Fortgeschrittenenpraktikum: Light Sensors for γ-ray Astronomy

Size: px
Start display at page:

Download "Fortgeschrittenenpraktikum: Light Sensors for γ-ray Astronomy"

Transcription

1 Physik Department - Technische Universita t Mu nchen Max-Planck-Institut fu r Physik Fortgeschrittenenpraktikum: Light Sensors for γ-ray Astronomy V 1.0 Christian Fruck, Priyadarshini Bangale cfruck@ph.tum.de, priya@mpp.mpg.de

2 Abstract In nearly all fields of astro-particle physics, the detection of the primary particles is based on the detection of light created in secondary processes. Such processes include: fluorescence, scintillation and the production of Cherenkov light. Light sensors used in astroparticle physics should offer a high Photon Detection Efficiency (PDE), ultra-fast time response and good charge resolution as well as low dark-noise rates. The most popular such devices are Photomultiplier tubes (PMTs), Hybrid Photo Diodes (HPDs) and the recently developed Silicon photomultipliers (SiPMs). This lab exercise is intended to give a basic knowledge about these detector types, introduce to standard techniques and teach some basic skills for measuring their properties. Title picture: PMTs of the MAGIC I camera behind their Winston cones (picture courtesy Daisuke Nakajima)

3 Contents 1 Introduction Astro-particle background Detector types Photomultiplier Tubes (PMT) Hybrid Photo Diodes (HPD) SIPM Experiments QE Measurements Measuring Gain Cross Talk in SiPMs After-pulses Evaluation QE Measurements Measuring Gain Cross Talk in SiPMs After-pulses

4 1 Introduction 1.1 Astro-particle physics background Astro-particle physics connects the methods and the research goals of two otherwise more distinct fields of research: astronomy/astrophysics and particle physics. This way, one can profit from the synergy in both directions. The theoretical understanding of astronomical objects can be improved by adding observational information from new channels and a wider spectral range. Particle physics on the other hand can profit from the extreme environments that are present in such objects. This allows to study processes that can neither be found nor - by using known technology - be generated in any lab on our planet. Examples range from single exotic stellar objects over highly active galaxies until the existence and properties of dark matter in general. All charged particles have the disadvantage that their origin cannot easily be reconstructed. This is due to their deflection by randomly distributed magnetic fields that are present everywhere within our galaxy and even beyond. The only non charged particles available are photons and neutrinos. Neutrinos are not that easy to detect and require huge and very sensitive detectors. Photons on the other hand are easy to detect and exploited to the maximum by classical astronomy in the optical, infrared and radio regime. Today also space-borne X-ray instruments are quite well established. All these instruments have one thing in common, which is that they can use optics to collimate electromagnetic waves. At even higher energies, namely in the γ-ray and very high energy γ-ray regime one has to use different techniques. It is possible to detect them by using methods from particle physics, namely constructing huge detectors with trackers and calorimeters to determine origin and energy of those particles. However, this is only possible outside our atmosphere and up to certain energies ( 100 GeV). Beyond this limit, the required size of such a space-borne instrument is just too large allow its realization because the fluxes are very low and the particle showers are too big to confine. Figure 1.1 gives an overview of the whole electromagnetic spectrum that can be used for astronomy. This is when ground based techniques are cutting in again. In ground based γ-ray astronomy one uses the fact that primary high energy γ-particles ( 1 GeV) create extended air showers (EAS) in the atmosphere (see Fig. 1.2 for an illustration of the processes involved). Here it is possible to either directly detect the secondaries in water tanks for example or to use fluorescence or Cherenkov light to record images of air-showers. Cherenkov light is always generated when charged particles are moving faster than the speed of light c/n in an optical medium. It is emmited under an angle θ. cos(θ) = 1 nβ (1.1) The same detection techniques are also used for charged cosmic rays, like for example in the AUGER 1 experiment and also in underground experiments serching for neutrinos

5 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION Figure 1.1: The electromagnetic spectrum with the optically transparent windows, suitable for direct ground based observations. The solid blue line indicates the height, where the incident power has become half due to atmospheric attenuation. Image taken from Wagner (2006). Examples for ground based γ-ray telescopes are MILLAGRO 2, HESS 3, VERITAS 4 and MAGIC 5 (see Fig. 1.3 for a picture of the MAGIC telescopes). The last three of them are using the Imaging Air-shower Cherenkov Telescope (IACT) technique, where an image of the air-shower is mapped to a very fast and sensitive camera by a large optical mirrortelescope. For such cameras or as sensors for fluorescence or scintillation light, detectors with sensitivity for very low light levels and fast response time are required. This lab exercise shall give some background knowledge and introduce some standard techniques, how to measure their properties and compare such devices. 1.2 Different photo-detector types All light sensors available in this lab exercise are intended for use in IACTs. However, the basic working principles of different detector types stays the same even if the requirements on some properties changes from field to field Photomultiplier Tubes (PMT) Photomultiplier Tubes or PMTs have a long tradition in applications, where fast light signals have to be converted into electrical pulses. The first PMTs were invented in the 1930s and allowed the development of the first light sensitive TV cameras (Kubetsky veritas.sao.arizona.edu 5 magic.mppmu.mpg.de 5

6 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION Primary Cosmic Ray (p,, Fe...) Atmospheric Nucleus e+ eem Shower Nucleons, K, etc. e+ e+ Atmospheric Nucleus ee+ e- EM Shower e- Nucleons, K, etc. e+ e+ e+ e e+ e- EM Shower Figure 1.2: Illustration of the secondary processes leading to electromagnetic and hadronic airshowers (Wagner 2006) Figure 1.3: The two MAGIC telescopes located on the Canary island La Palma observe the night sky in the spectral range of very high energy γ-radiation. They detect the faint Cherenkov light flashes produced by air-showers using cameras equipped with over 1000 photomultipliers each (picture courtesy Robert Wagner). 6

