TIME-GATINGOF PULSED EDDY CURRENT SIGNALS FOR DEFECT CHARACTERIZATION AND DISCRIMINATION IN AIRCRAFT LAP-JOINTS

Size: px
Start display at page:

Download "TIME-GATINGOF PULSED EDDY CURRENT SIGNALS FOR DEFECT CHARACTERIZATION AND DISCRIMINATION IN AIRCRAFT LAP-JOINTS"

Transcription

1 TIME-GATINGOF PULSED EDDY CURRENT SIGNALS FOR DEFECT CHARACTERIZATION AND DISCRIMINATION IN AIRCRAFT LAP-JOINTS Jay A. Bieber, Sunil K. Shaligram, James H. Rose, and John C. Moulder Center for Nondestructive Evaluation Iowa State University Ames, la 511 INTRODUCTION Pulsed eddy current (PEC) nondestructive testing differs from conventional eddy current techniques in that the probe coil is excited by a pulse, rather than continuous excitation at a single frequency. Reviews of early work on pulsed eddy currents are given by Waidelich 1 and by Renkin. 2 Pulsed excitation causes the propagation of a highly attenuated traveling wave, which is govemed by the diffusion equation? The diffusive propagation of the eddy current pulse results in spatial broadening and a delay, or travel time, proportional to the square of the distance traveled. It was realized in early work on pulsed eddy current systems that this time dependence offered certain advantages over conventional eddy currents. 4 In the current study we demonstrate the ability of a prototype pulsed eddy current instrument, described elsewhere, 5 6 to take advantage ofthistime dependence to discrirninate flaws from such interfering signals as probe liftoff, air gaps, and fasteners. EXPERIMENT Figure 1 is a schematic of the sample and probe geometry for the pulsed eddy current experiments that are presented here. The coil that was used in our experiments was a 638-tum, right-cylindrical air-core coil of.22-inch ID,.47-inch OD, and.118-inch length. The probe was designed with a constant built-in wear surface, which gave a Iiftoff of approximately.7 inches. The geometry of the sample was chosen to simulate a twolayer aircraft lap-joint, with corrosion in the locations shown and with a certain amount of air gap to indicate plate separation. Theinputto the coil is a 5-volt, 1 khz. square wave, with a 5% duty cycle. This allows enough time for the coil current to rise to a steady state in 5 J.Ls, and decay back to zero before the next pulse. The software that was developed for the PEC instrument perrnits the drive pulse repetition rate and amplitude to be adjusted to allow probes of various inductance and resistance to be used. The resulting coil Review ofprogress in Quantitative Nondestructive Evaluation. Vol. 16 Edited by D.O. Thompson and D.E. Chimenti. Plenum Press, New York,

2 / Aircore Coil Flaw Locations Bottom of top layer Top of botiom layer Bottom of bottom layer Fig. 1. Geometry of pulsed eddy current experiments on hidden flaws. current is detected by sensing the voltage drop across a 1-ohm resistor in series with the probe. The coil response is then digitized with a 16-bit, 1 megasample per second analogto-digital converter. To obtain a pulsed eddy-current flaw signal, the probe coil is first p1aced on a reference area on the sample where there is no flaw. The coil response on this reference area is then stored in memory and is subtracted from subsequent incorning signals as the probe is scanned over the sample. The pulsed eddy current signal displayed on the instrument is thus the difference between the transient current in the coil over a flaw-free area and that over an area containing a flaw. Figure 2 shows a typical pulsed eddy current signal from a simulated aircraft lap splice containing an artificially thinned region. As shown in this figure, the pulsed eddy current waveform has two main features that are used in flaw characterization. The first is the peak: height, which is proportional to the amount of metalloss. The second is the zero crossover point of the waveform, which contains information about the depth of the flaw ir the structure. W aveforms are acquired continuously while the probe is scanned over an area of the sample using a portable two-axis scanner. Peak Am plitude Time-gate (All peak am plitudes outside this range are not plotted).. f ' Zero-Crossover / / I ~ ~ Fig. 2. Typical pulsed eddy current signal and illustration of time-gating. 1916

3 Data acquired from 2-D scans are presented in a C-scan pseudo-color image. To produce a C-scan image, the peak height of the PEC waveform is assigned a color corresponding to its amplitude at each x-y position of the probe. Peak amplitudes are assigned colors from a ten-color look-up table. The range of amplitudetobe colorized is user selectable in the control software. Using this method the sensitivity of the image can be increased or decreased, using the colors to represent any range of peak amplitudes desired. THEORETICAL BASIS FOR TIME DISCRIMINATION Theoretical models ofthe instrument have been developed in an earlier study, 7 which was based upon the analytical solutions of Cheng, Dodd, and Deeds 8 9. The plot on the left in Fig. 3 shows a set of theoretical inversion curves calculated for a modellap-joint consisting of two 1.5-mm aluminum plates. This plot shows the peak amplitude versus the time to zero crossover for a range of metalloss in the locations shown in the schematic below. The plot on the rignt shows a nurober of experimental PEC curves obtained on the same geometry for 3% metalloss in each layer. As is evident in the inversion graph, air gap, or simple plate separation, has the earliest time to zero crossover. This is because the total thickness of metal below the coil remains constant. This results in a lower inductance, and hence faster rise and decay tims for the probe coil, than occurs when there is metalloss under the coil. Slightly later in time are the zero crossover points for metal loss in the bottom of the top layer, followed by thinning in the top of the bottom layer, and, finally, in the bottom of the bottom layer. > iii c:...;; CO "" CD.. 8.DE < 224 Al um tnutn 1 S mm Ihle< 5'1. 1 3~ me1111cu - 1"CI 6.E < tor.ott~ ot Tlf 4 OE 2 OE < 1.\ Tu otlorr~" lort(i""oihll!ll"' > iii c:..." cii "" CD.. 3 OE 2 2 OE Alumtnum t S mm lhtck - Rrt l "o'* - L6.'\ct12' 1"' : lop;tbolb-. :" -- 11:11)1"11 ' I OE 2 -.-!.lcth"' oiioi:.q'it 2... ~. OE+O O.OE D r- :...---' 1 2E 4 I 6E < 2.E 2 4E 4 2 BE Time to Zero-Cross~ng, s I DE ~..---,- O.OE- 2 OE 4 OE 6 OE 8.E 1 OE 3 Tome to Zero-Cross~ng, s Flaw advance Fig. 3. Theoretical inversion chart for PEC signals (left) and experimental waveforms for a variety of simulated defects (right). The geometry of the test specimen is shown at bottom. 1917

