The Evolution of Knowledge and Search in Game-Playing Systems

Size: px
Start display at page:

Download "The Evolution of Knowledge and Search in Game-Playing Systems"

Transcription

1 The Evolution of Knowledge and Search in Game-Playing Systems Jonathan Schaeffer Abstract. The field of artificial intelligence (AI) is all about creating systems that exhibit intelligent behavior. Computer games have been one of the most visible application areas for innovative AI research and, in part, this has led to numerous major success stories. However, fifty years of AI research has seen the recipe for building strong programs evolve from the early knowledge-intensive approaches to the current searchintensive approaches. Each step forward seems to move us further away from the human example. This paper talks about this evolution and its impact on building high-performance game-playing programs. 1 Introduction The evolution of how researchers think about artificial intelligence (AI) is fascinating, and the insights profound. In only half a century of AI research, we have made the fundamental leap from the simplistic model of emulating human thought processes to realizing that there are alternative computational models that are more effective. It took the AI community a long time to realize that the well-known how to fly insight was relevant: one does not need to copy nature s solution to having a bird fly; we can do things more effectively by using the human-created jet airplane architecture. AI continues to be a moving target. It is a truism, and a sad reflection on perceptions in the AI community, that once a problem gets solved it ceases to be AI. No one questions the utility of a spell checker or an auto-pilot on an airplane. Yet if you turned back the clock fifty years, people would have viewed such programs as being excellent examples of important applications for AI research. We understand these problems well enough that, in the appropriate circle, they are routine. The bizarre consequence is that they are now no longer considered AI. Why? The magic is gone. These problems don t need artificial intelligence to achieve intelligent behavior. As we understand applications (and AI) better, the mystery surrounding intelligent behavior disappears. As the research challenges of building high-performance game-playing programs are successfully addressed, we as a research community run the danger of losing relevance. This research artificial intelligence applied to games we belovedly consider to be fundamentally part of AI. Yet our successes may eventually result in a move from the research consciousness for this type of research Professor Jonathan Schaeffer is head of the department of Computing Science at the University of Alberta in Edmonton, Canada. jonathan@cs.ualberta.ca.

2 34 Jonathan Schaeffer to out of the AI realm altogether. Along the way, however, our community will continue to make important contributions that will have long-term impact. This paper provides a brief discussion of the role of human knowledge and its evolution to the construction of strong game-playing programs. In the early years of AI research, the emphasis was on knowledge-based systems. Today, fifty years later, knowledge is known to have its share of problems, and researchers have been moving steadily towards building systems with a minimal dependence on knowledge. The extreme case involves no knowledge (perhaps not much more than the rules of the game). It seems like a paradox that artificial intelligence is moving in a direction which involves no human-inspired intelligence in the decision-making process (but may still require intelligence in the pre-processing needed for the decision-making process). 2 The Evolution of (Computer) Thought The course of artificial intelligence research applied to classic board games has seen an evolution in the relationship between search and knowledge: 1. Knowledge-based systems: In the fledgling days of AI, the most common approach to building an AI system was to try and emulate the human example. This concept was easily understood and seen as an obvious recipe for success. Unfortunately, researchers eventually realized this approach was fragile. The reliance on explicit application-dependent knowledge required the use of domain experts, a resource that was not easy (and often costly) to obtain. Researchers had to overcome challenging issues such as knowledge acquisition, knowledge representation, knowledge manipulation, exception handling, and performance trade-offs. 2. Search-based systems: Search is knowledge or, rather, search can implicitly uncover properties (knowledge) of a domain. A milestone in the development of game-playing programs and, indeed, a profound insight for all of artificial intelligence research, was the realization that deep search with less dependence on knowledge was a viable solving technique. In the not-sodistant past, the term brute-force search was used derogatorily, as if the researchers using such a technique were in some way doing something disreputable. Brute-force search overcame its stigma and has emerged as a powerful AI technique, in part because of its simplicity and in part because it reduces the need for application-dependent knowledge. It also has the tremendous advantage that search is algorithmic (and inexpensive to implement), lessening our dependence on knowledge which is heuristic (and may be expensive to acquire). 3. Knowledge-free systems: With advancing technology, the ultimate solution technique has become increasingly popular: solved games. The solutions are pre-computed and are search intensive. The deployed run-time decisionmaking system, however, is devoid of application-dependent knowledge (typically, it just does a table lookup). Clearly, application-dependent knowledge