7 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION (1937), Zworykin et al. (1936), Iams & Salzberg (1935)). They are one of the few examples of vacuum tube devices still used today. The working principle of a PMT is described in Fig Photons hitting the photocathode of a PMT can create a free electron inside the tube. The number of released electrons over impinging photons is called quantum efficiency or QE. QE = N ph.e. N phot. (1.2) For the multiplication process, a dynode system (metal plates coated with low-workfunction 6 materials) is supplied with negative high voltage (typically -1000V), as well as the photo-cathode. A voltage divider is used to distribute the voltage in a cascading way from the photo-cathode to the anode. A special field configuration is used to accelerate and focus the electrons onto the first dynode (see Fig. 1.5). The energy that the e gained being accelerated by the electric filed is released in the impact and kicks out a certain number of new electrons, which are then accelerated to the next dynode and so on. Typically, the dynodes provide a charge multiplication of a factor 4-6. To improve charge resolution, for the first dynode one can use a higher voltage and reach charge multiplication of up to 15. In the end one can measure a substantial electric pulse at the anode. The overall efficiency for detecting a photon in such a device (photon detection efficiency - P DE) depends on the quantum efficiency QE(λ) and the ph.e. collection efficiency α(u). P DE(λ, U) = QE(λ) α(u) (1.3) Typical pulse lengths are of a few ns. The total charge gain η depends on the applied voltage and number of dynodes N and their individual gains η i (if different). η = N η i (1.4) i Typical values of total charge gain range from to Also nowadays as there are other options like for example Silicon photomultipliers available, classic PMTs will not at all loose their importance in astro-particle physics experiments. The still are the detector of choice for covering large active areas and low dark rates Hybrid Photo Diodes (HPD) So-called hybrid photo diodes or HPDs are a relatively new detector type with unique properties. The best models (using a GaAsP photocathode) offer a peak QE of around 50% and are capable of detecting single and multiple photon events with good resolution. The difference to a normal PMT is that the whole charge amplification happens in two stages only. HPDs combine a vacuum tube with single stage HV acceleration track (about -8kV) and a Silicon avalanche diode that serves as second stage (see Fig. 1.7 for explanation). The gain from the first stage (also called electron bombardment gain) is on the order of The second stage provides a gain (avalanche gain) of the order That gives 6 The term work-funktion is describing the energy that is needed to remove an electron from a material to vacuum 7

8 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION Figure 1.4: Working principle of a Photomultiplier Tube: When a photon hits the photo-cathode, it can produce a free electron with a probability called quantum efficiency (QE). A voltage of -1000V is applied to the photo-cathode and with a voltage divider distributed in a cascading way over the dynode system (5-7 dynodes typically). The e is accelerated and focused onto the first dynode, where its kinetic energy releases a certain number of secondary electrons that are then accelerated onto the next dynode and so on. In the end, the charge collected on the anode side is big enough to create a measurable electrical pulse (Drawing from Hamamatsu Photonics KK Editorial Committee (2006)). Figure 1.5: Typical field (equipotentials) configuration for focusing electrons in a PMT to maximize the collection efficiency (drawing from Burle Industries (1989)). 8

9 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION QE [%] wavelength [nm] Figure 1.6: Example for a QE curve of the HPD model that was developed for MAGIC and is also used in the detector of the MAGIC LIDAR (adapted from Fruck (2010)). a total gain of The bombardment gain η b (U) can be estimated from the band gap in Silicon E g (3.6eV). But it has to be taken into account that part of the bombardment energy E lost is lost (on the order of 2.5keV) in the inactive outer layer of the avalanche diode. After all, the bombardment gain of an HPD can be written like that: η b (U) (e U) E lost E g (1.5) Figure 1.8 shows the HPD model R9792U-40 from Hamamatsu that was produced as prototype that could replace the PMTs in the MAGIC cameras. This model has a peak QE 55% at 532nm and is therefore also used in the MAGIC LIDAR (LIght Detection And Ranging) system, where it provides a unique sensitivity in combination with a very weak laser (5µJ at 1kHz) Fig Silicon Photo Multipliers (SiPM) In the nineties a novel semiconductor photon detector concept (e.g Bondarenko et al. (2000), Golovin & Saveliev (2004), Buzhan et al. (2003)) was developed, which is a promising candidate for the photon detector in astroparticle and high energy physics experiments ((Otte 2007), (Otte et al. 2004)). Currently, the detector is in advanced phase. Figure 1.10 shows a MEPhI and Pulsar enterprise prototype SiPM that was produced in Moscow in The device has an active area of (1 1) mm 2 inside which 576 avalanche photo diodes (cells) implanted on a silicon chip. Each cell operates in the limited Geiger mode, i.e. each cell is biased via an integrated resistor to a voltage slightly above breakdown (as shown in Figure 2.1. In this mode an electrical breakdown of the reversely biased junction can be triggered by a single photon. The breakdown results in a well measurable output signal, which is independent of the number of photons that have been absorbed in the cell. All cells of a SiPM are connected to a common anode bus. The signals from all cells are added up on the bus and thus the output signal of a SiPM is the summed up signal of all coinciding in time fired cells. The 9

10 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION entrance window focusing e - GaAsP photocathode -8kV +400V out avalanche diode Figure 1.7: Working principle of a hybrid photo detector (HPD): With the probability of the QE, an incident photon releases an electron from the photo-cathode, to which high voltage of (minus) several kv is applied. The e is accelerated and focused onto an avalanche diode, where it creates electron-hole pairs loosing its kinetic energy (bombardement gain). these electron hole pairs are then amplified by the avalanche diode (avalanche gain) (drawing from Fruck (2010)). Figure 1.8: Hamamatsu R9792U-40 MHP0128HPD. This detector was designed as a possible replacement for the PMTs of the MAGIC telescopes, therefore the hexagonal shape. It is used as a light detector in the MAGIC LIDAR system. (image from Fruck (2010)). 10

11 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION Figure 1.9: The MAGIC LIDAR system, which is equipped with a HPD, and the MAGIC II telescope in the background. HPDs are very good detectors for low power elastic LIDAR, because they provide a very low dark rate and good singel photon resolution (picture by Robert Wagner). Figure 1.10: A prototype SiPM comprising 576 cells. Picture from Otte (2007). 11

