An adaptive protocol for distributed beamforming Simulations and experiments

Size: px
Start display at page:

Download "An adaptive protocol for distributed beamforming Simulations and experiments"

Transcription

1 大学共同利用機関法人 情報 システム研究機構 国立情報学研究所 An adaptive protocol for distributed beamforming Simulations and experiments Stephan Sigg, Michael Beigl KIVS 2011, , Kiel

2 Outline Introduction Distributed beamformig schemes Environmental impacts Conclusion Stephan Sigg An adaptive protocol for distributed beamforming 2

3 Introduction Distributed adaptive transmit beamforming Distributed nodes synchronise the carrier frequency and phase offset of transmit signals Low power and processing devices Non-synchronised local oscillators Stephan Sigg An adaptive protocol for distributed beamforming 3

4 Outline Introduction Distributed beamformig schemes Environmental impacts Conclusion Stephan Sigg An adaptive protocol for distributed beamforming 4

5 Introduction Distributed synchronisation schemes Closed loop carrier synchronisation 1 Receiver Receiver Receiver Receiver Source Transmitter Transmitter Transmitter Transmitter Source Source Source Source Receive node broadcasts common master beacon to all source nodes Receive nodes bounce the beacon back on distinct CDMA channels Receiver transmits the relative phase offset of each node on these CDMA channels Synchronised nodes transmit as a distributed beamformer to the receiver 1 Y. Tu and G. Pottie, Coherent Cooperative Transmission from Multiple Adjacent Antennas to a Distant Stationary Antenna Through AWGN Channels, Proceedings of the IEEE VTC, 2002 Stephan Sigg An adaptive protocol for distributed beamforming 5

6 Introduction Distributed synchronisation schemes Cosed loop feedback based carrier synchronisation 2 Receiver Receiver Receiver Receiver Source Transmitter Transmitter Transmitter Transmitter Source Source Source Source Receive nodes randomly alter the phase and frequency of their carrier signal Receive nodes transmit simultaneously as a distributed beamformer Remote node estimates the synchronisation quality of the received superimposed sum signal Remote node broadcasts the synchronisation performance as feedback to the network 2 R. Mudumbai, J. Hespanha, U. Madhow, G. Barriac, Distributed transmit beamforming using feedback control, IEEE Transactions on Information Theory 56(1), volume 56, January 2010 Stephan Sigg An adaptive protocol for distributed beamforming 6

7 Outline Introduction Distributed beamformig schemes Environmental impacts Conclusion Stephan Sigg An adaptive protocol for distributed beamforming 7

8 P mut,i P dist,i P var,i Probability to alter the phase-offset of device i (P mut,i [0, 1]) Probability distribution for the random process of device i (P dist,i {normal, uniform,... }) Variance for the random phase alteration process of device i (P var,i [0, π]) Stephan Sigg An adaptive protocol for distributed beamforming 8

9 1. One device broadcasts a data sequence s d to devices in its proximity. 2. Devices decide whether to participate in the transmission. Decision parameters: energy, min. # of participating devices, cpu load 3. Closed-loop iterative feedback-based carrier synchronisation is achieved. Devices utilise P mut,i, P dist,i, P var,i. 4. Upon sufficient synchronisation the receiver broadcasts ack. 5. Devices collaboratively transmit s d. 6. Optimisation parameters P mut,i, P dist,i and P var,i are adapted according to the performance achieved in the current environmental setting. Stephan Sigg An adaptive protocol for distributed beamforming 9

10 1 Transmitted bit sequence Time [ms] 2 x Modulated transmit signal for device Shift in the phase offset Time [ms] of transmit signals 2 x Modulated transmit signal for device n Time [ms] 2 x 10 9 Received superimposed sum signal Time [ms] 5 x 10 9 Demodulated received sum signal Time [ms] Stephan Sigg An adaptive protocol for distributed beamforming 10