3 The Evolution of Knowledge and Search in Game-Playing Systems 35 may be needed to come up with an effective scheme for solving these domains (application pre-processing), however this is minor in comparison to the knowledge requirements of the previous solution techniques. The envelope keeps getting pushed here, and with the recent solving of checkers (search space is ) it has been pushed forward by many orders of magnitude [10]. Of note is that we are seeing more of the knowledge requirements moving from the application execution (the playing of a game; the decision-making process) to the pre-processing stage (building the data needed for the application execution). 3 Towards Knowledge-Free Game-Playing Programs The era of building knowledge-free game-playing programs is just dawning. It is now not confined to only two-player perfect-information games, where there have been numerous successes (e.g., chess endgame databases, checkers [10], Qubic and Go-Moku [3], Connect-Four [1, 2], awari [9]). In the area of games with imperfect information and/or stochasticity, the concept of a solved game remains, albeit with different performance expectations. Here we cite two radically different domains where the move is towards lessening (eliminating?) the role of knowledge. Consider the game of poker and the role of game theory. Poker is a game of imperfect information (hidden cards) and stochasticity (random dealing of cards). Building a complete Nash equilibrium strategy would allow for gametheoretic optimal play. Two-player limit Texas Hold em poker has a search space of size 10 18, so it is currently impractical to properly solve this game. Nevertheless, pseudo-optimal solutions (close approximations to an optimal solution) have been built using linear programming [4]. This recent development was a major advance in the state of the art, and represents the best programs in the world today (recent advances in this area are narrowing the gap between pseudo-optimal and optimal play [12, 6]). Again, all the magic happens in the pre-processing stage; the actual game play comes from a table. However, optimal play is not maximal play. In poker the performance metric is winning the most money, not the most hands. Hence, opponent modelling is essential to being able to maximize the money won. There is still much work to be done to turn this technology into a program that will consistently beat the best humans in the world (especially in games with more than two players). As another example, consider the use of statistical sampling (Monte Carlo search) as a means of gathering data to aid in the decision-making process. Sampling was used with some success in bridge [7], poker [5] and Scrabble [11]. However, in the game of Go, sampling seems to have found a home. The program plays random sequences of moves, evaluates the resulting position, and uses this information to collect statistics on the goodness of each child move of the root. The best 9 9 Go-playing programs in the world are using the Upper Confidence bounds applied to Trees (UCT) sampling algorithm [8], and the results for Go are beginning to look impressive. UCT easily handles the

4 36 Jonathan Schaeffer issues of exploration versus exploitation in the search, by carefully managing the decisions of where to acquire more knowledge about the search tree. Go-specific knowledge, the crucial ingredient in Go programs to date, has had its role reduced (but still important). Further improvements to the sampling methods will likely further decrease the importance of Go knowledge. These examples illustrate that new algorithmic ideas are creating innovative ways to look at the design of a high-performance game-playing program. With faster processors, more parallelism (especially with multi-core architectures), larger memories, and inexpensive disk, this trend will continue. 4 Jaap van den Herik Jaap van den Herik has spent a large portion of his life being fascinated by games, from the recreational, competitive and scientific points of view. From early on in his research career, Jaap has been infatuated with solved games: perfection. Perhaps this is because of the beauty of perfection, or the knowledge that one can reveal the secrets of a game that no one has ever been privileged to see before. A psychologist might argue it is because of a desire to see his creations aspire to more than their maker. For most of his career Jaap has actively participated in the construction of chess endgame databases (solved subsets of the game) and been a fastidious chronicler of the progress in this area. Every advance in solving games even obscure games is dutifully recorded in the pages of the International Computer Games Association Journal, which Jaap has edited for almost a quarter of a century. In addition, Jaap supervised the Ph.D. thesis of Victor Allis, who produced arguably the most important thesis in this research area [3]. Not only did the thesis turn the relatively unknown (and little-used) Conspiracy Numbers algorithm into the popular solving procedure Proof-Numbers Search, but it also presented the results for solving the games of Qubic and Go-Moku. With new games and new challenges constantly arising, there is no time to slow down. Indeed, it is inconceivable to think of Jaap s frenetic pace changing any time soon. The artificial intelligence and computer games communities are richer because of this. 5 Conclusions The words intelligence and knowledge seem to be inextricably entwined. Yet the research using games has shown that intelligent behaviour does not necessarily stem from knowledge. Games have been at the forefront of AI research since the inception of the field. Passionate AI-using-games researchers have made numerous important contributions to the AI literature. The move from knowledgebased, to search-based, to knowledge-free solutions may be another major result. It does not end there. We are in the midst of a renaissance in human game playing. The past decade has seen a wealth of innovative new and intellectually stimulating games being created. This new generation of games, especially those

5 The Evolution of Knowledge and Search in Game-Playing Systems 37 coming out of Germany, pose a wealth of interesting challenges for artificial intelligence research. The games span many fun ideas, including cooperative play, auctions, tile-based play, and map-based planning. For most of these games, the research is just beginning and, hence, is still in the knowledge-based-solution era. The community who uses games as their artificial intelligence experimental test bed are seeing numerous research opportunities presented to them. As with the classic games, the community will seek to better understand these domains and develop new solving techniques. History suggests they will be successful, and the AI community will be better because of it. Acknowledgments This work was sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Alberta s Informatics Circle of Research Excellence (icore). References 1. J. Allen. A note on the computer solution of Connect-Four. In Heuristic Programming in Artificial Intelligence: The First Computer Olympiad, pages Ellis Horwood, V. Allis. A knowledge-based approach to Connect-Four. The game is solved: White wins. Master s thesis, Vrije Universiteit, Amsterdam, V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis, Department of Computer Science, University of Limburg, D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Approximating Game-Theoretic Optimal Strategies for Full-scale Poker. In proceedings IJCAI, pages , D. Billings, L. Peña, J. Schaeffer, and D. Szafron. Using Probabilistic Knowledge and Simulation to Play Poker. In proceedings AAAI, pages , A. Gilpin, T. Sandholm, and T. Sorensen. Potential-aware automated abstraction of sequential games, and holistic equilibrium analysis of Texas Hold em poker. In proceedings AAAI, pages 50 57, M. Ginsberg. GIB: Imperfect information in a computationally challenging game. Journal of Artificial Intelligence Research, 14: , L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In European Conference on Machine Learning, pages , J. Romein and H. Bal. Solving the game of awari using parallel retrograde analysis. IEEE Computer, 36(10):26 33, J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, and S. Sutphen. Checkers is Solved. Science, Published online July 19, To appear in print. 11. B. Sheppard. Towards Perfect Play of Scrabble. PhD thesis, Universiteit Maastricht, M. Zinkevich, M. Bowling, and N. Burch. A new algorithm for generating equilibria in massive zero-sum games. In proceedings AAAI, pages , 2007.