4 The schematic at the bottom of Fig. 3 is useful for visualizing the relationship between flaw location and the slope of the inversion curves. For metalloss at the bottom of the top layer or the bottom of the bottom layer, deeper flaws result in a thinning of material between the coil and the metal-defect interface. As illustrated by the arrows in the schematic diagram, this results in slightly shorter eddy current diffusion times for deeper flaws as they advance toward the probe. For metalloss at the top of the bottom layer, the metal-defect interface remains at a constant distance from the probe as the amount of thinning increases, and therefore the inversion curve has a nearly vertical slope. The separation in time of flaw signals from different layers provides a means to discriminate flaws based on time-gating. Time-gating is accomplished in the PEC software, as illustrated by the vertical bars in the display of Fig. 2. After an initial C-scan image has been acquired, it may be redisplayed, plotting only those peak: heights which have a zero crossover within a user-selected time gate. The initial image contains the peak: heights from the entire spectrum of zero crossover times possible during the pulse duration, which, for a 1kHz square wave at 5% duty cycle, is to 5 f..ls. PULSED EDDY-CURRENT IMAGES To demonstrate the PEC instrument's ability to discriminate flaws in layered structures, a lap-joint calibration sample was constructed of two plates of.62-inch 224 aluminum, as shown in Fig. 4. Flat bottom holes.75 inch in diameter were machined into the surface of each layer, with depths of 5, 1, 2, and 3%. Holes were also drilled in the sample to simulate rivets on 1-inch centers. Figure 5 is the pulsed eddy current image obtained by scanning this sample. The top image represents the raw image, which displays peak: heights from every signal acquired during the scan. The lower image is the result obtained by setting the time gate minimum late enough to exclude the rivet holes which, because they are on the surface, have very early zero crossover. Figure 6 is the result of setting narrower time gates to include only the flaws from each individuallayer. With the time-gate set for the times shown, we are able to isolate the flaws in the bottom of the top layer, the top of the bottom layer, and the bottom of the bottom layer, as shown. Elaw d~l:lltl 3% 2% 1% 5% Top plate Bottom plate Flaw locations Bottom ol top layer Top of bottom layer Bottom ol bottarn layer Fig. 4. Lap-joint calibration standard (.62-inch 224 Al plates with.75-inch dia. FBH). 1918

5 3% 2% 1% 5% Raw data, amplitude versus xy position 3% 2% 1% 5% Time-gated to eliminate data from fastener holes Fig. 5. PEC image of.62-inch lap-joint calibration standard. Bottom of Top Layer Bottom of Bonom Layer Top of Bottom Layer (19m >l>22j.is) (215m >l>25j.1s) (246m >1>512J.IS) Fig. 6. PEC image of.62-inch lap-joint calibration standard, time-gated to discriminate the flaws from each layer. The upper left image in Fig. 7 is a PEC raw data image of a two layer lap-joint corrosion training sample made by Boeing. lt consists of a corroded frrst layer riveted to a corrosion free second layer. The top right image is an immersion ultrasound image of the same sample. Similar features are seen in both images revealing the corroded areas and rivets, the PEC scan being of poorer resolution due tothelarge.47-inch diameter probe. The lower left image shows the PEC data time-gated to eliminate the rivet signals, leaving only the corroded areas. Narrower time-gating produced the image on the lower right, showing only the deepest areas of this first layer corrosion. This is possible due to the slightly negative slope of the inversion curve for corrosion in the first layer as discussed above. It is worth noting one feature that was revealed in this image: the dark corrosion spot just below the center of the image. According to the low amplitude color value assigned, this area would not at first appear to be deep corrosion. Upon comparison to the ultrasonic image however, we see that this spot is caused by a deep corrosion pit, smaller in diameter than our probe. The low amplitude of the signal was the result of the flaw being smaller than the probe used to scan it. In this case, time-gating provides the additional information required to deterrnine that this spot is indeed one of the deepest spots of 1919

6 - - Fig. 7. PEC scan of Boeing lap-joint corrosion training sarnple containing corroded first layer, joined to a corrosion free second layer. corrosion in this sarnple. This demonstrates one of the principal advantages of the pulsed eddy current technique. Figure 8 is the result of an investigation of second layer crack detection by pulsed eddy current. The sample is an EDM notch lap-joint calibration sarnple, containing EDM slots in the second layer of a.65-inch, two layer lap-joint with rivets on 1-inch centers. The notch lengths and locations are shown in the figure to be emanating radially from the edge of the rivet holes. The PEC scan of the raw data is shown in the figure, where the.2 inch notches are just visible. After time-gating this image to eliminate the interference due to the rivets, the lower image was produced, revealing even the smallest notch in the sample,.6 inches in length. Cross section Raw data image Time-gated image Secondlayer Fig. 8. PEC image of.65-inch lap-joint time-gated to discriminate second layer EDM notches. 192

7 SUMMARY Wehave demonstrated the ability of a newly developed prototype scanning pulsed eddy current system to discrirninate flaws using time-gating. The instrument can detect and locate cracks and corrosion in multilayer metal aircraft structures. Using the time dependence of the pulsed eddy current flaw signal, we have demonstrated the ability to deterrnine the location of defects and to discrirninate against interference from such features as fasteners or surface flaws. According to theoretical calculations and preliminary experimental work not shown here, we are also able to discrirninate flaws in the presence of varying Iiftoff and air gap. The instrument thus provides an easy to interpret, quantitative nondestructive testing technique that can be calibrated, in the case of an air-core probe, by using a theoretical inversion chart. ACKNOWLEDGMENTS This work was supported in part by the FAA Center for Aviation Systems Rehability program at the Center for NDE at Iowa State University, andin part by AFOSR grant No. F DEF, and by the Federal Aviation Administration under Grant Nos. 95-G-25 and 95-G-32. The authors are grateful to Mr. Michael Hutehinsan of the Boeing Airplane Co. for supplying one ofthe corrosion samples used in this study. REFERENCES 1. D. L. Waidelich, in Research Techniques in Nondestructive Testing Val. 1, edited by R. S. Sharpe, (Academic Press, London, 197), pp C. J. Renken, "Theory and Some Applications of Pulsed Current Fields to the Problems of Non-Destructive Testing", in Progress in Applied Materials Research Val. 6, edited by E. G. Stanford, J. H. Fearon, and W. J. McGonnagle (Gordon & Breach, London, 1964) pp D. L. Waidelich, S. C. Huang, Mat. Eva!. 3, 2-24 (1972). 4. J. L Fisher, and R. E. Beissner, "Pulsed Eddy Current Crack Characterization Experiments," in Review of Progress in QuantitativeNDE Vol.5, edited by D.. Thompson and D. E. Chimenti, (Plenum, New York 1986) p J. C. Moulder, M. W. Kubovich, E. Uzal, and J. H. Rose, "Pulsed Eddy-Current Measurements of Corrosion-Induced Metal Loss: Theory and Experiment," in Review of Progress in QNDE Val. 14, edited by D.. Thompson and D. E. Chimenti, (Plenum, New York 1995) p J. C. Moulder, J. A. Bieber, W. W. Ward III, and J. H. Rose, "Scanned Pulsed-Eddy Current Instrument for Non-Destructive Inspection of Aging Aircraft," SPIE Proceedings Val (in press). 7. J. H. Rose, E. Uzal, and J. C. Moulder, "Pulsed Eddy-Current Characterization of Corrosion in Aircraft Lap-Splices: Quantitative Modeling," SPIE Proceedings Vol. 216, 164 (1994). 8. C. C. Cheng, C. V. Dodd, and W. E. Deeds, lnt. J. Nondestr. Test. 3, 19 (1971). 9. C.V. Dodd and W. E. Deeds, J. Appl. Phys. 39, 2829 (1968). 1921