11 1 Transmitted bit sequence Time [ms] 3 1 x Modulated transmit signal for device x Modulated transmit signal for device n Time [ms] Time [ms] 5 x Received superimposed sum signal Time [ms] 5 x Demodulated received sum signal Time [ms] Stephan Sigg An adaptive protocol for distributed beamforming 11

12 1 Transmitted bit sequence x Time [ms] Modulated transmit signal for device x Modulated transmit signal for device n Time [ms] Time [ms] 2 x 10 9 Received superimposed sum signal Time [ms] 2 x 10 9 Demodulated received sum signal Time [ms] Stephan Sigg An adaptive protocol for distributed beamforming 12

13 Stephan Sigg An adaptive protocol for distributed beamforming 13

14 Outline Introduction Distributed beamformig schemes Environmental impacts Conclusion Stephan Sigg An adaptive protocol for distributed beamforming 14

15 Beamforming of received signal components based on receiver feedback The feedback is impacted by environmental situations Distance between transmitter and receiver Network size Mobility Stephan Sigg An adaptive protocol for distributed beamforming 15

16 Beamforming of received signal components based on receiver feedback The feedback is impacted by environmental situations Distance between transmitter and receiver Network size Mobility Stephan Sigg An adaptive protocol for distributed beamforming 16

17 Distance 100meters, mutation probability 0.1 Stephan Sigg An adaptive protocol for distributed beamforming 17

18 Distance 150meters, mutation probability 0.1 Stephan Sigg An adaptive protocol for distributed beamforming 18

19 Distance 200meters, mutation probability 0.1 Stephan Sigg An adaptive protocol for distributed beamforming 19

20 Distance 300meters, mutation probability 0.2 Stephan Sigg An adaptive protocol for distributed beamforming 20

21 Distance 300meters, mutation probability 0.6 Stephan Sigg An adaptive protocol for distributed beamforming 21

22 Beamforming of received signal components based on receiver feedback The feedback is impacted by environmental situations Distance between transmitter and receiver Network size Mobility Stephan Sigg An adaptive protocol for distributed beamforming 22

23 Network size Stephan Sigg An adaptive protocol for distributed beamforming 23

24 Beamforming of received signal components based on receiver feedback The feedback is impacted by environmental situations Distance between transmitter and receiver Network size Mobility Stephan Sigg An adaptive protocol for distributed beamforming 24

25 Mobility Receiver moving at 5m/sec following a random walk model Stephan Sigg An adaptive protocol for distributed beamforming 25

26 Introduction Distributed beamformig schemes Protocol Environmental impacts Conclusion 44 cm 72 cm Transmitter 1 Transmitter 2 Distance: 5.5m (11 m, 16,4m) Transmitter 3 Receiver 大学共同利用機関法人 情報 システム研究機構 国立情報学研究所 Stephan Sigg An adaptive protocol for distributed beamforming 26

27 Stephan Sigg An adaptive protocol for distributed beamforming 27

28 Stephan Sigg An adaptive protocol for distributed beamforming 28

29 Outline Introduction Distributed beamformig schemes Environmental impacts Conclusion Stephan Sigg An adaptive protocol for distributed beamforming 29

30 7 6 x 10 9 Median fitness values ( Network size: 100 nodes ) Phase alteration probability: 0.5 Phase alteration probability: RMSE Iteration count Stephan Sigg An adaptive protocol for distributed beamforming 30

31 Conclusion We investigated a protocol for feedback based distributed adaptive beamforming The protocol is environment adaptive and thus enables emergent and organic behaviour. It was shown that the synchronisation performance can be improved already with straightforward learning methods Further work Study more advanced learning methods Develop a sensor node able to alter phase and frequency offset Case studies in sensor network instrumentations Stephan Sigg An adaptive protocol for distributed beamforming 31