NOTE 6 6 LOA IS SOLVED

NOTE 6 6 LOA IS SOLVED 234 ICGA Journal December 2008 NOTE 6 6 LOA IS SOLVED Mark H.M. Winands 1 Maastricht, The Netherlands ABSTRACT Lines of Action (LOA) is a two-person zero-sum game with perfect information; it is a chess-like

More information

Retrograde Analysis of Woodpush

Retrograde Analysis of Woodpush Retrograde Analysis of Woodpush Tristan Cazenave 1 and Richard J. Nowakowski 2 1 LAMSADE Université Paris-Dauphine Paris France cazenave@lamsade.dauphine.fr 2 Dept. of Mathematics and Statistics Dalhousie

More information

Optimal Rhode Island Hold em Poker

Optimal Rhode Island Hold em Poker Optimal Rhode Island Hold em Poker Andrew Gilpin and Tuomas Sandholm Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {gilpin,sandholm}@cs.cmu.edu Abstract Rhode Island Hold

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far we have only been concerned with a single agent Today, we introduce an adversary! 2 Outline Games Minimax search

More information

One Jump Ahead. Jonathan Schaeffer Department of Computing Science University of Alberta

One Jump Ahead. Jonathan Schaeffer Department of Computing Science University of Alberta One Jump Ahead Jonathan Schaeffer Department of Computing Science University of Alberta jonathan@cs.ualberta.ca Research Inspiration Perspiration 1989-2007? Games and AI Research Building high-performance

More information

Strategy Evaluation in Extensive Games with Importance Sampling

Strategy Evaluation in Extensive Games with Importance Sampling Michael Bowling BOWLING@CS.UALBERTA.CA Michael Johanson JOHANSON@CS.UALBERTA.CA Neil Burch BURCH@CS.UALBERTA.CA Duane Szafron DUANE@CS.UALBERTA.CA Department of Computing Science, University of Alberta,

More information

Virtual Global Search: Application to 9x9 Go

Virtual Global Search: Application to 9x9 Go Virtual Global Search: Application to 9x9 Go Tristan Cazenave LIASD Dept. Informatique Université Paris 8, 93526, Saint-Denis, France cazenave@ai.univ-paris8.fr Abstract. Monte-Carlo simulations can be

More information

Using Selective-Sampling Simulations in Poker

Using Selective-Sampling Simulations in Poker Using Selective-Sampling Simulations in Poker Darse Billings, Denis Papp, Lourdes Peña, Jonathan Schaeffer, Duane Szafron Department of Computing Science University of Alberta Edmonton, Alberta Canada

More information

Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games

Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games John Hawkin and Robert C. Holte and Duane Szafron {hawkin, holte}@cs.ualberta.ca, dszafron@ualberta.ca Department of Computing

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 AccessAbility Services Volunteer Notetaker Required Interested? Complete an online application using your WATIAM: https://york.accessiblelearning.com/uwaterloo/

More information

Regret Minimization in Games with Incomplete Information

Regret Minimization in Games with Incomplete Information Regret Minimization in Games with Incomplete Information Martin Zinkevich maz@cs.ualberta.ca Michael Bowling Computing Science Department University of Alberta Edmonton, AB Canada T6G2E8 bowling@cs.ualberta.ca

More information

A Heuristic Based Approach for a Betting Strategy. in Texas Hold em Poker

A Heuristic Based Approach for a Betting Strategy. in Texas Hold em Poker DEPARTMENT OF COMPUTER SCIENCE SERIES OF PUBLICATIONS C REPORT C-2008-41 A Heuristic Based Approach for a Betting Strategy in Texas Hold em Poker Teemu Saukonoja and Tomi A. Pasanen UNIVERSITY OF HELSINKI

More information

Strategic Evaluation in Complex Domains

Strategic Evaluation in Complex Domains Strategic Evaluation in Complex Domains Tristan Cazenave LIP6 Université Pierre et Marie Curie 4, Place Jussieu, 755 Paris, France Tristan.Cazenave@lip6.fr Abstract In some complex domains, like the game

More information

Robust Game Play Against Unknown Opponents

Robust Game Play Against Unknown Opponents Robust Game Play Against Unknown Opponents Nathan Sturtevant Department of Computing Science University of Alberta Edmonton, Alberta, Canada T6G 2E8 nathanst@cs.ualberta.ca Michael Bowling Department of