EDDY CURRENT EXAM SIMULATION USING COUPLED FINITE ELEMENT/ VOLUME INTEGRAL OR FINITE ELEMENT/BOUNDARY ELEMENT METHOD

EDDY CURRENT EXAM SIMULATION USING COUPLED FINITE ELEMENT/ VOLUME INTEGRAL OR FINITE ELEMENT/BOUNDARY ELEMENT METHOD DDY CURRNT XAM SIMULATION USING COUPLD FINIT LMNT/ VOLUM INTGRAL OR FINIT LMNT/BOUNDARY LMNT MTHOD INTRODUCTION dith A. Creek and Robert. Beissner Southwest Research Institute San Antonio, TX 788 The ability

More information

A PRACTICAL IMPLEMENTATION OF TRANSIENT EDDY CURRENTS FOR CORROSION AND CRACK DETECTION

A PRACTICAL IMPLEMENTATION OF TRANSIENT EDDY CURRENTS FOR CORROSION AND CRACK DETECTION A PRACTICAL IMPLEMENTATION OF TRANSIENT EDDY CURRENTS FOR CORROSION AND CRACK DETECTION Jesse A. Skramstad, NDT Solutions, Inc. Robert A Smith, QinetiQ Ltd UK Nancy Wood, Boeing Aircraft Company The 6th

More information

tas&m, INC., 107 Research Drive, Hampton, VA 23666

tas&m, INC., 107 Research Drive, Hampton, VA 23666 lmaging FLAWS IN THIN METAL PLATES USING A MAGNETO-OPTIC DEVICE B. WinCheSkit, D.R. Prabhut, M. Namkung and E.A. Birtt NASA Langley Research Center Hampton, Virginia 23665 tas&m, INC., 107 Research Drive,

More information

EDDY CURRENT INSPECTION FOR DEEP CRACK DETECTION AROUND FASTENER HOLES IN AIRPLANE MULTI-LAYERED STRUCTURES

EDDY CURRENT INSPECTION FOR DEEP CRACK DETECTION AROUND FASTENER HOLES IN AIRPLANE MULTI-LAYERED STRUCTURES EDDY CURRENT INSPECTION FOR DEEP CRACK DETECTION AROUND FASTENER HOLES IN AIRPLANE MULTI-LAYERED STRUCTURES Teodor Dogaru Albany Instruments Inc., Charlotte, NC tdogaru@hotmail.com Stuart T. Smith Center

More information

Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures

Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures Catalin Mandache *1, Theodoros Theodoulidis 2 1 Structures, Materials and Manufacturing Laboratory, National

More information

DETECTION OF SUB LAYER FATIGUE CRACKS UNDER AIRFRAME RIVETS

DETECTION OF SUB LAYER FATIGUE CRACKS UNDER AIRFRAME RIVETS DETECTION OF SUB LAYER FATIGUE CRACKS UNDER AIRFRAME RIVETS Buzz Wincheski and Min Namkung NASA Langley Research Center Hampton, VA 23681 INTRODUCTION The Rotating Self-Nulling Probe System developed as

More information

Corrosion Steel Inspection under Steel Plate Using Pulsed Eddy Current Testing

Corrosion Steel Inspection under Steel Plate Using Pulsed Eddy Current Testing 4th International Symposium on NDT in Aerospace 2012 - Poster 4 Corrosion Steel Inspection under Steel Plate Using Pulsed Eddy Current Testing D.M. SUH *, K.S. JANG **, J.E. JANG **, D.H. LEE ** * Raynar

More information

Implementation of Transient Eddy Currents from Lab Bench to the Production Environment

Implementation of Transient Eddy Currents from Lab Bench to the Production Environment Implementation of Transient Eddy Currents from Lab Bench to the Production Environment Jesse A. Skramstad, NDT Solutions, Inc. Robert A Smith, QinetiQ Ltd UK Lt Gary Steffes and Charles Buynak, USAF, AFRL,

More information

DEEP FLAW DETECTION WITH GIANT MAGNETORESISTIVE (GMR) BASED SELF-NULLING PROBE

DEEP FLAW DETECTION WITH GIANT MAGNETORESISTIVE (GMR) BASED SELF-NULLING PROBE DEEP FLAW DETECTION WITH GIANT MAGNETORESISTIVE (GMR) BASED SELF-NULLING PROBE Buzz Wincheski and Min Namkung NASA Langley Research Center Hampton, VA 23681 INTRODUCTION The use of giant magnetoresistive

More information

Transient Eddy-current NDE for Aging Aircraft Capabilities and Limitations.

Transient Eddy-current NDE for Aging Aircraft Capabilities and Limitations. Transient Eddy-current NDE for Aging Aircraft Capabilities and Limitations. Mr R A Smith Structural Materials Centre Defence Evaluation and Research Agency Farnborough GU1 LX UK E-mail: RASmith@dera.gov.uk

More information

AUTOMATED EDDY CURRENT DETECTION OF FLAWS IN SHOT-PEENED

AUTOMATED EDDY CURRENT DETECTION OF FLAWS IN SHOT-PEENED AUTOMATED EDDY CURRENT DETECTION OF FLAWS IN SHOT-PEENED TITANIUM MATERIALS INTRODUCTION Ray T. Ko and Stephen J. Pipenberg Automated Inspection Systems Systems Research Laboratories, Inc. 2800 Indian

More information

DEVELOPMENT OF VERY LOW FREQUENCY SELF-NULLING PROBE FOR INSPECTION OF THICK LAYERED ALUMINUM STRUCTURES

DEVELOPMENT OF VERY LOW FREQUENCY SELF-NULLING PROBE FOR INSPECTION OF THICK LAYERED ALUMINUM STRUCTURES DEVELOPMENT OF VERY LOW FREQUENCY SELF-NULLING PROBE FOR INSPECTION OF THICK LAYERED ALUMINUM STRUCTURES Buzz Wincheski and Min Namkung NASA Langley Research Center Hampton, VA 23681 INTRODUCTION Nondestructive