32 Questions? Stephan Sigg Stephan Sigg An adaptive protocol for distributed beamforming 32

33 Introduction Receiver feedback Cosed loop feedback based carrier synchronisation Algorithm always converges to the optimum a Expected optimisation time O(n) when in each iteration the optimum Probability distribution is chosen a Optimisation time can be improved by factor 2 when erroneous decisions are not discarded but inverted b Phase and frequency synchronisation feasible c a R. Mudumbai, J. Hespanha, U. Madhow, G. Barriac, Distributed transmit beamforming using feedback control, IEEE Transactions on Information Theory 56(1), volume 56, January 2010 b J. Bucklew, W. Sethares, Convergence of a class of decentralised beamforming algorithms, IEEE Transactions on Signal Processing 56(6), volume 56, 2008 c M. Seo, M. Rodwell, U. Madhow, A Feedback-Based Distributed phased array technique and its application to 60-GHz wireless sensor network, IEEE MTT-S International Microwave Symposium Digest, 2008 Stephan Sigg An adaptive protocol for distributed beamforming 33

34 Introduction Receiver feedback We derived that Expected optimisation time of synchronisation algorithm E[T P ] = Θ (n k log(n)) a Uniform distributed phase offset 1 Mutation probability: n Asymptotically optimum optimisation approach b E[T P] = Θ (n) a S.Sigg, R.Masri, M.Beigl, Feedback based closed-loop carrier synchronisation: A sharp asymptotic bound, an asymptotically optimal approach, simulations and experiments, IEEE Transactions on Mobile Computing (TMC), 2011 b R.Masri, S.Sigg, M.Beigl, An asymptotically optimal approach to the distributed adaptive transmit beamforming in wireless sensor networks, Proceedings of the 16th European Wireless Conference, 2010 Stephan Sigg An adaptive protocol for distributed beamforming 34

35 Experimental setting Separation of transmit antennas [m] 0.44 Distance to receive antenna [m] 5.5 / 11 / 16.4 Transmit frequency [MHz] f TX = 2400 Receive frequency [MHz] f RX = 902 Iterations per experiment 400 Mobility stationary Identical experiments 12 Transmit devices 3 Receive devices 1 Algorithmic configuration Random distribution of the phase alteration normal distribution Phase alteration probability 0.33 / 0.66 / 1.00 Variance for normal distributed phase offset [π] 0.25 / 1 Hardware Gain of receive antenna [dbi] G RX = 3 Gain of transmit antenna [dbi] G TX = 3 Stephan Sigg An adaptive protocol for distributed beamforming 35

36 Stephan Sigg An adaptive protocol for distributed beamforming 36

37 Introduction Distributed synchronisation schemes Open loop carrier synchronisation 3 Receiver Receiver Receiver Transmitter Source Transmitter Transmitter Source Source Source Master Transmit nodes synchronise their frequency and local oscillators in a closed loop synchronisation The receiver broadcasts a sinusoidal signal for open loop synchronisation to the transmit nodes The synchronised nodes transmit as a distributed beamformer to the receiver 3 R. Mudumbai, G. Barriac and U. Madhow, On the feasibility of distributed beamforming in wireless networks, IEEE Transactions on Wireless Communications, Vol 6, May 2007 Stephan Sigg An adaptive protocol for distributed beamforming 37

38 e e e e e e 09 Nr prob RMSE e e e 09 Stephan Sigg An adaptive protocol for distributed beamforming 38

Algorithmic approaches to distributed adaptive transmit beamforming

Algorithmic approaches to distributed adaptive transmit beamforming Algorithmic approaches to distributed adaptive transmit beamforming Stephan Sigg and Michael Beigl Institute of operating systems and computer networks, TU Braunschweig Mühlenpfordtstrasse 23, 38106 Braunschweig,

More information

AN ASYMPTOTICALLY OPTIMAL APPROACH TO THE DISTRIBUTED ADAPTIVE TRANSMIT BEAMFORMING IN WIRELESS SENSOR NETWORKS

AN ASYMPTOTICALLY OPTIMAL APPROACH TO THE DISTRIBUTED ADAPTIVE TRANSMIT BEAMFORMING IN WIRELESS SENSOR NETWORKS AN ASYMPTOTICALLY OPTIMAL APPROACH TO THE DISTRIBUTED ADAPTIVE TRANSMIT BEAMFORMING IN WIRELESS SENSOR NETWORKS Rayan Merched El Masri, Stephan Sigg, Michael Beigl Distributed and Ubiquitous Systems, Technische

