31 May, 1995 AUTHOR: Gordon B. Bowden grams... LJC 1.0 Hz GEOPHONE COIL RESISTANCE, OHMS

Size: px
Start display at page:

Download "31 May, 1995 AUTHOR: Gordon B. Bowden grams... LJC 1.0 Hz GEOPHONE COIL RESISTANCE, OHMS"

Transcription

1 I NLC ME NOTE I I TITLE: Mark L4C Geophone Design Constants lvo. l-94 Rev 2 DATE: 31 May, 1995 AUTHOR: Gordon B. Bowden Almost all vibration measurements made at SLAC have be made with several Mark 4LC geophones. The output response of these instruments continually comes in question. What do they measure and what are their calibration constants? These geophones contain a permanent magnet and a moving coil attached to a spring suspended mass. They are simple passive electro-mechanical sensors. Over a limited frequency range, they produce an output voltage proportional to the relative velocity of the mass, measured with respect to the permanent magnet which is fixed in the housing of the transducer. The dimensions of our transducer are given in the MARK PRODUCTS data sheets reproduced below TYPE... FREOUENCY... FREOUENCY CHANGE WITH TILT... FREOUENCY CHANGE WITH EXClTATlON.... SUSPENDED MASS:.... STANDARD COIL RESISTANCES... LEAKAGE TO CASE... TRANSDUCTION POWER... OPEN CIRCUIT DAMPING... CURRENT DAMPING... COIL INDUCTANCE... ELECTRIC ANALOG OF CAPACITY... ELECTRIC ANALdG OF INDUCTANCE... CASE HEIGHT.... CASE DIAMETER... TOTAL DENSITY... TOTAL WEIGHT... OPERATING TEMPERATURE... LIC 1.0 Hz QEOPHONE Movingdualcoil,humbuckwound * 0.05 Hz measured on 200 pound weight at 0.09 inches/second... Less than 0.05 Hz at 5 from vertical... Less than 0.05 Hz from 0 to 0.09 inches/second grams... 5OO, megohm minimum at 500 volts m3 watts/inch/second or 13.6 watts/meter/second... (bo) = 0.28 critical.... (bc) = Rc Rs+Rc Lc = Rc Lcinhenries... cc =,-, 73,500 (microfarads).... Rc Lm = 0.345Rc (henries).... 5% inches-13 cm... 3 inches-7.6 cm gramslcm % pounds-2.15 kilograms... Range: -2O to140*for -29*to6O C.. LJC 1.0 Hz GEOPHONE COIL RESISTANCE, OHMS TRANSDUCTION, VOLTS/IN/SEC COIL INDUCTANCE, HENRIES ANALOG CAPACITANCE, MICROFARADS ANALOG INDUCTANCE, HENRIES SHUNT FOR 0.70 DAMPING, OHM

2 Notes on Data Sheet Type The L4C has its coil moving in a magnet fixed to the housing of the geophone. The alternative arrangement which fixes the coil to the housing and uses a moving magnet for the proof mass has the disadvantage that the moving magnet has extra eddy current damping and sets up time varying magnetic fields which can be detected outside the housing by another geophone for instance. Standard Coil Resistance Our geophone has. the 5500 R coil. Transduction Power This power is the transduction constant squared divided by the coil resistance: G /R,. Open Circuit Damping Mechanical motion of the proof mass is damped even when the coil circuit is open and no current can flow. This damping comes from air resistance inside housing and mechanical hysteresis in the suspension springs. Damping is given in terms of damping ratio C. For a damped simple harmonic oscillator the damping force b = 2M&. L b = 2(1 Newton sec2/m)(.28)(2i; radians/set) = 3.52 Newton set/m. Coil Inductance For a given set of dimensions, coil inductance scales with resistance: L, = O.OOllR, =.0011(5500 0) = 6.05 Henries. Electric analog capacity and inductance These quantities are the electrical analogs of the mass and spring constant to be used in the dynamic analysis if the mechanical system is modeled by its electrical analog. Transduction Transduction constant G is the most critical parameter of the geophone. It specifys the voltage output of the coil for a given velocity. It depends on the magnetic field and the coil geometry and number of turns. Equations of Motion- a simple linear model Coil Voltage v,,il = G(k - i9) Coil Force FcO;l = -Gicoil Force and voltage equilibrium b(2, - 5) + k(x, - X) = MZ + Gi,,il (bj, + kxg) = (MZ + bj, + kx) + Gicoil G(i - js> = (.& + Rj)i,,;/ + Lc*