More information

CRACK SIZING USING A NEURAL NETWORK CLASSIFIER TRAINED WITH DATA OBTAINED FROM FINI1E ELEMENT MODELS

CRACK SIZING USING A NEURAL NETWORK CLASSIFIER TRAINED WITH DATA OBTAINED FROM FINI1E ELEMENT MODELS CRACK SIZING USING A NEURAL NETWORK CLASSIFIER TRAINED WITH DATA OBTAINED FROM FINI1E ELEMENT MODELS Kornelija Zgonc, Jan D. Achenbach and Yung-Chung Lee Center for Quality Engineering and Failure Prevention

More information

Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures

Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures Eric Pelletier, Marc Grenier, Ahmad Chahbaz and Tommy Bourgelas Olympus NDT Canada, NDT Technology Development, 505, boul. du

More information

DAMAGE DETECTION IN PLATE STRUCTURES USING SPARSE ULTRASONIC TRANSDUCER ARRAYS AND ACOUSTIC WAVEFIELD IMAGING

DAMAGE DETECTION IN PLATE STRUCTURES USING SPARSE ULTRASONIC TRANSDUCER ARRAYS AND ACOUSTIC WAVEFIELD IMAGING DAMAGE DETECTION IN PLATE STRUCTURES USING SPARSE ULTRASONIC TRANSDUCER ARRAYS AND ACOUSTIC WAVEFIELD IMAGING T. E. Michaels 1,,J.E.Michaels 1,B.Mi 1 and M. Ruzzene 1 School of Electrical and Computer

More information

Development of a pulsed eddy current instrument and its application to detect deeply buried corrosion

Development of a pulsed eddy current instrument and its application to detect deeply buried corrosion Retrospective Theses and Dissertations 1997 Development of a pulsed eddy current instrument and its application to detect deeply buried corrosion William Westfall Ward III Iowa State University Follow

More information

Fastener Hole Crack Detection Using Adjustable Slide Probes

Fastener Hole Crack Detection Using Adjustable Slide Probes Fastener Hole Crack Detection Using Adjustable Slide Probes General The guidelines for the adjustable sliding probes are similar to the fixed types, therefore much of the information that is given here

More information

Application of Ultrasonic Guided Wave to Heat Exchanger Tubes Inspection

Application of Ultrasonic Guided Wave to Heat Exchanger Tubes Inspection 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Application of Ultrasonic Guided Wave to Heat Exchanger Tubes Inspection Ik-Keun PARK 1,a, Yong-Kwon KIM 2,b, Sae-Jun PARK

More information

ULTRASONIC SIGNAL CHARACTERIZATIONS OF FLAT-BOTTOM HOLES IN

ULTRASONIC SIGNAL CHARACTERIZATIONS OF FLAT-BOTTOM HOLES IN ULTRASONIC SIGNAL CHARACTERIZATIONS OF FLAT-BOTTOM HOLES IN TITANIUM ALLOYS: EXPERIMENT AND THEORY INTRODUCTION Chien-Ping Chiou 1, Frank J. Margetan 1 and R. Bruce Thompson2 1 FAA Center for Aviation

More information

Detecting 1 st and 2 nd Layer Simulated Cracks in Aircraft Wing Spanwise Splice Standards Using Remote-Field Eddy Current Technique

Detecting 1 st and 2 nd Layer Simulated Cracks in Aircraft Wing Spanwise Splice Standards Using Remote-Field Eddy Current Technique Detecting 1 st and Layer imulated Cracks in Aircraft Wing panwise plice tandards Using Remote-Field Eddy Current Technique Yushi un, Tianhe Ouyang Innovative Materials Testing Technologies, Inc. 251 N.

More information

Non-Destructive Method Based on Rayleigh-Like Waves to Detect Corrosion Thinning on Non- Accessible Areas

Non-Destructive Method Based on Rayleigh-Like Waves to Detect Corrosion Thinning on Non- Accessible Areas 19 th World Conference on Non-Destructive Testing 2016 Non-Destructive Method Based on Rayleigh-Like Waves to Detect Corrosion Thinning on Non- Accessible Areas Laura TAUPIN 1, Frédéric JENSON 1*, Sylvain

More information

EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE

EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE J.L. Fisher, S.N. Rowland, J.S. Stolte, and Keith S. Pickens Southwest Research Institute 6220 Culebra Road San Antonio, TX 78228-0510 INTRODUCTION In

More information

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND V.V. Shah, K. Balasubramaniam and J.P. Singh+ Department of Aerospace Engineering and Mechanics +Diagnostic Instrumentation and Analysis

More information

RECENT ADVANCES AND IMPLEMENTATIONS OF FLEXIBLE EDDY. RJ. Filkins, J.P. Fulton, T.e. Patton, and J.D. Young

RECENT ADVANCES AND IMPLEMENTATIONS OF FLEXIBLE EDDY. RJ. Filkins, J.P. Fulton, T.e. Patton, and J.D. Young RECENT ADVANCES AND IMPLEMENTATIONS OF FLEXIBLE EDDY CURRENT PROBE TECHNOLOGY INTRODUCTION RJ. Filkins, J.P. Fulton, T.e. Patton, and J.D. Young General Electric Corporate Research and Development P.O.

More information

AFRL-RX-WP-TP

AFRL-RX-WP-TP AFRL-RX-WP-TP-2008-4046 DEEP DEFECT DETECTION WITHIN THICK MULTILAYER AIRCRAFT STRUCTURES CONTAINING STEEL FASTENERS USING A GIANT-MAGNETO RESISTIVE (GMR) SENSOR (PREPRINT) Ray T. Ko and Gary J. Steffes

More information

Emerging NDE Technology for Aging Aircraft

Emerging NDE Technology for Aging Aircraft Emerging NDE Technology for Aging Aircraft David G. Moore Richard L. Perry Sandia National Laboratories - Federal Aviation Administration Airworthiness Assurance NDI Validation Center Albuquerque, New

More information

Detection of Surface and Sub-surface Defects in Aluminium Plate Using Pulsed Eddy Current Technique

Detection of Surface and Sub-surface Defects in Aluminium Plate Using Pulsed Eddy Current Technique More info about this article: http://www.ndt.net/?id=21196 Detection of Surface and Sub-surface Defects in Aluminium Plate Using Pulsed Eddy Current Technique H. M. Bapat, Gurpartap Singh, B. P. Singh