More information

Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive transmit beamforming in WSNs

Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive transmit beamforming in WSNs Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive transmit beamforming in WSNs Stephan Sigg, Rayan Merched El Masri, Julian Ristau and Michael Beigl Institute

More information

Collaborative transmission in wireless sensor networks

Collaborative transmission in wireless sensor networks Collaborative transmission in wireless sensor networks Cooperative transmission schemes Stephan Sigg Distributed and Ubiquitous Systems Technische Universität Braunschweig November 22, 2010 Stephan Sigg

More information

Distributed beamforming with software-defined radios: frequency synchronization and digital feedback

Distributed beamforming with software-defined radios: frequency synchronization and digital feedback Distributed beamforming with software-defined radios: frequency synchronization and digital feedback François Quitin, Muhammad Mahboob Ur Rahman, Raghuraman Mudumbai and Upamanyu Madhow Electrical and

More information

Improved Directional Perturbation Algorithm for Collaborative Beamforming

Improved Directional Perturbation Algorithm for Collaborative Beamforming American Journal of Networks and Communications 2017; 6(4): 62-66 http://www.sciencepublishinggroup.com/j/ajnc doi: 10.11648/j.ajnc.20170604.11 ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online) Improved

More information

Some aspects of physical prototyping in Pervasive Computing

Some aspects of physical prototyping in Pervasive Computing arxiv:1801.06326v1 [cs.ni] 19 Jan 2018 Some aspects of physical prototyping in Pervasive Computing Distributed adaptive beamforming, Device-free recognition of activities from RF, Secure keys from ambient

More information

DSP-CENTRIC ALGORITHMS FOR DISTRIBUTED TRANSMIT BEAMFORMING

DSP-CENTRIC ALGORITHMS FOR DISTRIBUTED TRANSMIT BEAMFORMING DSP-CENTRIC ALGORITHMS FOR DISTRIBUTED TRANSMIT BEAMFORMING Raghu Mudumbai Upamanyu Madhow Rick Brown Patrick Bidigare ECE Department, The University of Iowa, Iowa City IA 52242, rmudumbai@engineering.uiowa.edu

More information

Distributed receive beamforming: a scalable architecture and its proof of concept

Distributed receive beamforming: a scalable architecture and its proof of concept Distributed receive beamforming: a scalable architecture and its proof of concept François Quitin, Andrew Irish and Upamanyu Madhow Electrical and Computer Engineering, University of California, Santa

More information

IN recent years, sensor nodes of extreme tiny size have

IN recent years, sensor nodes of extreme tiny size have IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. X, XXXXXXX 20 Feedback-Based Closed-Loop Carrier Synchronization: A Sharp Asymptotic Bound, an Asymptotically Optimal Approach, Simulations, and Experiments

More information

Distributed Transmit Beamforming: Challenges and Recent Progress

Distributed Transmit Beamforming: Challenges and Recent Progress COOPERATIVE AND RELAY NETWORKS Distributed Transmit Beamforming: Challenges and Recent Progress Raghuraman Mudumbai, University of California at Santa Barbara D. Richard Brown III, Worcester Polytechnic

More information

Time-Slotted Round-Trip Carrier Synchronization in Large-Scale Wireless Networks

Time-Slotted Round-Trip Carrier Synchronization in Large-Scale Wireless Networks Time-Slotted Round-Trip Carrier Synchronization in Large-Scale Wireless etworks Qian Wang Electrical and Computer Engineering Illinois Institute of Technology Chicago, IL 60616 Email: willwq@msn.com Kui

More information

Time-Slotted Round-Trip Carrier Synchronization

Time-Slotted Round-Trip Carrier Synchronization Time-Slotted Round-Trip Carrier Synchronization Ipek Ozil and D. Richard Brown III Electrical and Computer Engineering Department Worcester Polytechnic Institute Worcester, MA 01609 email: {ipek,drb}@wpi.edu