More information

Using Fictitious Play to Find Pseudo-Optimal Solutions for Full-Scale Poker

Using Fictitious Play to Find Pseudo-Optimal Solutions for Full-Scale Poker Using Fictitious Play to Find Pseudo-Optimal Solutions for Full-Scale Poker William Dudziak Department of Computer Science, University of Akron Akron, Ohio 44325-4003 Abstract A pseudo-optimal solution

More information

The first topic I would like to explore is probabilistic reasoning with Bayesian

The first topic I would like to explore is probabilistic reasoning with Bayesian Michael Terry 16.412J/6.834J 2/16/05 Problem Set 1 A. Topics of Fascination The first topic I would like to explore is probabilistic reasoning with Bayesian nets. I see that reasoning under situations

More information

Speeding-Up Poker Game Abstraction Computation: Average Rank Strength

Speeding-Up Poker Game Abstraction Computation: Average Rank Strength Computer Poker and Imperfect Information: Papers from the AAAI 2013 Workshop Speeding-Up Poker Game Abstraction Computation: Average Rank Strength Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso

More information

Partial Information Endgame Databases

Partial Information Endgame Databases Partial Information Endgame Databases Yngvi Björnsson 1, Jonathan Schaeffer 2, and Nathan R. Sturtevant 2 1 Department of Computer Science, Reykjavik University yngvi@ru.is 2 Department of Computer Science,

More information

Using a genetic algorithm for mining patterns from Endgame Databases

Using a genetic algorithm for mining patterns from Endgame Databases 0 African Conference for Sofware Engineering and Applied Computing Using a genetic algorithm for mining patterns from Endgame Databases Heriniaina Andry RABOANARY Department of Computer Science Institut

More information

On Games And Fairness

On Games And Fairness On Games And Fairness Hiroyuki Iida Japan Advanced Institute of Science and Technology Ishikawa, Japan iida@jaist.ac.jp Abstract. In this paper we conjecture that the game-theoretic value of a sophisticated

More information

Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search

Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search Jeffrey Long and Nathan R. Sturtevant and Michael Buro and Timothy Furtak Department of Computing Science, University

More information

The Computer (R)Evolution

The Computer (R)Evolution The Games Computers The Computer (R)Evolution (and People) Play Need to re-think what it means to think. Jonathan Schaeffer Department of Computing Science University of Alberta Edmonton, Alberta Canada

More information

Opponent Models and Knowledge Symmetry in Game-Tree Search

Opponent Models and Knowledge Symmetry in Game-Tree Search Opponent Models and Knowledge Symmetry in Game-Tree Search Jeroen Donkers Institute for Knowlegde and Agent Technology Universiteit Maastricht, The Netherlands donkers@cs.unimaas.nl Abstract In this paper

More information

Monte Carlo Planning in RTS Games

Monte Carlo Planning in RTS Games Abstract- Monte Carlo simulations have been successfully used in classic turn based games such as backgammon, bridge, poker, and Scrabble. In this paper, we apply the ideas to the problem of planning in

More information

CASPER: a Case-Based Poker-Bot

CASPER: a Case-Based Poker-Bot CASPER: a Case-Based Poker-Bot Ian Watson and Jonathan Rubin Department of Computer Science University of Auckland, New Zealand ian@cs.auckland.ac.nz Abstract. This paper investigates the use of the case-based

More information

Lambda Depth-first Proof Number Search and its Application to Go

Lambda Depth-first Proof Number Search and its Application to Go Lambda Depth-first Proof Number Search and its Application to Go Kazuki Yoshizoe Dept. of Electrical, Electronic, and Communication Engineering, Chuo University, Japan yoshizoe@is.s.u-tokyo.ac.jp Akihiro

More information

Intelligent Gaming Techniques for Poker: An Imperfect Information Game

Intelligent Gaming Techniques for Poker: An Imperfect Information Game Intelligent Gaming Techniques for Poker: An Imperfect Information Game Samisa Abeysinghe and Ajantha S. Atukorale University of Colombo School of Computing, 35, Reid Avenue, Colombo 07, Sri Lanka Tel:

More information

Models of Strategic Deficiency and Poker

Models of Strategic Deficiency and Poker Models of Strategic Deficiency and Poker Gabe Chaddock, Marc Pickett, Tom Armstrong, and Tim Oates University of Maryland, Baltimore County (UMBC) Computer Science and Electrical Engineering Department

More information

Th e role of games in und erst an di n g com pu t ati on al i n tel l igen ce

Th e role of games in und erst an di n g com pu t ati on al i n tel l igen ce Th e role of games in und erst an di n g com pu t ati on al i n tel l igen ce Jonathan Schaeffer, University of Alberta The AI research community has made one of the most profound contributions of the

More information

Safe and Nested Endgame Solving for Imperfect-Information Games

Safe and Nested Endgame Solving for Imperfect-Information Games Safe and Nested Endgame Solving for Imperfect-Information Games Noam Brown Computer Science Department Carnegie Mellon University noamb@cs.cmu.edu Tuomas Sandholm Computer Science Department Carnegie Mellon