More information

ARTICLE IN PRESS. NDT&E International

ARTICLE IN PRESS. NDT&E International NDT&E International 43 (2010) 409 415 Contents lists available at ScienceDirect NDT&E International journal homepage: www.elsevier.com/locate/ndteint Defect edge identification with rectangular pulsed

More information

Dave Stubbs, Wally Hoppe, and Bob Olding. NDE Systems Division Systems Research Laboratories, Inc. Dayton, Ohio

Dave Stubbs, Wally Hoppe, and Bob Olding. NDE Systems Division Systems Research Laboratories, Inc. Dayton, Ohio AUTOMATIC EDDY CURRENT HOLE CENTERING FOR AIRCRAFT ENGINE COMPONENTS Dave Stubbs, Wally Hoppe, and Bob Olding NDE Systems Division Systems Research Laboratories, Inc. Dayton, Ohio 4544-4696 INTRODUCTION

More information

Eddy Current Modelling for Fasteners Inspection in Aeronautic

Eddy Current Modelling for Fasteners Inspection in Aeronautic ECNDT 2006 - Tu.4.4.5 Eddy Current Modelling for Fasteners Inspection in Aeronautic Séverine PAILLARD, Grégoire PICHENOT, CEA Saclay, Gif-sur-Yvette, France Marc LAMBERT, L2S (CNRS-Supélec-UPS), Gif-sur-Yvette

More information

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe Journal of Magnetics 15(4), 204-208 (2010) DOI: 10.4283/JMAG.2010.15.4.204 Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe C.

More information

A NON-CONTACT LASER-EMAT SYSTEM FOR CRACK AND HOLE

A NON-CONTACT LASER-EMAT SYSTEM FOR CRACK AND HOLE A NON-CONTACT LASER-EMAT SYSTEM FOR CRACK AND HOLE DETECTON N METAL PLATES NTRODUCTON S. Dixon, C. Edwards and S. B. Palmer Department of Physics University of Warwick Coventry CV 4 7 AL United Kingdom

More information

Modelling of Pulsed Eddy Current Testing of wall thinning of carbon steel pipes through insulation and cladding

Modelling of Pulsed Eddy Current Testing of wall thinning of carbon steel pipes through insulation and cladding Modelling of Pulsed Eddy Current Testing of wall thinning of carbon steel pipes through insulation and cladding S Majidnia a,b, J Rudlin a, R. Nilavalan b a TWI Ltd, Granta Park Cambridge, b Brunel University

More information

Detection of Cracks at Rivet Holes in Thin Plates Using Lamb-Wave Scanning

Detection of Cracks at Rivet Holes in Thin Plates Using Lamb-Wave Scanning University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 2-1-2003 Detection of Cracks at Rivet Holes in Thin Plates Using Lamb-Wave Scanning

More information

ULTRASONIC METHODS FOR DETECTION OF MICRO POROSITY IN COMPOSITE MATERIALS

ULTRASONIC METHODS FOR DETECTION OF MICRO POROSITY IN COMPOSITE MATERIALS ULTRASONIC METHODS FOR DETECTION OF MICRO POROSITY IN COMPOSITE MATERIALS Jennifer E. Michaels, Thomas E. Michaels and Staffan Jonsson Panametrics, Inc. Automated Systems Division 102 Langmuir Lab 95 Brown

More information

THE ANALYSIS OF ADHESIVE BONDS USING ELECfROMAGNETIC

THE ANALYSIS OF ADHESIVE BONDS USING ELECfROMAGNETIC THE ANALYSIS OF ADHESIVE BONDS USING ELECfROMAGNETIC ACOUSTIC TRANSDUCERS S.Dixon, C.Edwards, S.B.Palmer Dept of Physics University of Warwick Coventry CV 4 7 AL INTRODUCfION EMATs have been used in ultrasonic

More information

VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering

VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering Introduction. The Document reviewed by http://engineermind.com/ By ahmed@engineermind.com The need

More information

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing Dominique Braconnier,

More information

DETECTION OF CORROSION IN BOTTOM PLATES OF GAS AND OIL TANKS USING GUIDED ULTRASONIC WAVES AND ELECTROMAGNETIC ULTRASONIC (EMAT) TRANSDUCERS

DETECTION OF CORROSION IN BOTTOM PLATES OF GAS AND OIL TANKS USING GUIDED ULTRASONIC WAVES AND ELECTROMAGNETIC ULTRASONIC (EMAT) TRANSDUCERS DETECTION OF CORROSION IN BOTTOM PLATES OF GAS AND OIL TANKS USING GUIDED ULTRASONIC WAVES AND ELECTROMAGNETIC ULTRASONIC (EMAT) TRANSDUCERS A Presentation prepared for the Jahrestagung der Deutsche Gesellschaft

More information

DEEP PENETRATING EDDY CURRENT for DETECTING VOIDS in COPPER

DEEP PENETRATING EDDY CURRENT for DETECTING VOIDS in COPPER DEEP PENETRATING EDDY CURRENT for DETECTING VOIDS in COPPER Tadeusz Stepinski (Uppsala University, Signals and System, P.O.Box 528, SE-75 2 Uppsala, Sweden, ts@signal.uu.se) Abstract Assessment of copper

More information

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE Jing Mu 1, Li Zhang 1, Joseph L. Rose 1 and Jack Spanner 1 Department of Engineering Science and Mechanics, The Pennsylvania State

More information

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on

More information

MAGNETORESISTIVE EDDY-CURRENT SENSOR FOR DETECTING

MAGNETORESISTIVE EDDY-CURRENT SENSOR FOR DETECTING MAGNETORESISTIVE EDDY-CURRENT SENSOR FOR DETECTING DEEPLY BURIED FLAWS William F. Avrin Quantum Magnetics, Inc. San Diego, CA 92121 INTRODUCTION One of the trends in eddy-current (Ee) NDE is to probe deeper

More information

INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED PLASTIC (CFRP) BY EDDY CURRENT NON- DESTRUCTIVE TESTING

INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED PLASTIC (CFRP) BY EDDY CURRENT NON- DESTRUCTIVE TESTING International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED

More information

FIRST MEASUREMENTS FROM A NEW BROADBAND VIBROTHERMOGRAPHY MEASUREMENT SYSTEM

FIRST MEASUREMENTS FROM A NEW BROADBAND VIBROTHERMOGRAPHY MEASUREMENT SYSTEM FIRST MEASUREMENTS FROM A NEW BROADBAND VIBROTHERMOGRAPHY MEASUREMENT SYSTEM Stephen D. Holland 1 Center for NDE and Aerospace Eng Dept, Iowa State Univ, Ames, Iowa 50011 ABSTRACT. We report on the construction