More information

Millimeterwave (60 GHz) Imaging Wireless Sensor Network: Recent Progress

Millimeterwave (60 GHz) Imaging Wireless Sensor Network: Recent Progress Millimeterwave (6 GHz) Imaging Wireless Sensor Network: Recent Progress Munkyo Seo, Bharath Ananthasubramaniam, Upamanyu Madhow and Mark J. Department of Electrical and Computer Engineering University

More information

Scaling wideband distributed transmit beamforming via aggregate feedback

Scaling wideband distributed transmit beamforming via aggregate feedback Scaling wideband distributed transmit beamforming via aggregate feedback Muhammed Faruk Gencel, Maryam Eslami Rasekh, Upamanyu Madhow Department of Electrical and Computer Engineering University of California

More information

The University of Iowa

The University of Iowa Distributed Nullforming for Distributed MIMO Communications Soura Dasgupta The University of Iowa Background MIMO Communications Promise Much Centralized Antennae 802.11n, 802.11ac, LTE, WiMAX, IMT-Advanced

More information

Performance Analysis of a 1-bit Feedback Beamforming Algorithm

Performance Analysis of a 1-bit Feedback Beamforming Algorithm Performance Analysis of a 1-bit Feedback Beamforming Algorithm Sherman Ng Mark Johnson Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-161

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010 411 Distributed Transmit Beamforming Using Feedback Control Raghuraman Mudumbai, Member, IEEE, Joao Hespanha, Fellow, IEEE, Upamanyu

More information

PROBABILITY OF ERROR FOR BPSK MODULATION IN DISTRIBUTED BEAMFORMING WITH PHASE ERRORS. Shuo Song, John S. Thompson, Pei-Jung Chung, Peter M.

PROBABILITY OF ERROR FOR BPSK MODULATION IN DISTRIBUTED BEAMFORMING WITH PHASE ERRORS. Shuo Song, John S. Thompson, Pei-Jung Chung, Peter M. 9 International ITG Workshop on Smart Antennas WSA 9, February 16 18, Berlin, Germany PROBABILITY OF ERROR FOR BPSK MODULATION IN DISTRIBUTED BEAMFORMING WITH PHASE ERRORS Shuo Song, John S. Thompson,

More information

先進情報科学特別講義 Ⅱ,Ⅳ 高スループット無線通信システムに関する研究動向. Research Trends on High Throughput Wireless Communication Systems

先進情報科学特別講義 Ⅱ,Ⅳ 高スループット無線通信システムに関する研究動向. Research Trends on High Throughput Wireless Communication Systems 先進情報科学特別講義 Ⅱ,Ⅳ 高スループット無線通信システムに関する研究動向 Research Trends on High Throughput Wireless Communication Systems 1 Tran Thi Hong Computing Architecture Lab Room: B405 LECTURE INFORMATION Lecturer Assistant Prof.

More information

Collaborative transmission in wireless sensor networks

Collaborative transmission in wireless sensor networks Collaborative transmission in wireless sensor networks Randomised search approaches Stephan Sigg Distributed and Ubiquitous Systems Technische Universität Braunschweig November 22, 2010 Stephan Sigg Collaborative

More information

Cooperation in Random Access Wireless Networks

Cooperation in Random Access Wireless Networks Cooperation in Random Access Wireless Networks Presented by: Frank Prihoda Advisor: Dr. Athina Petropulu Communications and Signal Processing Laboratory (CSPL) Electrical and Computer Engineering Department

More information

1 Interference Cancellation

1 Interference Cancellation Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.829 Fall 2017 Problem Set 1 September 19, 2017 This problem set has 7 questions, each with several parts.

