012/2013. Bomberman. Eli Karasik, Arthur Hemed HUJI AI Course 2012/2013 Bomberman Eli Karasik, Arthur Hemed Table of Contents Game Description...3 The Original Game...3 Our version of Bomberman...5 Game Settings screen...5 The Game Screen...6 The Progress

More information

Game-playing: DeepBlue and AlphaGo

Game-playing: DeepBlue and AlphaGo Game-playing: DeepBlue and AlphaGo Brief history of gameplaying frontiers 1990s: Othello world champions refuse to play computers 1994: Chinook defeats Checkers world champion 1997: DeepBlue defeats world

More information

CS 480: GAME AI INTRODUCTION TO GAME AI. 4/3/2012 Santiago Ontañón https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro.

CS 480: GAME AI INTRODUCTION TO GAME AI. 4/3/2012 Santiago Ontañón https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro. CS 480: GAME AI INTRODUCTION TO GAME AI 4/3/2012 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro.html CS 480 Focus: artificial intelligence techniques for

More information

Shuffled Complex Evolution

Shuffled Complex Evolution Shuffled Complex Evolution Shuffled Complex Evolution An Evolutionary algorithm That performs local and global search A solution evolves locally through a memetic evolution (Local search) This local search

More information

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER World Automation Congress 21 TSI Press. USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER Department of Computer Science Connecticut College New London, CT {ahubley,

More information

Game Artificial Intelligence ( CS 4731/7632 )

Game Artificial Intelligence ( CS 4731/7632 ) Game Artificial Intelligence ( CS 4731/7632 ) Instructor: Stephen Lee-Urban http://www.cc.gatech.edu/~surban6/2018-gameai/ (soon) Piazza T-square What s this all about? Industry standard approaches to

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH Santiago Ontañón so367@drexel.edu Recall: Problem Solving Idea: represent the problem we want to solve as: State space Actions Goal check Cost function

More information

1.4. Artificial Stupidity: The Art of Intentional Mistakes. Lars Lidén.

1.4. Artificial Stupidity: The Art of Intentional Mistakes. Lars Lidén. 1.4 Artificial Stupidity: The Art of Intentional Mistakes Lars Lidén larsliden@yahoo.com Everything should be made as simple as possible, but no simpler. Albert Einstein W hat makes a game entertaining

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic So far we assumed a single-agent environment, but what if there are more agents and

More information

Drafting Territories in the Board Game Risk

Drafting Territories in the Board Game Risk Drafting Territories in the Board Game Risk Presenter: Richard Gibson Joint Work With: Neesha Desai and Richard Zhao AIIDE 2010 October 12, 2010 Outline Risk Drafting territories How to draft territories

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Instructor: Stuart Russell University of California, Berkeley Game Playing State-of-the-Art Checkers: 1950: First computer player. 1959: Samuel s self-taught

More information

The first topic I would like to explore is probabilistic reasoning with Bayesian

The first topic I would like to explore is probabilistic reasoning with Bayesian Michael Terry 16.412J/6.834J 2/16/05 Problem Set 1 A. Topics of Fascination The first topic I would like to explore is probabilistic reasoning with Bayesian nets. I see that reasoning under situations

More information

46.1 Introduction. Foundations of Artificial Intelligence Introduction MCTS in AlphaGo Neural Networks. 46.

46.1 Introduction. Foundations of Artificial Intelligence Introduction MCTS in AlphaGo Neural Networks. 46. Foundations of Artificial Intelligence May 30, 2016 46. AlphaGo and Outlook Foundations of Artificial Intelligence 46. AlphaGo and Outlook Thomas Keller Universität Basel May 30, 2016 46.1 Introduction

More information

Hacking Reinforcement Learning

Hacking Reinforcement Learning Hacking Reinforcement Learning Guillem Duran Ballester Guillemdb @Miau_DB A tale about hacking AI-Corp Hacking RL 1. Information gathering 2. Scanning 3. Exploitation & privilege escalation 4. Maintaining

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 42. Board Games: Alpha-Beta Search Malte Helmert University of Basel May 16, 2018 Board Games: Overview chapter overview: 40. Introduction and State of the Art 41.