More information

MAGNEPROBE : A COMPUTERIZED PORTABLE SYSTEM FOR NON

MAGNEPROBE : A COMPUTERIZED PORTABLE SYSTEM FOR NON MAGNEPROBE : A COMPUTERIZED PORTABLE SYSTEM FOR NON DESTRUCTIVE EVALUATION OF SURFACE CONDITIONS IN FERRITIC COMPONENTS A. Parakka and D.C. Jiles Center for Advanced Technology Development Iowa State University

More information

Modelling III ABSTRACT

Modelling III ABSTRACT Modelling III Hybrid FE-VIM Model of Eddy Current Inspection of Steam Generator Tubes in the Vicinity of Tube Support Plates S. Paillard, A. Skarlatos, G. Pichenot, CEA LIST, France G. Cattiaux, T. Sollier,

More information

ULTRASONIC MEASUREMENT SYSTEM FOR THE ASSESSMENT OF

ULTRASONIC MEASUREMENT SYSTEM FOR THE ASSESSMENT OF ULTRASONIC MEASUREMENT SYSTEM FOR THE ASSESSMENT OF CORROSION IN PIPELINES INTRODUCTION P.P. van 't Veen TNO Institute of Applied Physics P.O. Box 155 2600 AD Delft The Netherlands The demand for information

More information

Detecting Compressive Residual Stress in Carbon Steel Specimens of Flat Geometries Using the Remote-Field Eddy Current Technique

Detecting Compressive Residual Stress in Carbon Steel Specimens of Flat Geometries Using the Remote-Field Eddy Current Technique Detecting Compressive Residual Stress in Carbon Steel Specimens of Flat Geometries Using the Remote-Field Eddy Current Technique Y. Sun and T. Ouyang Innovative Materials Testing Technologies, Inc. 2501

More information

AN ADAPTIVE MORPHOLOGICAL FILTER FOR DEFECT DETECTION IN EDDY

AN ADAPTIVE MORPHOLOGICAL FILTER FOR DEFECT DETECTION IN EDDY AN ADAPTIVE MORPHOLOGICAL FILTER FOR DEFECT DETECTION IN EDDY CURRENT AIRCRAFT WHEEL INSPECTION Shu Gao, Lalita Udpa Department of Electrical Engineering and Computer Engineering Iowa State University

More information

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON CONTACT STIMULATION OF RESONANT MODES Buzz Wincheski, J.P. Fulton, and R. Todhunter Analytical Services and Materials 107 Research Drive Hampton,

More information

ULTRASONIC DETECTION OF CRACKS BELOW BOLTS IN AIRCRAFT SKINS

ULTRASONIC DETECTION OF CRACKS BELOW BOLTS IN AIRCRAFT SKINS ULTRASONC DETECTON OF CRACKS BELOW BOLTS N ARCRAFT SKNS Chien-Po Chiou, Frank J. Margetan and James H. Rose Center for NDE owa State University Ames, owa 50011 NTRODUCTON The detection of cracks below

More information

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components ECNDT 26 - Mo.2.6.4 Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components Uwe PFEIFFER, Wolfgang HILLGER, DLR German Aerospace Center, Braunschweig, Germany Abstract. Ultrasonic

More information

Pulsed Eddy Current: New Developments for Corrosion Under Insulation Examinations

Pulsed Eddy Current: New Developments for Corrosion Under Insulation Examinations 19 th World Conference on Non-Destructive Testing 2016 Pulsed Eddy Current: New Developments for Corrosion Under Insulation Examinations Marc GRENIER 1, Vincent DEMERS-CARPENTIER 1 Maxime ROCHETTE 1, and

More information

COMPUTER MODELING OF EDDY CURRENT TRANSMIT-RECEIVE PROBES FOR. S.P. Sullivan, V.S. Cecco, L.S. Obrutsky, D. Humphrey, S.P. Smith and K.A.

COMPUTER MODELING OF EDDY CURRENT TRANSMIT-RECEIVE PROBES FOR. S.P. Sullivan, V.S. Cecco, L.S. Obrutsky, D. Humphrey, S.P. Smith and K.A. COMPUTER MODELING OF EDDY CURRENT TRANSMIT-RECEIVE PROBES FOR TUBE INSPECTION INTRODUCTION S.P. Sullivan, V.S. Cecco, L.S. Obrutsky, D. Humphrey, S.P. Smith and K.A. Emde Nondestructive Testing Development

More information

2.5D Finite Element Simulation Eddy Current Heat Exchanger Tube Inspection using FEMM

2.5D Finite Element Simulation Eddy Current Heat Exchanger Tube Inspection using FEMM Vol.20 No.7 (July 2015) - The e-journal of Nondestructive Testing - ISSN 1435-4934 www.ndt.net/?id=18011 2.5D Finite Element Simulation Eddy Current Heat Exchanger Tube Inspection using FEMM Ashley L.

More information

Research on Surface Defect Detection Using Pulsed Eddy Current Testing. Technology

Research on Surface Defect Detection Using Pulsed Eddy Current Testing. Technology 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Research on Surface Defect Detection Using Pulsed Eddy Current Testing Technology Deqiang ZHOU 1, Binqiang ZHANG 1,Guiyun

More information

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES USING GAS-COUPLED LASER ACOUSTIC DETECTION INTRODUCTION Yuqiao Yang, James N. Caron, and James B. Mehl Department of Physics and Astronomy University

More information

Developments in Ultrasonic Guided Wave Inspection

Developments in Ultrasonic Guided Wave Inspection Developments in Ultrasonic Guided Wave Inspection Wireless Structural Health Monitoring Technology for Heat Exchanger Shells using Magnetostrictive Sensor Technology N. Muthu, EPRI, USA; G. Light, Southwest

More information

Enhancement of the POD of Flaws in the Bulk of Highly Attenuating Structural Materials by Using SAFT Processed Ultrasonic Inspection Data

Enhancement of the POD of Flaws in the Bulk of Highly Attenuating Structural Materials by Using SAFT Processed Ultrasonic Inspection Data 4th European-American Workshop on Reliability of NDE - Th.1.A.1 Enhancement of the POD of Flaws in the Bulk of Highly Attenuating Structural Materials by Using SAFT Processed Ultrasonic Inspection Data

More information

NONDISTRUCTIVE TESTING INSTRUMENT OF DISHED Nb SHEETS FOR SRF CAVITIES BASED ON SQUID TECHNOLOGY

NONDISTRUCTIVE TESTING INSTRUMENT OF DISHED Nb SHEETS FOR SRF CAVITIES BASED ON SQUID TECHNOLOGY NONDISTRUCTIVE TESTING INSTRUMENT OF DISHED Nb SHEETS FOR SRF CAVITIES BASED ON SQUID TECHNOLOGY Q.-S. Shu, J. Susta, G. F. Cheng, I. Phipps, AMAC International Inc., Newport News, VA 23606 R. Selim, J.