12 1.2. DETECTOR TYPES CHAPTER 1. INTRODUCTION n V p n V p hole electron Proportional mode Geiger mode Figure 1.11: Multiplication process in an avalanche diode that is reverse-biased above breakdown voltage multiplication by electrons and holes (Geiger mode). In Geiger mode the avalanche diverges, whereas in proportional mode the avalanche stops automatically as the avalanche propagates only in one direction. (credit: Otte (2007)). SiPM has two terminals, one for the bias voltage and another one for the output signal. Care has to be taken that the output terminal is DC coupled to the ground. In comparison with PMTs, SiPMs are comparably fast, operate at low voltage, and insensitive to magnetic fields. In general, they have good photon detection efficiency (PDE), which eventually in future could lower the energy threshold of the IACTs, and they can be operated at high background illumination, hence can increase the instrument duty cycle. There are few drawbacks also, such as, only small size available, relatively high dark count rate, optical cross talk, afterpulses, their performance depends on the bias voltage and temperature, and PDE is limited by the geometrical factor. In SiPMs, the hot carrier gives rise to an effect called optical crosstalk which appears when the photons created in an avalanche can propagate mostly unhampered within the device and may be absorbed in the sensitive volume of a different cell, thus triggering an additional breakdown ((Otte 2007)). The PDE is given as a function of several factors: P DE(λ) = Geom eff Geiger eff (λ) T ransmit eff (λ) QE intrinsic (λ) (1.6) Where Geom eff is a ratio of the single cell light sensitive area to its total area, Geiger eff (λ) is a probability for starting a Geiger avalanche and it depends on overvoltage and temperature, T ransmit eff (λ) is wavelength-dependent transport of impinging photons into the sensitive volume, and QE intrinsic (λ) is an intrinsic quantum efficiency (S. Gentile & Meddi 2010). 12

13 2 The lab experiments What follows is a selection of experiments available to students in our labs. It is possible that one of the setups is not available because it is in use. Otherwise you can choose three of the following tasks: 2.1 Measuring Quantum Efficiency (QE) In this experiment you will use a measurement setup, consisting of a tunable light source and a calibrated reference detector to measure the quantum efficiency of a PMT and a HPD. The light source is a combination of a halogen lamp (visible and IR) and a deuterium lamp (blue and UV) that is attached to an optical grating and an order filter. The reference detector is a PIN photo-diode with known QE in all wavelengths, available in a spreadsheet file. The measurements are automatized with a LabVIEW program. Filters are selected automatically and the currents are read with a picoamperemeter. The experimental procedure is as follows: 1. Always switch on the light sources first! They need some time to stabilize. In the meanwhile familiarize yourself with the setup and the LabVIEW program. Your supervisor will help you and answer any questions. 2. Take a reference measurement: Install the PIN photo-diode into the setup. Close the box to be absolutely light-tight (You can also use the big peace of black cloth to improve the light-tightness). Then run the measurement program (Be careful with the output files - always remember your filenames. You will need them for data analysis later.). 3. Install the PMT in the measurement setup (Warning: NEVER switch on HV before you finally closed the box). The PMT is connected in a way that all dynodes are connected to together to the readout cable. The effect is that all charge that is generated on the photo-cathode is collected by the dynode system and read out by the pcicoamperemeter. No charge multiplication should take place. The HV you have to adjust to a value that assures maximum collection efficiency. When everything is installed in the box and the box is closed, slowly increase the HV until the current saturates. 4. Run the measurement program for the PMT. 5. Now install the HPD in the QE box (Again: Do not switch on HV before everything is inside the box and the box is closed.). For the HPD, again, you do not use the avalanche diode, but directly shortcut anode and cathode and connect them to the readout. Again you apply HV and let the current saturate for maximum collection efficiency. 6. Now you perform the last QE measurement run with the HPD. 13

14 2.2. MEASURING GAIN CHAPTER 2. EXPERIMENTS 2.2 Measuring gain and charge resolution In this experiment you will operate different light sensors in their nominal charge multiplication mode. A light source with very short pulses 1ns will be used. You will use an oscilloscope to record a charge histogram by integrating over many signal waveforms. The oscilloscope will be triggered with the frequency of the light source. From the recorded histograms you can derive the gain of the device and measure the charge resolution. 1. The PMT is installed in a dark box, together with pulsed light source of your choice (fast LED or LASER). The light source is pointed to a piece of diffusely reflecting material, in order to get a smaller light flux on and a more homogeneous illumination on the PMT. The typical HV value for the PMT model is applied after the box is sealed totally light-tight (Again, be very careful with the HV source. Only switch it on after you sealed the box and double checked the cabling. That is for your own safety as well as for the safety of the equipped). 2. The PMT signal output is connected to a charge sensitive amplifier (This one needs ± 15V on the power supply). The output of the amplifier goes to the oscilloscope, as well as the trigger output of the pulse generator for the light source. 3. Adjust the light intensity to a value that gives one photon (a few) per pulse on average for the gain (charge resolution) measurement. 4. Now the signal integration mode of the oscilloscope is selected (your supervisor will help you) and a large number of waveforms are analyzed and summed up. You should should get a histogram with a pedestal peak ( zero charge from trigger events with no photo-electron generated) and one or more peaks originating from one or more photo-electrons. The distance between the peaks gives you the charge resolution. 5. perform this measurement for at least 4 different HV values. 2.3 Single photoelectron and Cross-talk measurement for SiPMs The setup for SiPM single photoelectron and cross talk measurement constist of, two variable power supplies, an amplifier, a light source which will be either Laser (405/440 nm) or LED (500/598 nm), a picoammeter, and an oscilloscope. The measuremnts are automatized with a LabView program. For data analysis a ROOT macro is avilable. The experimental procedure is as follows: 1. Switch on oscilloscope first as it takes time to start. Meanwhile, check the setup inside the box including proper connections to SiPM circuit and to external amplifier. 2. Before placing SiPM in the circuit, always check the polarity as you need SiPM to work in reverse bias. Prior polarity check is very important, as wrong polarity can damage the SiPM. 3. Close the box properly. To make sure it is light tight, you can use additional black cloth also. 14