More information

Chapter 5: Game Analytics

Chapter 5: Game Analytics Lecture Notes for Managing and Mining Multiplayer Online Games Summer Semester 2017 Chapter 5: Game Analytics Lecture Notes 2012 Matthias Schubert http://www.dbs.ifi.lmu.de/cms/vo_managing_massive_multiplayer_online_games

More information

Game playing. Outline

Game playing. Outline Game playing Chapter 6, Sections 1 8 CS 480 Outline Perfect play Resource limits α β pruning Games of chance Games of imperfect information Games vs. search problems Unpredictable opponent solution is

More information

Today. Types of Game. Games and Search 1/18/2010. COMP210: Artificial Intelligence. Lecture 10. Game playing

Today. Types of Game. Games and Search 1/18/2010. COMP210: Artificial Intelligence. Lecture 10. Game playing COMP10: Artificial Intelligence Lecture 10. Game playing Trevor Bench-Capon Room 15, Ashton Building Today We will look at how search can be applied to playing games Types of Games Perfect play minimax

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Games vs. search problems. Game playing Chapter 6. Outline. Game tree (2-player, deterministic, turns) Types of games. Minimax

Games vs. search problems. Game playing Chapter 6. Outline. Game tree (2-player, deterministic, turns) Types of games. Minimax Game playing Chapter 6 perfect information imperfect information Types of games deterministic chess, checkers, go, othello battleships, blind tictactoe chance backgammon monopoly bridge, poker, scrabble

More information

Game Playing. Philipp Koehn. 29 September 2015

Game Playing. Philipp Koehn. 29 September 2015 Game Playing Philipp Koehn 29 September 2015 Outline 1 Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information 2 games

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

the gamedesigninitiative at cornell university Lecture 8 Prototyping

the gamedesigninitiative at cornell university Lecture 8 Prototyping Lecture 8 What is a Prototype? An incomplete model of your product Implements small subset of final features Features chosen are most important now Prototype helps you visualize gameplay Way for you to

More information

Five-In-Row with Local Evaluation and Beam Search

Five-In-Row with Local Evaluation and Beam Search Five-In-Row with Local Evaluation and Beam Search Jiun-Hung Chen and Adrienne X. Wang jhchen@cs axwang@cs Abstract This report provides a brief overview of the game of five-in-row, also known as Go-Moku,

More information

MASON. A Java Multi-agent Simulation Library. Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus

MASON. A Java Multi-agent Simulation Library. Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus MASON A Java Multi-agent Simulation Library Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus George Mason University s Center for Social Complexity and Department of Computer

More information

CS 387/680: GAME AI BOARD GAMES

CS 387/680: GAME AI BOARD GAMES CS 387/680: GAME AI BOARD GAMES 6/2/2014 Instructor: Santiago Ontañón santi@cs.drexel.edu TA: Alberto Uriarte office hours: Tuesday 4-6pm, Cyber Learning Center Class website: https://www.cs.drexel.edu/~santi/teaching/2014/cs387-680/intro.html

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH 10/23/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Recall: Problem Solving Idea: represent

More information

CS 480: GAME AI DECISION MAKING AND SCRIPTING

CS 480: GAME AI DECISION MAKING AND SCRIPTING CS 480: GAME AI DECISION MAKING AND SCRIPTING 4/24/2012 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro.html Reminders Check BBVista site for the course

More information

Efficiency and Effectiveness of Game AI

Efficiency and Effectiveness of Game AI Efficiency and Effectiveness of Game AI Bob van der Putten and Arno Kamphuis Center for Advanced Gaming and Simulation, Utrecht University Padualaan 14, 3584 CH Utrecht, The Netherlands Abstract In this

More information

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa Johnson, 9/2017 Types of game environments Perfect