More information

A Numerical Study of Depth of Penetration of Eddy Currents

A Numerical Study of Depth of Penetration of Eddy Currents A Numerical Study of Depth of Penetration of Eddy Currents S.Majidnia* a,b, R.Nilavalan b, J. Rudlin a a. TWI Ltd, Cambridge,United Kingdom b Brunel University, London,United Kingdom shiva.majidnia@twi.co.uk

More information

THERMAL WA VB IMAGING OF AIRCRAFT STRUcruRES

THERMAL WA VB IMAGING OF AIRCRAFT STRUcruRES THERMAL WA VB IMAGING OF AIRCRAFT STRUcruRES L.D. Favro, T. Ahmed, Xiaoyan Han, Li Wang, Xun Wang, Yingxia Wang, P.K. Kuo, and R.L.Thomas Department of Physics and Institute for Manufacturing Research

More information

FATIGUE CRACK GROWTH MONITORING OF AN ALUMINUM JOINT STRUCTURE

FATIGUE CRACK GROWTH MONITORING OF AN ALUMINUM JOINT STRUCTURE FATIGUE CRACK GROWTH MONITORING OF AN ALUMINUM JOINT STRUCTURE C. J. Lissenden 1, H. Cho 1, and C. S. Kim 1 1 Department of Engineering Science and Mechanics, The Pennsylvania State University, University

More information

Modern Electromagnetic Equipment for Nondestructive Testing

Modern Electromagnetic Equipment for Nondestructive Testing 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Modern Electromagnetic Equipment for Nondestructive Testing Aleksey G. EFIMOV 1, Sergey V. KLUEV 2, Andrey E. SHUBOCHKIN

More information

Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284

Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284 EDDY CURRENT PROBE PERFORMANCE CHARACTERIZATION* Gary L. Burkhardt Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284 INTRODUCTION Single-coil, absolute eddy current probes are used extensively

More information

A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING. R.L. Baer and G.S. Kino. Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305

A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING. R.L. Baer and G.S. Kino. Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305 A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING R.L. Baer and G.S. Kino Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305 INTRODUCTION In this paper we describe a contacting shear

More information

Signal Processing in an Eddy Current Non-Destructive Testing System

Signal Processing in an Eddy Current Non-Destructive Testing System Signal Processing in an Eddy Current Non-Destructive Testing System H. Geirinhas Ramos 1, A. Lopes Ribeiro 1, T. Radil 1, M. Kubínyi 2, M. Paval 3 1 Instituto de Telecomunicações, Instituto Superior Técnico

More information

Steam Generator Tubing Inspection

Steam Generator Tubing Inspection 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components October 27, Budapest, Hungary For more papers of this publication click: www.ndt.net/search/docs.php3?mainsource=7

More information

Multivariate Regression Algorithm for ID Pit Sizing

Multivariate Regression Algorithm for ID Pit Sizing IV Conferencia Panamericana de END Buenos Aires Octubre 2007 Abstract Multivariate Regression Algorithm for ID Pit Sizing Kenji Krzywosz EPRI NDE Center 1300 West WT Harris Blvd. Charlotte, NC 28262 USA

More information

2014 EDDY CURRENT BENCHMARK

2014 EDDY CURRENT BENCHMARK World Federation of N D 2014 EDDY CURRENT BENCHMARK E Centers The World Federation of NDE Centers pleased to announce a new Eddy Current Benchmark Problem for the 2014 Review of Progress in Quantitative

More information

THE LONG RANGE DETECTION OF CORROSION IN PIPES USING LAMB WAVES

THE LONG RANGE DETECTION OF CORROSION IN PIPES USING LAMB WAVES THE LONG RANGE DETECTION OF CORROSION IN PIPES USING LAMB WAVES David Alleyne and Peter Cawley Department of Mechanical Engineering Imperial College London SW7 2BX U.K. INTRODUCTION Corrosion and pitting

More information

NUMERICAL MODELING OF AIR-COUPLED ULTRASOUND WITH EFIT. D. E. Chimenti Center of Nondestructive Evaluation Iowa State University Ames, Iowa, USA

NUMERICAL MODELING OF AIR-COUPLED ULTRASOUND WITH EFIT. D. E. Chimenti Center of Nondestructive Evaluation Iowa State University Ames, Iowa, USA NUMERICAL MODELING OF AIR-COUPLED ULTRASOUND WITH EFIT M. Rudolph, P. Fellinger and K. J. Langenberg Dept. Electrical Engineering University of Kassel 34109 Kassel, Germany D. E. Chimenti Center of Nondestructive

More information

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites Single-Sided Contact-Free Ultrasonic Testing A New Air-Coupled Inspection Technology for Weld and Bond Testing M. Kiel, R. Steinhausen, A. Bodi 1, and M. Lucas 1 Research Center for Ultrasonics - Forschungszentrum

More information

LAMB WA VB TOMOGRAPHY USING LASER-BASED ULTRASONICS

LAMB WA VB TOMOGRAPHY USING LASER-BASED ULTRASONICS LAMB WA VB TOMOGRAPHY USING LASER-BASED ULTRASONICS INTRODUCTION Y. Nagata, J. Huang, J. D. Achenbach and S. Krishnaswamy Center for Quality Engineering and Failure Prevention Northwestern University Evanston,

More information

Rayleigh Wave Interaction and Mode Conversion in a Delamination

Rayleigh Wave Interaction and Mode Conversion in a Delamination Rayleigh Wave Interaction and Mode Conversion in a Delamination Sunil Kishore Chakrapani a, Vinay Dayal, a and Jamie Dunt b a Department of Aerospace Engineering & Center for NDE, Iowa State University,

More information

DETECTION OF THE SUBSURFACE CRACKS PROPAGATED FROM RIVET HOLES IN THE MULTILAYER AIRCRAFT STRUCTURES

DETECTION OF THE SUBSURFACE CRACKS PROPAGATED FROM RIVET HOLES IN THE MULTILAYER AIRCRAFT STRUCTURES XXIV Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane, 14-16 marca 2018 DETECTION OF THE SUBSURFACE CRACKS PROPAGATED FROM RIVET HOLES IN THE MULTILAYER AIRCRAFT STRUCTURES Valentyn UCHANIN Karpenko

More information

OPTIMIZATION OF A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

OPTIMIZATION OF A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS OPTIMIZATION OF A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS K. F. Schmidt,*, J. R. Little Evisive, Inc. Baton Rouge, Louisiana 70808

More information

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants Younho Cho School of Mechanical Engineering, Pusan National University, Korea ABSTRACT State-of-art