15 2.4. AFTER-PULSES CHAPTER 2. EXPERIMENTS Figure 2.1: Basic setup for single photoelectron measurement and crosstalk calculation for SiPMs (2.3) and measuring after-pulses of PMTs(2.4) (Credit: Daniel Mazin). 4. Get familiar with oscilloscope settings, your supervisor will help you in it initially. 5. Switch on both power supplies. Apply ±15 V for amplifier and voltage for SiPM will vary according to the type. 6. Apply trigger and set the intensity level for Laser/LED. 7. Check if you could detect the signal from SiPM. 8. Run the measurement and take data using the LabView program or directly in the oscilloscope. 9. Repeat the procedure for different intensity levels of Laser/LED. 2.4 Measuring after-pulses of PMTs A problem, that all impact multiplication light detectors have in common is that of afterpulsing due to ion impact on the photo-cathode. The process behind is the following: An electron that was created by normal photon impact on the photo-cathode hits an atom of the rest gas or some other impurity of the vacuum. This can either happen on the way to the first dynode or more likely on the first dynode on some adhesively bound atom/molecule. This can create a partially ionized particle that is accelerated backwards towards the cathode due to its positive charge. A lot of effort is made in terms of field configuration (see Fig.: 1.5) to prevent such ions to make their way to the cathode but still it can not be excluded completely. Finally, the impact of such a particle releases a whole bunch of electrons that are amplified by the dynode system and create big after-pulses. The time delay, in respect to the initial light pulse, of such after-pulses is characteristic, depending on their charge and mass. 15

16 2.4. AFTER-PULSES CHAPTER 2. EXPERIMENTS To get a better feeling for this effect, you will use a pulsed light source and pile up the obtained signal of many pulses in order to identify different populations of after-pulses. The measurement consists of the following steps: 1. The PMT is installed in a dark box, together with pulsed light source of your choice (fast LED or LASER). The light source is pointed to a piece of diffusely reflecting material, in order to get a smaller light flux on and a more homogeneous illumination on the PMT. The typical HV value for the PMT model is applied after the box is sealed totally light-tight (Again, be very careful with the HV source. Only switch it on after you sealed the box and double checked the cabling. That is for your own safety as well as for the safety of the equipped). 2. The PMT signal output is connected to a charge sensitive amplifier (This one needs ± 15V on the power supply). The output of the amplifier goes to the oscilloscope, as well as the trigger output of the pulse generator for the light source. 3. Adjust the light intensity to a value that gives a few photons per pulse on average. Monitor the oscilloscope for a while. Maybe you can already spot some after-pulse events. 4. Now the pile-up mode of the oscilloscope is selected (your supervisor will help you) and a large number of waveforms is summed up. You should be able to see different populations of after-pulses if you selected the settings correctly. 16

17 3 Evaluation of the results 3.1 Measuring Quantum Efficiency (QE) Produce a plot of QE over wavelength for every detector that you have tested. 3.2 Measuring gain and charge resolution Produce a plot of gain over HV for the PMT(s)/HPD that you characterized. Compare the charge resolution of both detector types. Can you explain the differences? 3.3 Single photoelectron measurement and Cross-talk calculation for SiPMs i) Produce a histogram showing SiPM single photoelectron(s). Locate the pedestial and photoelectrons seperately. Compare the results at different voltages and intensities. Do you expect any difference? ii) Produce a plot for Cross talk vs voltage at different votage and intensity settings. Compare and explain the differences. 3.4 Measuring after-pulses of PMTs At what time delays could you observe after-pulses? Is it possible to assign certain elements/molecules to the populations? 17

18 Bibliography Bondarenko, G., Buzhan, P., Dolgoshein, B., et al. 2000, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 442, 187 Buzhan, P., Dolgoshein, B., Filatov, L., et al. 2003, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504, 48 Fruck, C. 2010, Diploma thesis, Technische Universität München - Fakultät für Physik / Max-Planck-Institut für Physik Golovin, V. & Saveliev, V. 2004, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 518, 560 Iams, H. & Salzberg, B. 1935, Radio Engineers, Proceedings of the Institute of, 23, 55 Kubetsky, L. A. 1937, Radio Engineers, Proceedings of the Institute of, 25, 421 Burle Industries. 1989, Photomultiplier handbook, Tech. rep., Burle Industries Inc. Hamamatsu Photonics KK Editorial Committee. 2006, Photomultiplier tubes-basics and applications, Tech. rep., Hamamatsu Photonics Otte, A., Dolgoshein, B., Hose, J., et al. 2004, in Nuclear Science Symposium Conference Record, 2004 IEEE, Vol. 2, Vol. 2 Otte, N. 2007, PhD thesis, Technische Universität München S. Gentile, E. K. & Meddi, F. 2010, IL NUOVO CIMENTO, 8, 999 Wagner, R. 2006, PhD thesis, Technische Universität München Zworykin, V., Morton, G. A., & Malter, L. 1936, Radio Engineers, Proceedings of the Institute of, 24,

Use of a Hybrid Photo Detector (HPD) in the MAGIC micro power LIDAR system

Use of a Hybrid Photo Detector (HPD) in the MAGIC micro power LIDAR system Use of a Hybrid Photo Detector (HPD) in the MAGIC micro power LIDAR system Christian Fruck cfruck@ph.tum.de Max-Planck-Institut für Physik LIGHT 11 - Ringberg 03.11.2011 1 / 18 Overview MAGIC uses the

More information

A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers

A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers A. N. Otte a,, J. Hose a,r.mirzoyan a, A. Romaszkiewicz a, M. Teshima a, A. Thea a,b a Max Planck Institute for Physics, Föhringer

More information

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland)

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland) Danube School on Instrumentation in Elementary Particle & Nuclear Physics University of Novi Sad, Serbia, September 8 th 13 th, 2014 Lab Experiment: Characterization of Silicon Photomultipliers Dominik

More information

The HPD DETECTOR. Michele Giunta. VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea"

The HPD DETECTOR. Michele Giunta. VLVnT Workshop Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea The HPD DETECTOR VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea" In this presentation: The HPD working principles The HPD production CLUE Experiment

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Silicon Photomultiplier

Silicon Photomultiplier Silicon Photomultiplier Operation, Performance & Possible Applications Slawomir Piatek Technical Consultant, Hamamatsu Corp. Introduction Very high intrinsic gain together with minimal excess noise make

More information

Characterisation of SiPM Index :