3 Laplace transformed equations. (bs + k)&(s) = (Ms2 + bs + k)x(s) + GI(s) kids) = WX(s)-X,(s)]= (R,+ R, + L,s)I(s) Solving for X(s) in the first equation and substituting this into the 2 nd, the transfer function between ground motion X0(s) and coil current I(s) can be written: I(4-1 -= x9 (4 L,s+R,+R, >( MGs3 MS" + (b + Lcs+y+R )s + k> C I At frequencies of 10 Hz or less, the coil impedance L,s is small compared to the coil resistance I?,: L,s/R, = (6.05 Henries)(lO * 2n rad/sec)/(5300 n> =.07. Neglecting the effect of the coil inductance and writing the transfer function for Kut(S) = R,](s) in terms of ground velocity X;,(s) = sx&) in standard form where k jill G ci: I/out(s) -R,G s* *g (4 = R, + R, s2 + 2woQ + w; > where TWO< = (b+ G2 Rc + R, JIM The conversion factor between Voui and ground velocity input X9 depends on the value chosen for the external damping resistance R,. If damping (C =.707) is chosen, then external shunt resistance RJ = is needed across the internal coil resistance R, = 5500R. The design transduction G = 7.02 volt set/in = volt set/meter so the conversion factor for a damped L4C geophone is: Vout -z= 8905 R (276.4 volt set/meter) 5500 l-l R A typical ground motion of 30 nanometers at 10 Hz should produce a 322 ~~011 signal at the geophone s output terminals if an 8905 R external damping resistor is used. To see the amplitude and phase variation of the signal with frequency, substitute s = iw and plot the amplitude and phase of the complex function e. 9 sw

4 ...I t.e B P 140 ' I il * 60- : 40-4

5 . The geophone has a 1 Hz resonance without the 8905 R shunt resistance which increases the damping to c z.7. The output signal is about 170 volt set/meter for frequencies above 2 Hz. The output voltage follows the input velocity for high frequencies but lags further behind as the frequency falls. b Calibration. The dimensions and constants come from the manufacturer s data sheets and the model of the geophone is a simple linear one. Our actual geophone may not have quite this response. Direct calibration of its output signal at 30 nanometers motion amplitude is difficult. It is hard to generate such small motions with the required accuracy and we as yet have no laboratory free from microseismic ground motion which is of this magnitude. A much larger amplitude calibration would be relatively simple but would presume that linear extrapolation down into the nanometer realm was valid. A sinusoidal motion of 100 microns is easy to generate with a motor and eccentric bearing. FFTB magnet positioners have proven that 1 micron motions are practical with standard roller bearing cams. Such a large motion is also easy to measure with an LVDT or Kaman proximity gage. At 10 Hz a 100 micron amplitude should generate about 1.1 volts signal which would require only a high input impedance follower between the geophone and the digitizer. Such a system should allow the amplitude and phase of the response to be measured over frequencies between.l Hz and 30 Hz. The upper frequency limit would be set by mechanical resonances in the shake table. Such a calibration scheme is sketched out below. Kaman Position Xducer

Electronics and Instrumentation Name ENGR-4220 Fall 1999 Section Modeling the Cantilever Beam Supplemental Info for Project 1.

Electronics and Instrumentation Name ENGR-4220 Fall 1999 Section Modeling the Cantilever Beam Supplemental Info for Project 1. Name ENGR-40 Fall 1999 Section Modeling the Cantilever Beam Supplemental Info for Project 1 The cantilever beam has a simple equation of motion. If we assume that the mass is located at the end of the

More information

Texas Components - Data Sheet. The TX53G1 is an extremely rugged, low distortion, wide dynamic range sensor. suspending Fluid.

Texas Components - Data Sheet. The TX53G1 is an extremely rugged, low distortion, wide dynamic range sensor. suspending Fluid. Texas Components - Data Sheet AN004 REV A 08/30/99 DESCRIPTION and CHARACTERISTICS of the TX53G1 HIGH PERFORMANCE GEOPHONE The TX53G1 is an extremely rugged, low distortion, wide dynamic range sensor.