More information

Computing Robust Counter-Strategies

Computing Robust Counter-Strategies Computing Robust Counter-Strategies Michael Johanson johanson@cs.ualberta.ca Martin Zinkevich maz@cs.ualberta.ca Michael Bowling Computing Science Department University of Alberta Edmonton, AB Canada T6G2E8

More information

Monte Carlo Tree Search. Simon M. Lucas

Monte Carlo Tree Search. Simon M. Lucas Monte Carlo Tree Search Simon M. Lucas Outline MCTS: The Excitement! A tutorial: how it works Important heuristics: RAVE / AMAF Applications to video games and real-time control The Excitement Game playing

More information

Player Profiling in Texas Holdem

Player Profiling in Texas Holdem Player Profiling in Texas Holdem Karl S. Brandt CMPS 24, Spring 24 kbrandt@cs.ucsc.edu 1 Introduction Poker is a challenging game to play by computer. Unlike many games that have traditionally caught the

More information

Games solved: Now and in the future

Games solved: Now and in the future Games solved: Now and in the future by H. J. van den Herik, J. W. H. M. Uiterwijk, and J. van Rijswijck Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Which game

More information

A Re-Examination of Brute-Force Search

A Re-Examination of Brute-Force Search From: AAAI Technical Report FS-93-02. Compilation copyright 1993, AAAI (www.aaai.org). All rights reserved. A Re-Examination of Brute-Force Search Jonathan Schaeffer Paul Lu Duane Szafron Robert Lake Department

More information

Data Biased Robust Counter Strategies

Data Biased Robust Counter Strategies Data Biased Robust Counter Strategies Michael Johanson johanson@cs.ualberta.ca Department of Computing Science University of Alberta Edmonton, Alberta, Canada Michael Bowling bowling@cs.ualberta.ca Department

More information

A Competitive Texas Hold em Poker Player Via Automated Abstraction and Real-time Equilibrium Computation

A Competitive Texas Hold em Poker Player Via Automated Abstraction and Real-time Equilibrium Computation A Competitive Texas Hold em Poker Player Via Automated Abstraction and Real-time Equilibrium Computation Andrew Gilpin and Tuomas Sandholm Computer Science Department Carnegie Mellon University {gilpin,sandholm}@cs.cmu.edu

More information

Evaluation-Function Based Proof-Number Search

Evaluation-Function Based Proof-Number Search Evaluation-Function Based Proof-Number Search Mark H.M. Winands and Maarten P.D. Schadd Games and AI Group, Department of Knowledge Engineering, Faculty of Humanities and Sciences, Maastricht University,

More information

Automatic Public State Space Abstraction in Imperfect Information Games

Automatic Public State Space Abstraction in Imperfect Information Games Computer Poker and Imperfect Information: Papers from the 2015 AAAI Workshop Automatic Public State Space Abstraction in Imperfect Information Games Martin Schmid, Matej Moravcik, Milan Hladik Charles

More information

Probabilistic State Translation in Extensive Games with Large Action Sets

Probabilistic State Translation in Extensive Games with Large Action Sets Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09) Probabilistic State Translation in Extensive Games with Large Action Sets David Schnizlein Michael Bowling

More information

Creating a Havannah Playing Agent

Creating a Havannah Playing Agent Creating a Havannah Playing Agent B. Joosten August 27, 2009 Abstract This paper delves into the complexities of Havannah, which is a 2-person zero-sum perfectinformation board game. After determining

More information

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game Outline Game Playing ECE457 Applied Artificial Intelligence Fall 2007 Lecture #5 Types of games Playing a perfect game Minimax search Alpha-beta pruning Playing an imperfect game Real-time Imperfect information

More information

Decision Making in Multiplayer Environments Application in Backgammon Variants

Decision Making in Multiplayer Environments Application in Backgammon Variants Decision Making in Multiplayer Environments Application in Backgammon Variants PhD Thesis by Nikolaos Papahristou AI researcher Department of Applied Informatics Thessaloniki, Greece Contributions Expert

More information

Playing Othello Using Monte Carlo

Playing Othello Using Monte Carlo June 22, 2007 Abstract This paper deals with the construction of an AI player to play the game Othello. A lot of techniques are already known to let AI players play the game Othello. Some of these techniques

More information

From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Knowledge and Simulation to Play Poker

From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Knowledge and Simulation to Play Poker From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Knowledge and Simulation to Play Poker Darse Billings, Lourdes Peña, Jonathan Schaeffer, Duane Szafron

More information

Optimal Unbiased Estimators for Evaluating Agent Performance

Optimal Unbiased Estimators for Evaluating Agent Performance Optimal Unbiased Estimators for Evaluating Agent Performance Martin Zinkevich and Michael Bowling and Nolan Bard and Morgan Kan and Darse Billings Department of Computing Science University of Alberta

More information

Reflections on the First Man vs. Machine No-Limit Texas Hold 'em Competition

Reflections on the First Man vs. Machine No-Limit Texas Hold 'em Competition Reflections on the First Man vs. Machine No-Limit Texas Hold 'em Competition Sam Ganzfried Assistant Professor, Computer Science, Florida International University, Miami FL PhD, Computer Science Department,