Characterisation of SiPM Index : Characterisation of SiPM --------------------------------------------------------------------------------------------Index : 1. Basics of SiPM* 2. SiPM module 3. Working principle 4. Experimental setup

More information

CHAPTER 11 HPD (Hybrid Photo-Detector)

CHAPTER 11 HPD (Hybrid Photo-Detector) CHAPTER 11 HPD (Hybrid Photo-Detector) HPD (Hybrid Photo-Detector) is a completely new photomultiplier tube that incorporates a semiconductor element in an evacuated electron tube. In HPD operation, photoelectrons

More information

PRELIMINARY RESULTS OF PLASTIC SCINTILLATORS DETECTOR READOUT WITH SILICON PHOTOMULTIPLIERS FOR COSMIC RAYS STUDIES *

PRELIMINARY RESULTS OF PLASTIC SCINTILLATORS DETECTOR READOUT WITH SILICON PHOTOMULTIPLIERS FOR COSMIC RAYS STUDIES * Romanian Reports in Physics, Vol. 64, No. 3, P. 831 840, 2012 PRELIMINARY RESULTS OF PLASTIC SCINTILLATORS DETECTOR READOUT WITH SILICON PHOTOMULTIPLIERS FOR COSMIC RAYS STUDIES * D. STANCA 1,2 1 National

More information

Silicon Photomultipliers

Silicon Photomultipliers Silicon Photomultipliers a new device for frontier detectors in HEP, astroparticle physics, nuclear medical and industrial applications Nepomuk Otte MPI für Physik, Munich Outline Motivation for new photon

More information

An Introduction to the Silicon Photomultiplier

An Introduction to the Silicon Photomultiplier An Introduction to the Silicon Photomultiplier The Silicon Photomultiplier (SPM) addresses the challenge of detecting, timing and quantifying low-light signals down to the single-photon level. Traditionally

More information

High collection efficiency MCPs for photon counting detectors

High collection efficiency MCPs for photon counting detectors High collection efficiency MCPs for photon counting detectors D. A. Orlov, * T. Ruardij, S. Duarte Pinto, R. Glazenborg and E. Kernen PHOTONIS Netherlands BV, Dwazziewegen 2, 9301 ZR Roden, The Netherlands

More information

Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy

Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy Derek Strom, Razmik Mirzoyan, Jürgen Besenrieder Max-Planck-Institute for Physics, Munich, Germany ICASiPM,

More information

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Work supported partly by DOE, National Nuclear Security Administration

More information

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014 Detectors for microscopy - CCDs, APDs and PMTs Antonia Göhler Nov 2014 Detectors/Sensors in general are devices that detect events or changes in quantities (intensities) and provide a corresponding output,

More information

Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy

Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy Derek Strom, Razmik Mirzoyan, Jürgen Besenrieder Max-Planck-Institute for Physics, Munich, Germany 14

More information

PoS(PhotoDet 2012)058

PoS(PhotoDet 2012)058 Absolute Photo Detection Efficiency measurement of Silicon PhotoMultipliers Vincent CHAUMAT 1, Cyril Bazin, Nicoleta Dinu, Véronique PUILL 1, Jean-François Vagnucci Laboratoire de l accélérateur Linéaire,

More information

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 1-Defintion & Mechanisms of photodetection It is a device that converts the incident light into electrical current External photoelectric effect: Electrons are

More information

Development of New Large-Area Photosensors in the USA

Development of New Large-Area Photosensors in the USA Development of New Large-Area Photosensors in the USA @BURLE classical PMTs (separate talk) @UC Davis: (1) ReFerence Flat Panels for mass production (2) Light Amplifiers (flat and spherical) Daniel Ferenc

More information

Andrea WILMS GSI, Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Andrea WILMS GSI, Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany GSI, Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany E-mail: A.Wilms@gsi.de During the last years the experimental demands on photodetectors used in several HEP experiments have increased

More information

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Nuclear Physics #1 Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Introduction: In this experiment you will use both scintillation and semiconductor detectors to study γ- ray energy spectra. The

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors

Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors F. Muheim a edin]department of Physics and Astronomy, University of Edinburgh Mayfield Road, Edinburgh EH9 3JZ,

More information

Silicon Photo Multiplier SiPM. Lecture 13

Silicon Photo Multiplier SiPM. Lecture 13 Silicon Photo Multiplier SiPM Lecture 13 Photo detectors Purpose: The PMTs that are usually employed for the light detection of scintillators are large, consume high power and are sensitive to the magnetic

More information

The Light Amplifier Concept

The Light Amplifier Concept The Light Amplifier Concept Daniel Ferenc 1 Eckart Lorenz 1,2 Daniel Kranich 1 Alvin Laille 1 (1) Physics Department, University of California Davis (2) Max Planck Institute, Munich Work supported partly

More information

The Silicon Photomultiplier - A new device for High Energy Physics, Astroparticle Physics, Industrial and Medical Applications

The Silicon Photomultiplier - A new device for High Energy Physics, Astroparticle Physics, Industrial and Medical Applications The Silicon Photomultiplier - A new device for High Energy Physics, Astroparticle Physics, Industrial and Medical Applications N. Otte Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 Munich, Germany

More information

AND9770/D. Introduction to the Silicon Photomultiplier (SiPM) APPLICATION NOTE

AND9770/D. Introduction to the Silicon Photomultiplier (SiPM) APPLICATION NOTE Introduction to the Silicon Photomultiplier (SiPM) The Silicon Photomultiplier (SiPM) is a sensor that addresses the challenge of sensing, timing and quantifying low-light signals down to the single-photon

More information

Peculiarities of the Hamamatsu R photomultiplier tubes

Peculiarities of the Hamamatsu R photomultiplier tubes Peculiarities of the Hamamatsu R11410-20 photomultiplier tubes Akimov D.Yu. SSC RF Institute for Theoretical and Experimental Physics of National Research Centre Kurchatov Institute 25 Bolshaya Cheremushkinskaya,

More information

event physics experiments

event physics experiments Comparison between large area PMTs at cryogenic temperature for neutrino and rare Andrea Falcone University of Pavia INFN Pavia event physics experiments Rare event physics experiment Various detectors