More information

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

Barrier. (a) State the conditions which must be met for an object to move with simple harmonic motion. (2)

Barrier. (a) State the conditions which must be met for an object to move with simple harmonic motion. (2) 1 In a television game show contestants have to pass under a barrier. The barrier has a vertical height of 0.70m and moves up and down with simple harmonic motion. 3.0m Barrier 0.70m (a) State the conditions

More information

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN 17 nd International Conference on Electrical and Electronics: Techniques and Applications (EETA 17) ISBN: 978-1-6595-416-5 The Principle and Simulation of Moving-coil Velocity Detector Yong-hui ZHAO, Li-ming

More information

HGS (INDIA) LIMITED. A variety of 1-C and 3-C waterproof land cases can accommodate the HG-6 geophone.

HGS (INDIA) LIMITED. A variety of 1-C and 3-C waterproof land cases can accommodate the HG-6 geophone. HG-6 Geophone Element Based on the technology transfer for manufacturing the SM range of geophones from Sensor Nederland BV, HGS (India) Limited (erstwhile Geosource India Limited) offers the HG-6 geophone

More information

Electrical Theory 2 Lessons for Fall Semester:

Electrical Theory 2 Lessons for Fall Semester: Electrical Theory 2 Lessons for Fall Semester: Lesson 1 Magnetism Lesson 2 Introduction to AC Theory Lesson 3 Lesson 4 Capacitance and Capacitive Reactance Lesson 5 Impedance and AC Circuits Lesson 6 AC

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance?

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? UNIT -6 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? Ans: Maxwell's bridge, shown in Fig. 1.1, measures an unknown inductance in of standard arm offers

More information

Question Paper Profile

Question Paper Profile I Scheme Question Paper Profile Program Name : Electrical Engineering Program Group Program Code : EE/EP/EU Semester : Third Course Title : Electrical Circuits Max. Marks : 70 Time: 3 Hrs. Instructions:

More information

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2 1 Vibration Isolation Systems GW event induces a relative length change of about 10^-21 ~ 10^-22

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

The units of vibration depend on the vibrational parameter, as follows:

The units of vibration depend on the vibrational parameter, as follows: Vibration Measurement Vibration Definition Basically, vibration is oscillating motion of a particle or body about a fixed reference point. Such motion may be simple harmonic (sinusoidal) or complex (non-sinusoidal).

More information

Electrical Engineering Fundamentals

Electrical Engineering Fundamentals Electrical Engineering Fundamentals EE-238 Sheet 1 Series Circuits 1- For the circuits shown below, the total resistance is specified. Find the unknown resistance and the current for each circuit. 12.6

More information

Extraction of Characteristics Quantities and Electro-Technical Modeling of Electrodynamic Direct Radiator Loudspeaker

Extraction of Characteristics Quantities and Electro-Technical Modeling of Electrodynamic Direct Radiator Loudspeaker International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1 Extraction of Characteristics Quantities and Electro-Technical Modeling of Electrodynamic Direct Radiator

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation

Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation Academic Year: 2016-17 III B Tech II Semester Branch:

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

Level 6 Graduate Diploma in Engineering Electro techniques

Level 6 Graduate Diploma in Engineering Electro techniques 9210-137 Level 6 Graduate Diploma in Engineering Electro techniques Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler, drawing

More information

Experiment 1 LRC Transients

Experiment 1 LRC Transients Physics 263 Experiment 1 LRC Transients 1 Introduction In this experiment we will study the damped oscillations and other transient waveforms produced in a circuit containing an inductor, a capacitor,

More information

PVA Sensor Specifications

PVA Sensor Specifications Position, Velocity, and Acceleration Sensors 24.1 Sections 8.2-8.5 Position, Velocity, and Acceleration (PVA) Sensors PVA Sensor Specifications Good website to start your search for sensor specifications:

More information

Miniaturising Motion Energy Harvesters: Limits and Ways Around Them

Miniaturising Motion Energy Harvesters: Limits and Ways Around Them Miniaturising Motion Energy Harvesters: Limits and Ways Around Them Eric M. Yeatman Imperial College London Inertial Harvesters Mass mounted on a spring within a frame Frame attached to moving host (person,

More information

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems)

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) The establishment of a potential difference between the conductors of an overhead transmission line is accompanied by the production

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) PASCO scientific Physics Lab Manual: P20-1 Experiment P20: - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept Time SW Interface Macintosh file Windows file harmonic motion 45 m 700

More information

On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion.