More information

A Bandit Approach for Tree Search

A Bandit Approach for Tree Search A An Example in Computer-Go Department of Statistics, University of Michigan March 27th, 2008 A 1 Bandit Problem K-Armed Bandit UCB Algorithms for K-Armed Bandit Problem 2 Classical Tree Search UCT Algorithm

More information

By David Anderson SZTAKI (Budapest, Hungary) WPI D2009

By David Anderson SZTAKI (Budapest, Hungary) WPI D2009 By David Anderson SZTAKI (Budapest, Hungary) WPI D2009 1997, Deep Blue won against Kasparov Average workstation can defeat best Chess players Computer Chess no longer interesting Go is much harder for

More information

Game AI Challenges: Past, Present, and Future

Game AI Challenges: Past, Present, and Future Game AI Challenges: Past, Present, and Future Professor Michael Buro Computing Science, University of Alberta, Edmonton, Canada www.skatgame.net/cpcc2018.pdf 1/ 35 AI / ML Group @ University of Alberta

More information

CS221 Final Project Report Learn to Play Texas hold em

CS221 Final Project Report Learn to Play Texas hold em CS221 Final Project Report Learn to Play Texas hold em Yixin Tang(yixint), Ruoyu Wang(rwang28), Chang Yue(changyue) 1 Introduction Texas hold em, one of the most popular poker games in casinos, is a variation

More information

Two-Player Perfect Information Games: A Brief Survey

Two-Player Perfect Information Games: A Brief Survey Two-Player Perfect Information Games: A Brief Survey Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Domain: two-player games. Which game characters are predominant

More information

Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage

Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage Richard Kelly and David Churchill Computer Science Faculty of Science Memorial University {richard.kelly, dchurchill}@mun.ca

More information

Computer Go: from the Beginnings to AlphaGo. Martin Müller, University of Alberta

Computer Go: from the Beginnings to AlphaGo. Martin Müller, University of Alberta Computer Go: from the Beginnings to AlphaGo Martin Müller, University of Alberta 2017 Outline of the Talk Game of Go Short history - Computer Go from the beginnings to AlphaGo The science behind AlphaGo

More information

arxiv: v1 [cs.ai] 20 Dec 2016

arxiv: v1 [cs.ai] 20 Dec 2016 AIVAT: A New Variance Reduction Technique for Agent Evaluation in Imperfect Information Games Neil Burch, Martin Schmid, Matej Moravčík, Michael Bowling Department of Computing Science University of Alberta

More information

Learning to Play Strong Poker

Learning to Play Strong Poker Learning to Play Strong Poker Jonathan Schaeffer, Darse Billings, Lourdes Peña, Duane Szafron Department of Computing Science University of Alberta Edmonton, Alberta Canada T6G 2H1 {jonathan, darse, pena,

More information

Strategy Grafting in Extensive Games

Strategy Grafting in Extensive Games Strategy Grafting in Extensive Games Kevin Waugh waugh@cs.cmu.edu Department of Computer Science Carnegie Mellon University Nolan Bard, Michael Bowling {nolan,bowling}@cs.ualberta.ca Department of Computing

More information

A Practical Use of Imperfect Recall

A Practical Use of Imperfect Recall A ractical Use of Imperfect Recall Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein and Michael Bowling {waugh, johanson, mkan, schnizle, bowling}@cs.ualberta.ca maz@yahoo-inc.com

More information

Adversarial Search and Game Playing

Adversarial Search and Game Playing Games Adversarial Search and Game Playing Russell and Norvig, 3 rd edition, Ch. 5 Games: multi-agent environment q What do other agents do and how do they affect our success? q Cooperative vs. competitive

More information

Playout Search for Monte-Carlo Tree Search in Multi-Player Games

Playout Search for Monte-Carlo Tree Search in Multi-Player Games Playout Search for Monte-Carlo Tree Search in Multi-Player Games J. (Pim) A.M. Nijssen and Mark H.M. Winands Games and AI Group, Department of Knowledge Engineering, Faculty of Humanities and Sciences,

More information

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska AI in Tabletop Games Team 13 Josh Charnetsky Zachary Koch CSE 352 - Professor Anita Wasilewska Works Cited Kurenkov, Andrey. a-brief-history-of-game-ai.png. 18 Apr. 2016, www.andreykurenkov.com/writing/a-brief-history-of-game-ai/

More information

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess. Slide pack by Tuomas Sandholm

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess. Slide pack by Tuomas Sandholm Algorithms for solving sequential (zero-sum) games Main case in these slides: chess Slide pack by Tuomas Sandholm Rich history of cumulative ideas Game-theoretic perspective Game of perfect information

More information

GO for IT. Guillaume Chaslot. Mark Winands

GO for IT. Guillaume Chaslot. Mark Winands GO for IT Guillaume Chaslot Jaap van den Herik Mark Winands (UM) (UvT / Big Grid) (UM) Partnership for Advanced Computing in EUROPE Amsterdam, NH Hotel, Industrial Competitiveness: Europe goes HPC Krasnapolsky,