More information

Light Collection. Plastic light guides

Light Collection. Plastic light guides Light Collection Once light is produced in a scintillator it must collected, transported, and coupled to some device that can convert it into an electrical signal (PMT, photodiode, ) There are several

More information

Introduction to silicon photomultipliers (SiPMs) White paper

Introduction to silicon photomultipliers (SiPMs) White paper Introduction to silicon photomultipliers (SiPMs) White paper Basic structure and operation The silicon photomultiplier (SiPM) is a radiation detector with extremely high sensitivity, high efficiency, and

More information

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26 Today s Outline - January 25, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today s Outline - January 25, 2018 HW #2 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today

More information

Design and Simulation of a Silicon Photomultiplier Array for Space Experiments

Design and Simulation of a Silicon Photomultiplier Array for Space Experiments Journal of the Korean Physical Society, Vol. 52, No. 2, February 2008, pp. 487491 Design and Simulation of a Silicon Photomultiplier Array for Space Experiments H. Y. Lee, J. Lee, J. E. Kim, S. Nam, I.

More information

5. Scintillation counters

5. Scintillation counters 5. Scintillation counters to detect radiation by means of scintillation is among oldest methods of particle detection historical example: particle impinging on ZnS screen -> emission of light flash principle

More information

Photonics in Particle Physics

Photonics in Particle Physics Photonics in Particle Physics Prof. Peter R Hobson C.Phys M.Inst.P. School of Engineering and Design Brunel University, Uxbridge Updated December 2014 Peter.Hobson@brunel.ac.uk What is Photonics The technology

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

PMT Calibration in the XENON 1T Demonstrator. Abstract

PMT Calibration in the XENON 1T Demonstrator. Abstract PMT Calibration in the XENON 1T Demonstrator Sarah Vickery Nevis Laboratories, Columbia University, Irvington, NY 10533 USA (Dated: August 2, 2013) Abstract XENON Dark Matter Project searches for the dark

More information

Chemistry Instrumental Analysis Lecture 7. Chem 4631

Chemistry Instrumental Analysis Lecture 7. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 7 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography UBC Physics & Astronomy / PHYS 409 1 Introduction Positron emission tomography (PET) is a non-invasive way to produce the functional 1 image of a patient. It works by injecting

More information

5. Scintillation counters

5. Scintillation counters 5. Scintillation counters to detect radiation by means of scintillation is among oldest methods of particle detection particle impinging on ZnS screen -> emission of light flash principle of scintillation

More information

Strong Boost of PMT and SiPM Parameters for Astro-Particle Physics Experiments

Strong Boost of PMT and SiPM Parameters for Astro-Particle Physics Experiments Strong Boost of PMT and SiPM Parameters for Astro-Particle Physics Experiments Razmik Mirzoyan Max-Planck-Institute for Physics (Werner-Heisenberg-Institute) Munich, Germany Light in web The most complex

More information

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response (response time) 5) Stability 6) Cost 7) convenience Photoelectric

More information

MANY existing and planned experiments in high energy

MANY existing and planned experiments in high energy Prospects of Using Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte, Boris Dolgoshein, Jürgen Hose, Sergei Klemin, Eckart Lorenz, Gerhard Lutz, Razmick

More information

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Due by 12:00 noon (in class) on Tuesday, Nov. 7, 2006. This is another hybrid lab/homework; please see Section 3.4 for what you

More information

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation Spectroscopy in the UV and Visible: Instrumentation Typical UV-VIS instrument 1 Source - Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

A Study of Silicon Photomultiplier Sensor Prototypes for Readout of a Scintillating Fiber / Lead Sheet Barrel Calorimeter

A Study of Silicon Photomultiplier Sensor Prototypes for Readout of a Scintillating Fiber / Lead Sheet Barrel Calorimeter 2007 IEEE Nuclear Science Symposium Conference Record N41-6 A Study of Silicon Photomultiplier Sensor Prototypes for Readout of a Scintillating Fiber / Lead Sheet Barrel Calorimeter Carl J. Zorn Abstract:

More information

Photons and solid state detection

Photons and solid state detection Photons and solid state detection Photons represent discrete packets ( quanta ) of optical energy Energy is hc/! (h: Planck s constant, c: speed of light,! : wavelength) For solid state detection, photons

More information

Astro-photography. Daguerreotype: on a copper plate

Astro-photography. Daguerreotype: on a copper plate AST 1022L Astro-photography 1840-1980s: Photographic plates were astronomers' main imaging tool At right: first ever picture of the full moon, by John William Draper (1840) Daguerreotype: exposure using

More information

AN ADVANCED STUDY OF SILICON PHOTOMULTIPLIER

AN ADVANCED STUDY OF SILICON PHOTOMULTIPLIER AN ADVANCED STUDY OF SILICON PHOTOMULTIPLIER P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Yu. Volkov Moscow Engineering and Physics Institute,

More information

How Does One Obtain Spectral/Imaging Information! "

How Does One Obtain Spectral/Imaging Information! How Does One Obtain Spectral/Imaging Information! How do we measure the position, energy, and arrival time of! an X-ray photon?! " What we observe depends on the instruments that one observes with!" In

More information

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes HF Upgrade Studies: Characterization of Photo-Multiplier Tubes 1. Introduction Photomultiplier tubes (PMTs) are very sensitive light detectors which are commonly used in high energy physics experiments.