On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion. 1 (a) (i) Define simple harmonic motion. (b)... On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion. Fig. 4.1 A strip

More information

Conventional geophone topologies and their intrinsic physical limitations, determined

Conventional geophone topologies and their intrinsic physical limitations, determined Magnetic innovation in velocity sensing Low -frequency with passive Conventional geophone topologies and their intrinsic physical limitations, determined by the mechanical construction, limit their velocity

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

Experiment 9: AC circuits

Experiment 9: AC circuits Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK YEAR / SEM : I / II SUBJECT CODE & NAME : EE 1151 CIRCUIT THEORY UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Module 1. Introduction. Version 2 EE IIT, Kharagpur

Module 1. Introduction. Version 2 EE IIT, Kharagpur Module 1 Introduction Lesson 1 Introducing the Course on Basic Electrical Contents 1 Introducing the course (Lesson-1) 4 Introduction... 4 Module-1 Introduction... 4 Module-2 D.C. circuits.. 4 Module-3

More information

INVESTIGATION AND DESIGN OF HIGH CURRENT SOURCES FOR B-H LOOP MEASUREMENTS

INVESTIGATION AND DESIGN OF HIGH CURRENT SOURCES FOR B-H LOOP MEASUREMENTS INVESTIGATION AND DESIGN OF HIGH CURRENT SOURCES FOR B-H LOOP MEASUREMENTS Boyanka Marinova Nikolova, Georgi Todorov Nikolov Faculty of Electronics and Technologies, Technical University of Sofia, Studenstki

More information

Vibration Cancellation Using Synthetic Shunt Impedances

Vibration Cancellation Using Synthetic Shunt Impedances Vibration Cancellation Using Synthetic Shunt Impedances S.S. Groothuis, R.J. Roesthuis MSc. Internship Thesis February 21 Supervisors: A/Prof. K. Sammut A/Prof. F. He Abstract The goal of this project

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Spring 2000 EE361: MIDTERM EXAM 1

Spring 2000 EE361: MIDTERM EXAM 1 NAME: STUDENT NUMBER: Spring 2000 EE361: MIDTERM EXAM 1 This exam is open book and closed notes. Assume f=60 hz and use the constant µ o =4π 10-7 wherever necessary. Be sure to show all work clearly. 1.

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY Oscillators Table of Contents Lesson One Lesson Two Lesson Three Introduction to Oscillators...3 Flip-Flops...19 Logic Clocks...37 Lesson Four Filters and Waveforms...53 Lesson Five Troubleshooting Oscillators...69

More information

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter...

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter... 1 Table of Contents Table of Contents...2 About the Tutorial...6 Audience...6 Prerequisites...6 Copyright & Disclaimer...6 1. EMI INTRODUCTION... 7 Voltmeter...7 Ammeter...8 Ohmmeter...8 Multimeter...9

More information

Department of Electrical and Computer Engineering Lab 6: Transformers

Department of Electrical and Computer Engineering Lab 6: Transformers ESE Electronics Laboratory A Department of Electrical and Computer Engineering 0 Lab 6: Transformers. Objectives ) Measure the frequency response of the transformer. ) Determine the input impedance of

More information

Resonance in Circuits

Resonance in Circuits Resonance in Circuits Purpose: To map out the analogy between mechanical and electronic resonant systems To discover how relative phase depends on driving frequency To gain experience setting up circuits

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

Relative Calibration of Inertial Seismometers Emil Farkas 1, Iuliu Szekely 2

Relative Calibration of Inertial Seismometers Emil Farkas 1, Iuliu Szekely 2 Relative Calibration of Inertial s Emil Farkas 1, Iuliu Szekely 2 1 Preparatory Commission for the Nuclear-Test-Ban Treaty Organization, Juchgasse 18/1/29 A-1030, Vienna, Austria, +43-1-941-1765, farkas_emil@yahoo.com

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM I (EE, EN, EC, CE)] QUIZ TEST-3 (Session: ) Time: 1 Hour ELECTRICAL ENGINEE

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM I (EE, EN, EC, CE)] QUIZ TEST-3 (Session: ) Time: 1 Hour ELECTRICAL ENGINEE SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM I (EE, EN, EC, CE)] QUIZ TEST-3 (Session: 2014-15) Time: 1 Hour ELECTRICAL ENGINEERING Max. Marks: 30 (NEE-101) Roll No. Academic/26