More information

Adversarial Reasoning: Sampling-Based Search with the UCT algorithm. Joint work with Raghuram Ramanujan and Ashish Sabharwal

Adversarial Reasoning: Sampling-Based Search with the UCT algorithm. Joint work with Raghuram Ramanujan and Ashish Sabharwal Adversarial Reasoning: Sampling-Based Search with the UCT algorithm Joint work with Raghuram Ramanujan and Ashish Sabharwal Upper Confidence bounds for Trees (UCT) n The UCT algorithm (Kocsis and Szepesvari,

More information

Two-Player Perfect Information Games: A Brief Survey

Two-Player Perfect Information Games: A Brief Survey Two-Player Perfect Information Games: A Brief Survey Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Domain: two-player games. Which game characters are predominant

More information

DeepStack: Expert-Level AI in Heads-Up No-Limit Poker. Surya Prakash Chembrolu

DeepStack: Expert-Level AI in Heads-Up No-Limit Poker. Surya Prakash Chembrolu DeepStack: Expert-Level AI in Heads-Up No-Limit Poker Surya Prakash Chembrolu AI and Games AlphaGo Go Watson Jeopardy! DeepBlue -Chess Chinook -Checkers TD-Gammon -Backgammon Perfect Information Games

More information

4. Games and search. Lecture Artificial Intelligence (4ov / 8op)

4. Games and search. Lecture Artificial Intelligence (4ov / 8op) 4. Games and search 4.1 Search problems State space search find a (shortest) path from the initial state to the goal state. Constraint satisfaction find a value assignment to a set of variables so that

More information

FACTORS AFFECTING DIMINISHING RETURNS FOR SEARCHING DEEPER 1

FACTORS AFFECTING DIMINISHING RETURNS FOR SEARCHING DEEPER 1 Factors Affecting Diminishing Returns for ing Deeper 75 FACTORS AFFECTING DIMINISHING RETURNS FOR SEARCHING DEEPER 1 Matej Guid 2 and Ivan Bratko 2 Ljubljana, Slovenia ABSTRACT The phenomenon of diminishing

More information

Computer Analysis of Connect-4 PopOut

Computer Analysis of Connect-4 PopOut Computer Analysis of Connect-4 PopOut University of Oulu Department of Information Processing Science Master s Thesis Jukka Pekkala May 18th 2014 2 Abstract In 1988, Connect-4 became the second non-trivial

More information

Drafting Territories in the Board Game Risk

Drafting Territories in the Board Game Risk Drafting Territories in the Board Game Risk Presenter: Richard Gibson Joint Work With: Neesha Desai and Richard Zhao AIIDE 2010 October 12, 2010 Outline Risk Drafting territories How to draft territories

More information

Learning a Value Analysis Tool For Agent Evaluation

Learning a Value Analysis Tool For Agent Evaluation Learning a Value Analysis Tool For Agent Evaluation Martha White Michael Bowling Department of Computer Science University of Alberta International Joint Conference on Artificial Intelligence, 2009 Motivation:

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

Monte Carlo Go Has a Way to Go

Monte Carlo Go Has a Way to Go Haruhiro Yoshimoto Department of Information and Communication Engineering University of Tokyo, Japan hy@logos.ic.i.u-tokyo.ac.jp Monte Carlo Go Has a Way to Go Kazuki Yoshizoe Graduate School of Information

More information

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa Johnson, 9/2017 Types of game environments Perfect

More information

Sokoban: Reversed Solving

Sokoban: Reversed Solving Sokoban: Reversed Solving Frank Takes (ftakes@liacs.nl) Leiden Institute of Advanced Computer Science (LIACS), Leiden University June 20, 2008 Abstract This article describes a new method for attempting

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory AI Challenge One 140 Challenge 1 grades 120 100 80 60 AI Challenge One Transform to graph Explore the

More information

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Monte Carlo Tree Search and AlphaGo Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Zero-Sum Games and AI A player s utility gain or loss is exactly balanced by the combined gain or loss of opponents:

More information

Ponnuki, FiveStones and GoloisStrasbourg: three software to help Go teachers

Ponnuki, FiveStones and GoloisStrasbourg: three software to help Go teachers Ponnuki, FiveStones and GoloisStrasbourg: three software to help Go teachers Tristan Cazenave Labo IA, Université Paris 8, 2 rue de la Liberté, 93526, St-Denis, France cazenave@ai.univ-paris8.fr Abstract.

More information

Application of UCT Search to the Connection Games of Hex, Y, *Star, and Renkula!