More information

6. Games. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Mechanical Turk. Origins. origins. motivation. minimax search

6. Games. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Mechanical Turk. Origins. origins. motivation. minimax search COMP9414/9814/3411 16s1 Games 1 COMP9414/ 9814/ 3411: Artificial Intelligence 6. Games Outline origins motivation Russell & Norvig, Chapter 5. minimax search resource limits and heuristic evaluation α-β

More information

CS 680: GAME AI WEEK 4: DECISION MAKING IN RTS GAMES

CS 680: GAME AI WEEK 4: DECISION MAKING IN RTS GAMES CS 680: GAME AI WEEK 4: DECISION MAKING IN RTS GAMES 2/6/2012 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2012/cs680/intro.html Reminders Projects: Project 1 is simpler

More information

Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage

Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage Richard Kelly and David Churchill Computer Science Faculty of Science Memorial University {richard.kelly, dchurchill}@mun.ca

More information

Artificial Intelligence. Minimax and alpha-beta pruning

Artificial Intelligence. Minimax and alpha-beta pruning Artificial Intelligence Minimax and alpha-beta pruning In which we examine the problems that arise when we try to plan ahead to get the best result in a world that includes a hostile agent (other agent

More information

AI in Computer Games. AI in Computer Games. Goals. Game A(I?) History Game categories

AI in Computer Games. AI in Computer Games. Goals. Game A(I?) History Game categories AI in Computer Games why, where and how AI in Computer Games Goals Game categories History Common issues and methods Issues in various game categories Goals Games are entertainment! Important that things

More information

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search CSE 473: Artificial Intelligence Fall 2017 Adversarial Search Mini, pruning, Expecti Dieter Fox Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Dan Weld, Stuart Russell or Andrew Moore

More information

NASA Swarmathon Team ABC (Artificial Bee Colony)

NASA Swarmathon Team ABC (Artificial Bee Colony) NASA Swarmathon Team ABC (Artificial Bee Colony) Cheylianie Rivera Maldonado, Kevin Rolón Domena, José Peña Pérez, Aníbal Robles, Jonathan Oquendo, Javier Olmo Martínez University of Puerto Rico at Arecibo

More information

Rapidly Adapting Game AI

Rapidly Adapting Game AI Rapidly Adapting Game AI Sander Bakkes Pieter Spronck Jaap van den Herik Tilburg University / Tilburg Centre for Creative Computing (TiCC) P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands {s.bakkes,

More information

Basic Introduction to Breakthrough

Basic Introduction to Breakthrough Basic Introduction to Breakthrough Carlos Luna-Mota Version 0. Breakthrough is a clever abstract game invented by Dan Troyka in 000. In Breakthrough, two uniform armies confront each other on a checkerboard

More information

Game Playing: Adversarial Search. Chapter 5

Game Playing: Adversarial Search. Chapter 5 Game Playing: Adversarial Search Chapter 5 Outline Games Perfect play minimax search α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Games vs. Search

More information

Evolutionary Computation for Creativity and Intelligence. By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser

Evolutionary Computation for Creativity and Intelligence. By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser Evolutionary Computation for Creativity and Intelligence By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser Introduction to NEAT Stands for NeuroEvolution of Augmenting Topologies (NEAT) Evolves

More information

AI for Autonomous Ships Challenges in Design and Validation

AI for Autonomous Ships Challenges in Design and Validation VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD AI for Autonomous Ships Challenges in Design and Validation ISSAV 2018 Eetu Heikkilä Autonomous ships - activities in VTT Autonomous ship systems Unmanned engine

More information

Twelve Types of Game Balance

Twelve Types of Game Balance Balance 2/25/16 Twelve Types of Game Balance #1 Fairness Symmetry The simplest way to ensure perfect balance is by exact symmetry Not only symmetrical in weapons, maneuvers, hit points etc., but symmetrical

More information

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Monte Carlo Tree Search and AlphaGo Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Zero-Sum Games and AI A player s utility gain or loss is exactly balanced by the combined gain or loss of opponents:

More information

Towards Strategic Kriegspiel Play with Opponent Modeling

Towards Strategic Kriegspiel Play with Opponent Modeling Towards Strategic Kriegspiel Play with Opponent Modeling Antonio Del Giudice and Piotr Gmytrasiewicz Department of Computer Science, University of Illinois at Chicago Chicago, IL, 60607-7053, USA E-mail:

More information

Dealing with parameterized actions in behavior testing of commercial computer games

Dealing with parameterized actions in behavior testing of commercial computer games Dealing with parameterized actions in behavior testing of commercial computer games Jörg Denzinger, Kevin Loose Department of Computer Science University of Calgary Calgary, Canada denzinge, kjl @cpsc.ucalgary.ca

More information

CS 387: GAME AI BOARD GAMES

CS 387: GAME AI BOARD GAMES CS 387: GAME AI BOARD GAMES 5/28/2015 Instructor: Santiago Ontañón santi@cs.drexel.edu Class website: https://www.cs.drexel.edu/~santi/teaching/2015/cs387/intro.html Reminders Check BBVista site for the

More information

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Artificial Intelligence Adversarial Search Adversarial Search Adversarial search problems games They occur in multiagent competitive environments There is an opponent we can t control planning again us!

More information

Who am I? AI in Computer Games. Goals. AI in Computer Games. History Game A(I?)

Who am I? AI in Computer Games. Goals. AI in Computer Games. History Game A(I?) Who am I? AI in Computer Games why, where and how Lecturer at Uppsala University, Dept. of information technology AI, machine learning and natural computation Gamer since 1980 Olle Gällmo AI in Computer

More information

Artificial Intelligence. 4. Game Playing. Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder

Artificial Intelligence. 4. Game Playing. Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder Artificial Intelligence 4. Game Playing Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2017/2018 Creative Commons

More information

Monte-Carlo Simulation of Chess Tournament Classification Systems

Monte-Carlo Simulation of Chess Tournament Classification Systems Monte-Carlo Simulation of Chess Tournament Classification Systems T. Van Hecke University Ghent, Faculty of Engineering and Architecture Schoonmeersstraat 52, B-9000 Ghent, Belgium Tanja.VanHecke@ugent.be

More information

Foundations of AI. 6. Board Games. Search Strategies for Games, Games with Chance, State of the Art

Foundations of AI. 6. Board Games. Search Strategies for Games, Games with Chance, State of the Art Foundations of AI 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller SA-1 Contents Board Games Minimax

More information

Balanced Map Generation using Genetic Algorithms in the Siphon Board-game

Balanced Map Generation using Genetic Algorithms in the Siphon Board-game Balanced Map Generation using Genetic Algorithms in the Siphon Board-game Jonas Juhl Nielsen and Marco Scirea Maersk Mc-Kinney Moller Institute, University of Southern Denmark, msc@mmmi.sdu.dk Abstract.

More information

MONTE-CARLO TWIXT. Janik Steinhauer. Master Thesis 10-08

MONTE-CARLO TWIXT. Janik Steinhauer. Master Thesis 10-08 MONTE-CARLO TWIXT Janik Steinhauer Master Thesis 10-08 Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science of Artificial Intelligence at the Faculty of Humanities

More information

Designing AI for Competitive Games. Bruce Hayles & Derek Neal

Designing AI for Competitive Games. Bruce Hayles & Derek Neal Designing AI for Competitive Games Bruce Hayles & Derek Neal Introduction Meet the Speakers Derek Neal Bruce Hayles @brucehayles Director of Production Software Engineer The Problem Same Old Song New User

More information

IMGD 1001: Fun and Games

IMGD 1001: Fun and Games IMGD 1001: Fun and Games Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu Outline What is a Game? Genres What Makes a Good Game? 2 What