More information

22.19 To determine the wavelength, use the fact that the speed of a wave is equal to its wavelength times its frequency

22.19 To determine the wavelength, use the fact that the speed of a wave is equal to its wavelength times its frequency hhh.schaums.22.19_22.28 22.19 To determine the wavelength, use the fact that the speed of a wave is equal to its wavelength times its frequency or speed = waveln gth frequency speed is in m/s, wavelength

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 6401 ELECTRICAL MACHINES I UNIT I : MAGNETIC CIRCUITS AND MAGNETIC MATERIALS Part A (2 Marks) 1. List

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1. f the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1 1. 1V 2. V 60 3. 60V 4. Zero 2. Lenz s law is the consequence of the law of conservation of 1. Charge 2. Mass

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

Inductive Sensors. Fig. 1: Geophone

Inductive Sensors. Fig. 1: Geophone Inductive Sensors A voltage is induced in the loop whenever it moves laterally. In this case, we assume it is confined to motion left and right in the figure, and that the flux at any moment is given by

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Electrical and Electronics Instrumentation Course Code

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

MEASUREMENT AND INSTRUMENTATION QUESTION BANK UNIT I INTRODUCTION. Part A

MEASUREMENT AND INSTRUMENTATION QUESTION BANK UNIT I INTRODUCTION. Part A MEASUREMENT AND INSTRUMENTATION QUESTION BANK UNIT I INTRODUCTION Part A 1. Define Standard deviation. 2. Why calibration of instrument is important? 3. What are the different calibration methodologies?

More information

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO. 990-60700-9801 GEOTECH INSTRUMENTS, LLC 10755 SANDEN DRIVE DALLAS, TEXAS 75238-1336 TEL: (214) 221-0000 FAX: (214) 343-4400

More information

The VIRGO suspensions

The VIRGO suspensions INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1623 1629 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30082-0 The VIRGO suspensions The VIRGO Collaboration (presented by S Braccini) INFN,

More information

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1 hapter Seven ALTERNATING URRENT MQ 1 7.1 If the rms current in a 50 Hz ac circuit is 5 A, the value of the current 1/300 seconds after its value becomes zero is (a) 5 2 A (b) 5 3/2 A (c) 5/6 A (d) 5/ 2

More information

K6RIA, Extra Licensing Class. Circuits & Resonance for All!

K6RIA, Extra Licensing Class. Circuits & Resonance for All! K6RIA, Extra Licensing Class Circuits & Resonance for All! Amateur Radio Extra Class Element 4 Course Presentation ELEMENT 4 Groupings Rules & Regs Skywaves & Contesting Outer Space Comms Visuals & Video

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

The study on the woofer speaker characteristics due to design parameters

The study on the woofer speaker characteristics due to design parameters The study on the woofer speaker characteristics due to design parameters Byoung-sam Kim 1 ; Jin-young Park 2 ; Xu Yang 3 ; Tae-keun Lee 4 ; Hongtu Sun 5 1 Wonkwang University, South Korea 2 Wonkwang University,

More information

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel.

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel. Review 6 1. The two characteristics of all magnets are: they attract and hold Iron, and, if free to move, they will assume roughly a south - north position. 2. Lines of flux always leave the north pole

More information

(1.3.1) (1.3.2) It is the harmonic oscillator equation of motion, whose general solution is: (1.3.3)

(1.3.1) (1.3.2) It is the harmonic oscillator equation of motion, whose general solution is: (1.3.3) M22 - Study of a damped harmonic oscillator resonance curves The purpose of this exercise is to study the damped oscillations and forced harmonic oscillations. In particular, it must measure the decay

More information

Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

More information

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by Department of Examinations, Sri Lanka EXAMINATION FOR THE AMATEUR RADIO OPERATORS CERTIFICATE OF PROFICIENCY ISSUED BY THE DIRECTOR GENERAL OF TELECOMMUNICATIONS, SRI LANKA 2004 (NOVICE CLASS) Basic Electricity,

More information

Physics Class 12 th NCERT Solutions

Physics Class 12 th NCERT Solutions Chapter.7 Alternating Current Class XII Subject Physics 7.1. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. a) What is the rms value of current in the circuit? b) What is the net power consumed

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

(a) What is the tension in the rope? (b) With what frequency must the rope vibrate to create a traveling wave with a wavelength of 2m?