More information

FATIGUE CRACK DETECTION IN METALLIC MEMBERS USING SPECTRAL

FATIGUE CRACK DETECTION IN METALLIC MEMBERS USING SPECTRAL FATGUE CRACK DETECTON N METALLC MEMBERS USNG SPECTRAL ANAL YSS OF UL TRASONC RAYLEGH WAVES Udaya B. Halabe and Reynold Franklin West Virginia University Constructed Facilities Center Department of Civil

More information

MICROWAVE THICKNESS MEASUREMENTS OF MAGNETIC COATINGS. D.D. Palmer and V.R. Ditton

MICROWAVE THICKNESS MEASUREMENTS OF MAGNETIC COATINGS. D.D. Palmer and V.R. Ditton MICROWAVE THICKNESS MEASUREMENTS OF MAGNETIC COATINGS D.D. Palmer and V.R. Ditton McDonnell Aircraft Company McDonnell Douglas Corporation P.O. Box 516 St. Louis, MO 63166 INTRODUCTION Microwave nondestructive

More information

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE DOYOUN KIM, YOUNHO CHO * and JOONHYUN LEE Graduate School of Mechanical Engineering, Pusan National University Jangjeon-dong,

More information

New Multi-Technology In-Line Inspection Tool For The Quantitative Wall Thickness Measurement Of Gas Pipelines

New Multi-Technology In-Line Inspection Tool For The Quantitative Wall Thickness Measurement Of Gas Pipelines New Multi-Technology In-Line Inspection Tool For The Quantitative Wall Thickness Measurement Of Gas Pipelines A. Barbian 1, M. Beller 1, F. Niese 2, N. Thielager 1, H. Willems 1 1 NDT Systems & Services

More information

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea Abstract: The initiation and growth of short fatigue cracks in a simulated

More information

Ultrasonic Guided Waves for NDT and SHM

Ultrasonic Guided Waves for NDT and SHM Ultrasonic Guided Waves for NDT and SHM Joseph L. Rose Paul Morrow Professor Engineering Science & Mechanics Department Penn State University Chief Scientist FBS,Inc. CAV Presentation May 4, 2009 The difference

More information

New portable eddy current flaw detector and application examples

New portable eddy current flaw detector and application examples 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic New portable eddy current flaw detector and application examples More Info at Open Access Database

More information

USE OF A CHIRP WAVEFORM IN PULSED EDDY CURRENT CRACK DETECTION

USE OF A CHIRP WAVEFORM IN PULSED EDDY CURRENT CRACK DETECTION USE OF A HIRP WAVEFORM IN PULSED EDDY URRENT RAK DETETION R. E. Beissner and J. L. Fisher Southwest Research Institute San Antonio, Texas 78284 INTRODUTION When an electrical conductor containing a surface-breaking

More information

Magnetic Eddy Current (MEC) Inspection Technique

Magnetic Eddy Current (MEC) Inspection Technique Introduction Eddy Current Testing (ECT) is a well established technology for the inspection of metallic components for surface breaking flaws. It is used for component testing in the aviation and automotive

More information

Detection of Internal OR External Pits from Inside OR Outside a tube with New Technology (EMIT)

Detection of Internal OR External Pits from Inside OR Outside a tube with New Technology (EMIT) Detection of Internal OR External Pits from Inside OR Outside a tube with New Technology (EMIT) Author: Ankit Vajpayee Russell NDE Systems Inc. 4909 75Ave Edmonton, Alberta, Canada T6B 2S3 Phone 780-468-6800

More information

S. GURESH 4 JAN 2017 S. JOHNSON 4 JAN 2017

S. GURESH 4 JAN 2017 S. JOHNSON 4 JAN 2017 PAGE 2 OF 15 1.0 PURPOSE This Inspection Method describes the methodology for Ultrasonic Examination using manual and semi-automatic techniques by the contact and immersion longitudinal wave method and

More information

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING Thomas R. Hay, Jason Van Velsor, Joseph L. Rose The Pennsylvania State University Engineering Science and Mechanics

More information

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound MultiScan MS 5800 Tube Inspection System Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound 920-107 MultiScan MS 5800 E Tube Inspection with Eddy Current Condensers

More information

V (kvt) + Q= pc Ot GLASS FIBER AIRPLANE INSPECTED WITH INFRARED LOCKIN THERMOGRAPHY

V (kvt) + Q= pc Ot GLASS FIBER AIRPLANE INSPECTED WITH INFRARED LOCKIN THERMOGRAPHY GLASS FIBER AIRPLANE INSPECTED WITH INFRARED LOCKIN THERMOGRAPHY INTRODUCTION A. Salemo, D. Wu, G. Busse Institut fur Kunststoffprüfung und Kunststoffkunde Universität Stuttgart Pfaffenwaldring 32 D-70569

More information

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound MultiScan MS 5800 Tube Inspection System 920-107 Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound MultiScan MS 5800 E Tube Inspection with Eddy Current Condensers

More information

A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM

A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM OVERVIEW Marvin Lasser Imperium, Inc. Rockville, Maryland 20850 We are reporting on the capability of our novel ultrasonic imaging camera

More information

COVERING THICKNESS AND DIAMETER MEASUREMENT OF REINFORCING

COVERING THICKNESS AND DIAMETER MEASUREMENT OF REINFORCING COVERING THICKNESS AND DIAMETER MEASUREMENT OF REINFORCING BARS BY EDDY CURRENT TESTING USING NEURAL NETWORK Junji Koido Hiroshi Hoshikawa College of Industrial Technology Nihon University Narashino, Chiba,

More information

Characterization of Flip Chip Interconnect Failure Modes Using High Frequency Acoustic Micro Imaging With Correlative Analysis

Characterization of Flip Chip Interconnect Failure Modes Using High Frequency Acoustic Micro Imaging With Correlative Analysis Characterization of Flip Chip Interconnect Failure Modes Using High Frequency Acoustic Micro Imaging With Correlative Analysis Janet E. Semmens and Lawrence W. Kessler SONOSCAN, INC. 530 East Green Street

More information

Effect of coupling conditions on ultrasonic echo parameters

Effect of coupling conditions on ultrasonic echo parameters J. Pure Appl. Ultrason. 27 (2005) pp. 70-79 Effect of coupling conditions on ultrasonic echo parameters ASHOK KUMAR, NIDHI GUPTA, REETA GUPTA and YUDHISTHER KUMAR Ultrasonic Standards, National Physical

More information

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS Alexander A.KARABUTOV 1, Elena V.SAVATEEVA 2, Alexei N. ZHARINOV 1, Alexander A.KARABUTOV 1 Jr. 1 International Laser Center of M.V.Lomonosov

More information

SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA

SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA Abstract: A sparse array guided wave tomography system is

More information