More information

Lecture 12 OPTICAL DETECTORS

Lecture 12 OPTICAL DETECTORS Lecture 12 OPTICL DETECTOS (eference: Optical Electronics in Modern Communications,. Yariv, Oxford, 1977, Ch. 11.) Photomultiplier Tube (PMT) Highly sensitive detector for light from near infrared ultraviolet

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

arxiv: v1 [physics.ins-det] 16 Jun 2010

arxiv: v1 [physics.ins-det] 16 Jun 2010 Photon detection efficiency of Geiger-mode avalanche photodiodes arxiv:06.3263v1 [physics.ins-det] 16 Jun 20 S. Gentile 1, E. Kuznetsova 2, F. Meddi 1 1- Università degli Studi di Roma La Sapienza, Piazzale

More information

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009 , Ljubljana, 7-9 July 2009 Outline: MCP aging waveform readout (MPPC) summary (slide 1) Aging preliminary news from Photonis Old information: Current performance (no Al protection layer): 50% drop of efficiency

More information

SiPMs for solar neutrino detector? J. Kaspar, 6/10/14

SiPMs for solar neutrino detector? J. Kaspar, 6/10/14 SiPMs for solar neutrino detector? J. Kaspar, 6/0/4 SiPM is photodiode APD Geiger Mode APD V APD full depletion take a photo-diode reverse-bias it above breakdown voltage (Geiger mode avalanche photo diode)

More information

arxiv: v3 [astro-ph.im] 17 Jan 2017

arxiv: v3 [astro-ph.im] 17 Jan 2017 A novel analog power supply for gain control of the Multi-Pixel Photon Counter (MPPC) Zhengwei Li a,, Congzhan Liu a, Yupeng Xu a, Bo Yan a,b, Yanguo Li a, Xuefeng Lu a, Xufang Li a, Shuo Zhang a,b, Zhi

More information

Engineering Medical Optics BME136/251 Winter 2018

Engineering Medical Optics BME136/251 Winter 2018 Engineering Medical Optics BME136/251 Winter 2018 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) *1/17 UPDATE Wednesday, 1/17 Optics and Photonic Devices III: homework

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

Performance of 8-stage Multianode Photomultipliers

Performance of 8-stage Multianode Photomultipliers Performance of 8-stage Multianode Photomultipliers Introduction requirements by LHCb MaPMT characteristics System integration Test beam and Lab results Conclusions MaPMT Beetle1.2 9 th Topical Seminar

More information

Scintillators as an external trigger for cathode strip chambers

Scintillators as an external trigger for cathode strip chambers Scintillators as an external trigger for cathode strip chambers J. A. Muñoz Department of Physics, Princeton University, Princeton, NJ 08544 An external trigger was set up to test cathode strip chambers

More information

Università degli Studi di Napoli Federico II

Università degli Studi di Napoli Federico II Università degli Studi di Napoli Federico II PhD in Novel Technologies for Material, Sensors and Imaging Cycle XXVIII Research and development of a pioneering system for single photon detection: the VSiPMT

More information

Silicon Photomultipliers. Dieter Renker

Silicon Photomultipliers. Dieter Renker Silicon Photomultipliers Dieter Renker - Name: SiPM? SiPM (Silicon PhotoMultiplier) inherently wrong, it is a photoelectron multiplier MPGM APD (Multipixel Geiger-mode Avalanche PhotoDiode) AMPD (Avalanche

More information

Advancement in development of photomultipliers dedicated to new scintillators studies.

Advancement in development of photomultipliers dedicated to new scintillators studies. Advancement in development of photomultipliers dedicated to new scintillators studies. Maciej Kapusta, Pascal Lavoutea, Florence Lherbet, Cyril Moussant, Paul Hink INTRODUCTION AND OUTLINE In the validation

More information

Moderne Teilchendetektoren - Theorie und Praxis 2. Dr. Bernhard Ketzer Technische Universität München SS 2013

Moderne Teilchendetektoren - Theorie und Praxis 2. Dr. Bernhard Ketzer Technische Universität München SS 2013 Moderne Teilchendetektoren - Theorie und Praxis 2 Dr. Bernhard Ketzer Technische Universität München SS 2013 7 Signal Processing and Acquisition 7.1 Signals 7.2 Amplifier 7.3 Electronic Noise 7.4 Analog-to-Digital

More information

arxiv:hep-ex/ v1 19 Apr 2002

arxiv:hep-ex/ v1 19 Apr 2002 STUDY OF THE AVALANCHE TO STREAMER TRANSITION IN GLASS RPC EXCITED BY UV LIGHT. arxiv:hep-ex/0204026v1 19 Apr 2002 Ammosov V., Gapienko V.,Kulemzin A., Semak A.,Sviridov Yu.,Zaets V. Institute for High

More information

Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki , Japan

Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki , Japan 1, Hiroaki Aihara, Masako Iwasaki University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: chojyuro@gmail.com Manobu Tanaka Institute for Particle and Nuclear Studies, High Energy Accelerator

More information

SPMMicro. SPMMicro. Low Cost High Gain APD. Low Cost High Gain APD. Page 1

SPMMicro. SPMMicro. Low Cost High Gain APD. Low Cost High Gain APD. Page 1 SPMMicro Page 1 Overview Silicon Photomultiplier (SPM) Technology SensL s SPMMicro series is a High Gain APD provided in a variety of miniature, easy to use, and low cost packages. The SPMMicro detector

More information

Photon Count. for Brainies.

Photon Count. for Brainies. Page 1/12 Photon Count ounting for Brainies. 0. Preamble This document gives a general overview on InGaAs/InP, APD-based photon counting at telecom wavelengths. In common language, telecom wavelengths

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

AFBR-S4N44C013-DS100. Data Sheet. NUV-HD Silicon Photo Multiplier. Features. Description. Applications

AFBR-S4N44C013-DS100. Data Sheet. NUV-HD Silicon Photo Multiplier. Features. Description. Applications Data Sheet AFBR-S4N44C013 Description The AFBR-S4N44C013 is a silicon photo multiplier (SiPM) used for ultra-sensitive precision measurement of single photons. The active area is 3.72 x 3.72 mm 2. High

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

Physics Laboratory Scattering of Photons from Electrons: Compton Scattering

Physics Laboratory Scattering of Photons from Electrons: Compton Scattering RR Oct 2001 SS Dec 2001 MJ Oct 2009 Physics 34000 Laboratory Scattering of Photons from Electrons: Compton Scattering Objective: To measure the energy of high energy photons scattered from electrons in

More information

Detectors for Sensitive Detection: HyD

Detectors for Sensitive Detection: HyD Detectors for Sensitive Detection: HyD R. T. Borlinghaus*, H. Birk and F. Schreiber Leica Microsystems, Am Friedensplatz 3, 68165 Mannheim, Germany This article discusses detectors (more precisely: sensors),

More information

Energy Measurements with a Si Surface Barrier Detector and a 5.5-MeV 241 Am α Source