More information

Noise-resilient scaling for wideband distributed beamforming

Noise-resilient scaling for wideband distributed beamforming Noise-resilient scaling for wideband distributed beamforming Muhammed Faruk Gencel, Maryam Eslami Rasekh, Upamanyu Madhow Department of Electrical and Computer Engineering University of California Santa

More information

Testing Zero-Feedback Distributed Beamforming with a Low-Cost SDR Testbed

Testing Zero-Feedback Distributed Beamforming with a Low-Cost SDR Testbed Testing Zero-Feedback Distributed Beamforming with a Low-Cost SDR Testbed George Sklivanitis, Student Member, IEEE and Aggelos Bletsas, Member, IEEE Department of Electronic & Computer Engineering, Technical

More information

Time Synchronization and Distributed Modulation in Large-Scale Sensor Networks

Time Synchronization and Distributed Modulation in Large-Scale Sensor Networks Time Synchronization and Distributed Modulation in Large-Scale Sensor Networks Sergio D. Servetto School of Electrical and Computer Engineering Cornell University http://cn.ece.cornell.edu/ RPI Workshop

More information

Frequency Synchronization in Global Satellite Communications Systems

Frequency Synchronization in Global Satellite Communications Systems IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 3, MARCH 2003 359 Frequency Synchronization in Global Satellite Communications Systems Qingchong Liu, Member, IEEE Abstract A frequency synchronization

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Optimizing future wireless communication systems

Optimizing future wireless communication systems Optimizing future wireless communication systems "Optimization and Engineering" symposium Louvain-la-Neuve, May 24 th 2006 Jonathan Duplicy (www.tele.ucl.ac.be/digicom/duplicy) 1 Outline History Challenges

More information

Time-Slotted Round-Trip Carrier Synchronization for Distributed Beamforming D. Richard Brown III, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Time-Slotted Round-Trip Carrier Synchronization for Distributed Beamforming D. Richard Brown III, Member, IEEE, and H. Vincent Poor, Fellow, IEEE 5630 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008 Time-Slotted Round-Trip Carrier Synchronization for Distributed Beamforming D. Richard Brown III, Member, IEEE, and H. Vincent

More information

Cooperative Routing in Wireless Networks

Cooperative Routing in Wireless Networks Cooperative Routing in Wireless Networks Amir Ehsan Khandani Jinane Abounadi Eytan Modiano Lizhong Zheng Laboratory for Information and Decision Systems Massachusetts Institute of Technology 77 Massachusetts

More information

CAPACITY MAXIMIZATION FOR DISTRIBUTED BROADBAND BEAMFORMING

CAPACITY MAXIMIZATION FOR DISTRIBUTED BROADBAND BEAMFORMING CAPACITY MAXIMIZATION FOR DISTRIBUTED BROADBAND BEAMFORMING Sairam Goguri, Raghuraman Mudumbai, D. Richard Brown III, Soura Dasgupta and Upamanyu Madhow ABSTRACT Most prior research in distributed beamforming

More information

Unquantized and Uncoded Channel State Information Feedback on Wireless Channels

Unquantized and Uncoded Channel State Information Feedback on Wireless Channels Unquantized and Uncoded Channel State Information Feedback on Wireless Channels Dragan Samardzija Wireless Research Laboratory Bell Labs, Lucent Technologies 79 Holmdel-Keyport Road Holmdel, NJ 07733,

More information

An Experimental Study of Acoustic Distributed Beamforming Using Round-Trip Carrier Synchronization

An Experimental Study of Acoustic Distributed Beamforming Using Round-Trip Carrier Synchronization An Experimental Study of Acoustic Distributed Beamforming Using Round-Trip Carrier Synchronization D. Richard Brown III, Boyang Zhang, Boris Svirchuk, and Min Ni Abstract This paper describes the development

More information

Closing the loop around Sensor Networks

Closing the loop around Sensor Networks Closing the loop around Sensor Networks Bruno Sinopoli Shankar Sastry Dept of Electrical Engineering, UC Berkeley Chess Review May 11, 2005 Berkeley, CA Conceptual Issues Given a certain wireless sensor

More information

Performance Study of A Non-Blind Algorithm for Smart Antenna System

Performance Study of A Non-Blind Algorithm for Smart Antenna System International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 4 (2012), pp. 447-455 International Research Publication House http://www.irphouse.com Performance Study