Application of UCT Search to the Connection Games of Hex, Y, *Star, and Renkula! Application of UCT Search to the Connection Games of Hex, Y, *Star, and Renkula! Tapani Raiko and Jaakko Peltonen Helsinki University of Technology, Adaptive Informatics Research Centre, P.O. Box 5400,

More information

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess! Slide pack by " Tuomas Sandholm"

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess! Slide pack by  Tuomas Sandholm Algorithms for solving sequential (zero-sum) games Main case in these slides: chess! Slide pack by " Tuomas Sandholm" Rich history of cumulative ideas Game-theoretic perspective" Game of perfect information"

More information

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 Texas Hold em Inference Bot Proposal By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 1 Introduction One of the key goals in Artificial Intelligence is to create cognitive systems that

More information

Heads-up Limit Texas Hold em Poker Agent

Heads-up Limit Texas Hold em Poker Agent Heads-up Limit Texas Hold em Poker Agent Nattapoom Asavareongchai and Pin Pin Tea-mangkornpan CS221 Final Project Report Abstract Our project aims to create an agent that is able to play heads-up limit

More information

Endgame Solving in Large Imperfect-Information Games

Endgame Solving in Large Imperfect-Information Games Endgame Solving in Large Imperfect-Information Games Sam Ganzfried and Tuomas Sandholm Computer Science Department Carnegie Mellon University {sganzfri, sandholm}@cs.cmu.edu Abstract The leading approach

More information

Building a Computer Mahjong Player Based on Monte Carlo Simulation and Opponent Models

Building a Computer Mahjong Player Based on Monte Carlo Simulation and Opponent Models Building a Computer Mahjong Player Based on Monte Carlo Simulation and Opponent Models Naoki Mizukami 1 and Yoshimasa Tsuruoka 1 1 The University of Tokyo 1 Introduction Imperfect information games are

More information

Lemmas on Partial Observation, with Application to Phantom Games

Lemmas on Partial Observation, with Application to Phantom Games Lemmas on Partial Observation, with Application to Phantom Games F Teytaud and O Teytaud Abstract Solving games is usual in the fully observable case The partially observable case is much more difficult;

More information

Real-Time Opponent Modelling in Trick-Taking Card Games

Real-Time Opponent Modelling in Trick-Taking Card Games Real-Time Opponent Modelling in Trick-Taking Card Games Jeffrey Long and Michael Buro Department of Computing Science, University of Alberta Edmonton, Alberta, Canada T6G 2E8 fjlong1 j mburog@cs.ualberta.ca

More information

Pengju

Pengju Introduction to AI Chapter05 Adversarial Search: Game Playing Pengju Ren@IAIR Outline Types of Games Formulation of games Perfect-Information Games Minimax and Negamax search α-β Pruning Pruning more Imperfect

More information

What does it mean to be intelligent? A History of Traditional Computer Game AI. Human Strengths. Computer Strengths

What does it mean to be intelligent? A History of Traditional Computer Game AI. Human Strengths. Computer Strengths What does it mean to be intelligent? A History of Traditional Computer Game AI Nathan Sturtevant CMPUT 3704-1/4704-1 Winter 2011 With thanks to Jonathan Schaeffer Human Strengths Intuition Visual patterns

More information

Feature Learning Using State Differences

Feature Learning Using State Differences Feature Learning Using State Differences Mesut Kirci and Jonathan Schaeffer and Nathan Sturtevant Department of Computing Science University of Alberta Edmonton, Alberta, Canada {kirci,nathanst,jonathan}@cs.ualberta.ca

More information

CS295-1 Final Project : AIBO

CS295-1 Final Project : AIBO CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main

More information

Endgame Solving in Large Imperfect-Information Games

Endgame Solving in Large Imperfect-Information Games Endgame Solving in Large Imperfect-Information Games Sam Ganzfried and Tuomas Sandholm Computer Science Department Carnegie Mellon University {sganzfri, sandholm}@cs.cmu.edu ABSTRACT The leading approach

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität

More information

Evaluating State-Space Abstractions in Extensive-Form Games

Evaluating State-Space Abstractions in Extensive-Form Games Evaluating State-Space Abstractions in Extensive-Form Games Michael Johanson and Neil Burch and Richard Valenzano and Michael Bowling University of Alberta Edmonton, Alberta {johanson,nburch,valenzan,mbowling}@ualberta.ca

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Non-classical search - Path does not

More information

TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play

TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play NOTE Communicated by Richard Sutton TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play Gerald Tesauro IBM Thomas 1. Watson Research Center, I? 0. Box 704, Yorktozon Heights, NY 10598

More information

Strategy Purification

Strategy Purification Strategy Purification Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh Computer Science Department Carnegie Mellon University {sganzfri, sandholm, waugh}@cs.cmu.edu Abstract There has been significant recent

More information

An Introduction to Poker Opponent Modeling

An Introduction to Poker Opponent Modeling An Introduction to Poker Opponent Modeling Peter Chapman Brielin Brown University of Virginia 1 March 2011 It is not my aim to surprise or shock you-but the simplest way I can summarize is to say that

More information

CS 331: Artificial Intelligence Adversarial Search II. Outline

CS 331: Artificial Intelligence Adversarial Search II. Outline CS 331: Artificial Intelligence Adversarial Search II 1 Outline 1. Evaluation Functions 2. State-of-the-art game playing programs 3. 2 player zero-sum finite stochastic games of perfect information 2 1

More information

Blunder Cost in Go and Hex

Blunder Cost in Go and Hex Advances in Computer Games: 13th Intl. Conf. ACG 2011; Tilburg, Netherlands, Nov 2011, H.J. van den Herik and A. Plaat (eds.), Springer-Verlag Berlin LNCS 7168, 2012, pp 220-229 Blunder Cost in Go and

More information