More information

Reinforcement Learning in Games Autonomous Learning Systems Seminar

Reinforcement Learning in Games Autonomous Learning Systems Seminar Reinforcement Learning in Games Autonomous Learning Systems Seminar Matthias Zöllner Intelligent Autonomous Systems TU-Darmstadt zoellner@rbg.informatik.tu-darmstadt.de Betreuer: Gerhard Neumann Abstract

More information

Adjustable Group Behavior of Agents in Action-based Games

Adjustable Group Behavior of Agents in Action-based Games Adjustable Group Behavior of Agents in Action-d Games Westphal, Keith and Mclaughlan, Brian Kwestp2@uafortsmith.edu, brian.mclaughlan@uafs.edu Department of Computer and Information Sciences University

More information

2048: An Autonomous Solver

2048: An Autonomous Solver 2048: An Autonomous Solver Final Project in Introduction to Artificial Intelligence ABSTRACT. Our goal in this project was to create an automatic solver for the wellknown game 2048 and to analyze how different

More information

Population Initialization Techniques for RHEA in GVGP

Population Initialization Techniques for RHEA in GVGP Population Initialization Techniques for RHEA in GVGP Raluca D. Gaina, Simon M. Lucas, Diego Perez-Liebana Introduction Rolling Horizon Evolutionary Algorithms (RHEA) show promise in General Video Game

More information

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943) Game Theory: The Basics The following is based on Games of Strategy, Dixit and Skeath, 1999. Topic 8 Game Theory Page 1 Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

More information

FreeCiv Learner: A Machine Learning Project Utilizing Genetic Algorithms

FreeCiv Learner: A Machine Learning Project Utilizing Genetic Algorithms FreeCiv Learner: A Machine Learning Project Utilizing Genetic Algorithms Felix Arnold, Bryan Horvat, Albert Sacks Department of Computer Science Georgia Institute of Technology Atlanta, GA 30318 farnold3@gatech.edu

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Bart Selman Reinforcement Learning R&N Chapter 21 Note: in the next two parts of RL, some of the figure/section numbers refer to an earlier edition of R&N

More information

Opponent Modelling In World Of Warcraft

Opponent Modelling In World Of Warcraft Opponent Modelling In World Of Warcraft A.J.J. Valkenberg 19th June 2007 Abstract In tactical commercial games, knowledge of an opponent s location is advantageous when designing a tactic. This paper proposes

More information

COMP219: Artificial Intelligence. Lecture 13: Game Playing

COMP219: Artificial Intelligence. Lecture 13: Game Playing CMP219: Artificial Intelligence Lecture 13: Game Playing 1 verview Last time Search with partial/no observations Belief states Incremental belief state search Determinism vs non-determinism Today We will

More information

A.I in Automotive? Why and When.

A.I in Automotive? Why and When. A.I in Automotive? Why and When. AGENDA 01 02 03 04 Definitions A.I? A.I in automotive Now? Next big A.I breakthrough in Automotive 01 DEFINITIONS DEFINITIONS Artificial Intelligence Artificial Intelligence:

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Creating a Dominion AI Using Genetic Algorithms

Creating a Dominion AI Using Genetic Algorithms Creating a Dominion AI Using Genetic Algorithms Abstract Mok Ming Foong Dominion is a deck-building card game. It allows for complex strategies, has an aspect of randomness in card drawing, and no obvious

More information

Playful AI Education. Todd W. Neller Gettysburg College

Playful AI Education. Todd W. Neller Gettysburg College Playful AI Education Todd W. Neller Gettysburg College Introduction Teachers teach best when sharing from the core of their enjoyment of the material. E.g. Those with enthusiasm for graphics should use

More information

Last update: March 9, Game playing. CMSC 421, Chapter 6. CMSC 421, Chapter 6 1

Last update: March 9, Game playing. CMSC 421, Chapter 6. CMSC 421, Chapter 6 1 Last update: March 9, 2010 Game playing CMSC 421, Chapter 6 CMSC 421, Chapter 6 1 Finite perfect-information zero-sum games Finite: finitely many agents, actions, states Perfect information: every agent

More information