Energy Measurements with a Si Surface Barrier Detector and a 5.5-MeV 241 Am α Source Energy Measurements with a Si Surface Barrier Detector and a 5.5-MeV 241 Am α Source October 18, 2017 The goals of this experiment are to become familiar with semiconductor detectors, which are widely

More information

Photoelectric effect

Photoelectric effect Photoelectric effect Objective Study photoelectric effect. Measuring and Calculating Planck s constant, h. Measuring Current-Voltage Characteristics of photoelectric Spectral Lines. Theory Experiments

More information

Silicon Carbide Solid-State Photomultiplier for UV Light Detection

Silicon Carbide Solid-State Photomultiplier for UV Light Detection Silicon Carbide Solid-State Photomultiplier for UV Light Detection Sergei Dolinsky, Stanislav Soloviev, Peter Sandvik, and Sabarni Palit GE Global Research 1 Why Solid-State? PMTs are sensitive to magnetic

More information

Measurement of the FD camera light collection efficiency and uniformity

Measurement of the FD camera light collection efficiency and uniformity GAP - 2000-010 Roma, 1 March 2000 Measurement of the FD camera light collection efficiency and uniformity P. Facal San Luis Sezione INFN di Roma II, Roma, Italy and Universidad de Santiago de Compostela,

More information

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010 Seminar BELLE II Particle Identification Detector and readout system Andrej Seljak advisor: Prof. Samo Korpar October 2010 Outline Motivation BELLE experiment and future upgrade plans RICH proximity focusing

More information

arxiv: v1 [astro-ph.im] 6 Aug 2013

arxiv: v1 [astro-ph.im] 6 Aug 2013 Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube A. Bouvier *,1, L. Gebremedhin 1, C. Johnson 1, A. Kuznetsov 1, D. A. Williams

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Large area silicon photomultipliers: Performance and applications

Large area silicon photomultipliers: Performance and applications Nuclear Instruments and Methods in Physics Research A 567 (26) 78 82 www.elsevier.com/locate/nima Large area silicon photomultipliers: Performance and applications P. Buzhan a, B. Dolgoshein a,, L. Filatov

More information

RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments

RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments Massimo Caccia Universita dell Insubria Como (Italy) on behalf of The RAPSODI collaboration 11th Topical Seminar on Innovative

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

arxiv: v2 [physics.ins-det] 17 Oct 2015

arxiv: v2 [physics.ins-det] 17 Oct 2015 arxiv:55.9v2 [physics.ins-det] 7 Oct 25 Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light T.Igarashi, S.Naka, M.Tanaka, T.Washimi, K.Yorita Waseda University, Tokyo, Japan E-mail:

More information

Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications

Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications Christopher Stapels, Member, IEEE, William G. Lawrence, James Christian, Member, IEEE, Michael R. Squillante,

More information

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany.

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany. KETEK GmbH Hofer Str. 3 81737 Munich Germany www.ketek.net info@ketek.net phone +49 89 673 467 70 fax +49 89 673 467 77 Silicon Photomultiplier Evaluation Kit Quick Start Guide Eval Kit Table of Contents

More information

Instructions for gg Coincidence with 22 Na. Overview of the Experiment

Instructions for gg Coincidence with 22 Na. Overview of the Experiment Overview of the Experiment Instructions for gg Coincidence with 22 Na 22 Na is a radioactive element that decays by converting a proton into a neutron: about 90% of the time through β + decay and about

More information

PMT tests at UMD. Vlasios Vasileiou Version st May 2006

PMT tests at UMD. Vlasios Vasileiou Version st May 2006 PMT tests at UMD Vlasios Vasileiou Version 1.0 1st May 2006 Abstract This memo describes the tests performed on three Milagro PMTs in UMD. Initially, pulse-height distributions of the PMT signals were

More information

Test results on hybrid photodiodes

Test results on hybrid photodiodes Nuclear Instruments and Methods in Physics Research A 421 (1999) 512 521 Test results on hybrid photodiodes N. Kanaya*, Y. Fujii, K. Hara, T. Ishizaki, F. Kajino, K. Kawagoe, A. Nakagawa, M. Nozaki, T.Ota,

More information

On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information)

On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information) On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information) Ashot Chilingarian 1,2, Suren Chilingaryan 1, Tigran Karapetyan 1, Lev Kozliner 1, Yeghia Khanikyants 1, Gagik

More information

Contents. The AMADEUS experiment at the DAFNE collider. The AMADEUS trigger. SiPM characterization and lab tests

Contents. The AMADEUS experiment at the DAFNE collider. The AMADEUS trigger. SiPM characterization and lab tests Contents The AMADEUS experiment at the DAFNE collider The AMADEUS trigger SiPM characterization and lab tests First trigger prototype; tests at the DAFNE beam Second prototype and tests at PSI beam Conclusions

More information

PH2510 Nuclear Physics Laboratory Use of Scintillation Counters (NP5)

PH2510 Nuclear Physics Laboratory Use of Scintillation Counters (NP5) Physics Department Royal Holloway University of London PH2510 Nuclear Physics Laboratory Use of Scintillation Counters (NP5) 1. Introduction 1.1 Object of the Experiment The object of this experiment is

More information

Experiment 6: Franck Hertz Experiment v1.3

Experiment 6: Franck Hertz Experiment v1.3 Experiment 6: Franck Hertz Experiment v1.3 Background This series of experiments demonstrates the energy quantization of atoms. The concept was first implemented by James Franck and Gustaf Ludwig Hertz

More information

High granularity scintillating fiber trackers based on Silicon Photomultiplier

High granularity scintillating fiber trackers based on Silicon Photomultiplier High granularity scintillating fiber trackers based on Silicon Photomultiplier A. Papa Paul Scherrer Institut, Villigen, Switzerland E-mail: angela.papa@psi.ch Istituto Nazionale di Fisica Nucleare Sez.

More information

Calibration of Scintillator Tiles with SiPM Readout

Calibration of Scintillator Tiles with SiPM Readout EUDET Calibration of Scintillator Tiles with SiPM Readout N. D Ascenzo, N. Feege,, B. Lutz, N. Meyer,, A. Vargas Trevino December 18, 2008 Abstract We report the calibration scheme for scintillator tiles

More information