(a) What is the tension in the rope? (b) With what frequency must the rope vibrate to create a traveling wave with a wavelength of 2m? 1. A rope is stretched between two vertical supports. The points where it s attached (P and Q) are fixed. The linear density of the rope, μ, is 0.4kg/m, and the speed of a transverse wave on the rope is

More information

Geophones // A COMPLETE PRODUCT LINE. Sercel has a long history in being at the forefront of developing

Geophones // A COMPLETE PRODUCT LINE. Sercel has a long history in being at the forefront of developing Geophones SG-5 // A COMPLETE PRODUCT LINE Sercel has a long history in being at the forefront of developing new cutting-edge technology. Setting new standards for sensors is no exception. Our advanced

More information

Actuators. EECS461, Lecture 5, updated September 16,

Actuators. EECS461, Lecture 5, updated September 16, Actuators The other side of the coin from sensors... Enable a microprocessor to modify the analog world. Examples: - speakers that transform an electrical signal into acoustic energy (sound) - remote control

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

Inductance. Chapter 30. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Inductance. Chapter 30. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 30 Inductance PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 30 To learn how current in one coil

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits C HAP T E O UTLI N E 33 1 AC Sources 33 2 esistors in an AC Circuit 33 3 Inductors in an AC Circuit 33 4 Capacitors in an AC Circuit 33 5 The L Series Circuit 33

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance)

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance) SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance) 2.1 Indicating Instruments Analog Instruments: An analog device is one in which

More information

Sine waves by far the most important form of alternating quantity important properties are shown below

Sine waves by far the most important form of alternating quantity important properties are shown below AC DC METERS 1 Sine waves by far the most important form of alternating quantity important properties are shown below 2 Average value of a sine wave average value over one (or more) cycles is clearly zero

More information

Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor)

Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P11-1 Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500

More information

Control Servo Design for Inverted Pendulum

Control Servo Design for Inverted Pendulum JGW-T1402132-v2 Jan. 14, 2014 Control Servo Design for Inverted Pendulum Takanori Sekiguchi 1. Introduction In order to acquire and keep the lock of the interferometer, RMS displacement or velocity of

More information

Exercise 9: inductor-resistor-capacitor (LRC) circuits

Exercise 9: inductor-resistor-capacitor (LRC) circuits Exercise 9: inductor-resistor-capacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering UNIT I DC MACHINES Three phase circuits, a review. Construction of DC machines Theory of operation of DC generators Characteristics of DC generators Operating principle of DC motors Types of DC motors

More information

COMPARISON OF DIFFERENT MAGNETIC MEASUREMENT TECHNIQUES.

COMPARISON OF DIFFERENT MAGNETIC MEASUREMENT TECHNIQUES. COMPARISON OF DIFFERENT MAGNETIC MEASUREMENT TECHNIQUES. Isaac Vasserman, Shigemi Sasaki Argonne National Laboratory, Argonne, IL 60439, USA Abstract The magnetic measurement system at APS was upgraded.

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

Mechatronics Chapter Sensors 9-1

Mechatronics Chapter Sensors 9-1 MEMS1049 Mechatronics Chapter Sensors 9-1 Proximity sensors and Switches Proximity sensor o o o A proximity sensor is a sensor able to detect the presence of nearby objects without any physical contact.

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer

The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer 159 Swanson Rd. Boxborough, MA 01719 Phone +1.508.475.3400 dovermotion.com The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer In addition to the numerous advantages described in

More information

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P45-1 Experiment P45: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P45 P45_LRCC.SWS EQUIPMENT NEEDED

More information

Downloaded From All JNTU World

Downloaded From   All JNTU World Code: 9A02403 GENERATION OF ELECTRIC POWER 1 Discuss the advantages and disadvantages of a nuclear plant as compared to other conventional power plants. 2 Explain about: (a) Solar distillation. (b) Solar

More information

Alternating Current Page 1 30

Alternating Current Page 1 30 Alternating Current 26201 11 Page 1 30 Calculate the peak and effective voltage of current values for AC Calculate the phase relationship between two AC waveforms Describe the voltage and current phase

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensors and Actuators Introduction to sensors Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems INDUCTIVE SENSORS (Chapter 3.4, 7.3) 3 Inductive sensors 4 Inductive

More information

Energy efficient active vibration control strategies using electromagnetic linear actuators

Energy efficient active vibration control strategies using electromagnetic linear actuators Journal of Physics: Conference Series PAPER OPEN ACCESS Energy efficient active vibration control strategies using electromagnetic linear actuators To cite this article: Angel Torres-Perez et al 2018 J.

More information

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Name Class Date Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P40

More information