More information

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System # - Joint Transmitter-Receiver Adaptive orward-link D-CDMA ystem Li Gao and Tan. Wong Department of Electrical & Computer Engineering University of lorida Gainesville lorida 3-3 Abstract A joint transmitter-receiver

More information

Cooperative Relaying Networks

Cooperative Relaying Networks Cooperative Relaying Networks A. Wittneben Communication Technology Laboratory Wireless Communication Group Outline Pervasive Wireless Access Fundamental Performance Limits Cooperative Signaling Schemes

More information

Self-Optimized Collaborative Data Communication in Wireless Sensor Networks

Self-Optimized Collaborative Data Communication in Wireless Sensor Networks Self-Optimized ollaborative ata ommunication in Wireless Sensor Networks Behnam Banitalebi, Takashi Miyaki, Hedda R. Schmidtke and Michael Beigl Karlsruhe Institute of Technology, epartment of Informatics,

More information

IN recent years, there has been great interest in the analysis

IN recent years, there has been great interest in the analysis 2890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006 On the Power Efficiency of Sensory and Ad Hoc Wireless Networks Amir F. Dana, Student Member, IEEE, and Babak Hassibi Abstract We

More information

Opportunistic Collaborative Beamforming with One-Bit Feedback

Opportunistic Collaborative Beamforming with One-Bit Feedback Opportunistic Collaborative Beamforming with One-Bit Feedback Man-On Pun, D. Richard Brown III and H. Vincent Poor Abstract An energy-efficient opportunistic collaborative beamformer with one-bit feedback

More information

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks , pp.70-74 http://dx.doi.org/10.14257/astl.2014.46.16 Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks Saransh Malik 1,Sangmi Moon 1, Bora Kim 1, Hun Choi 1, Jinsul Kim 1, Cheolhong

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Wireless Networked Systems

Wireless Networked Systems Wireless Networked Systems CS 795/895 - Spring 2013 Lec #4: Medium Access Control Power/CarrierSense Control, Multi-Channel, Directional Antenna Tamer Nadeem Dept. of Computer Science Power & Carrier Sense

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010 6133 A Random Search Framework for Convergence Analysis of Distributed Beamforming With Feedback Che Lin, Member, IEEE, Venugopal

More information

ADAPTIVE ESTIMATION AND PI LEARNING SPRING- RELAXATION TECHNIQUE FOR LOCATION ESTIMATION IN WIRELESS SENSOR NETWORKS

ADAPTIVE ESTIMATION AND PI LEARNING SPRING- RELAXATION TECHNIQUE FOR LOCATION ESTIMATION IN WIRELESS SENSOR NETWORKS INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 1, FEBRUARY 013 ADAPTIVE ESTIMATION AND PI LEARNING SPRING- RELAXATION TECHNIQUE FOR LOCATION ESTIMATION IN WIRELESS SENSOR NETWORKS

More information

Low-Complexity Real-Time Single-Tone Phase and Frequency Estimation

Low-Complexity Real-Time Single-Tone Phase and Frequency Estimation Low-Complexity Real-Time Single-Tone Phase and Frequency Estimation D. Richard Brown III, Yizheng Liao, and Neil Fox Abstract This paper presents a low-complexity real-time single-tone phase and frequency

More information

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Impedance Inverter based Analysis of Wireless Power Transfer Consists of Abstract Repeaters via Magnetic Resonant Coupling

More information

Scalable Feedback Control for Distributed Beamforming in Sensor Networks

Scalable Feedback Control for Distributed Beamforming in Sensor Networks Scalable Feedback Control for Distributed Beamforming in Sensor etworks R. Mudumbai, J. Hespanha, U. Madhow and G. Barriac Dept. of Electrical and Computer Engineering University of California, Santa Barbara,

More information

ProxiMate : Proximity Based Secure Pairing using Ambient Wireless Signals

ProxiMate : Proximity Based Secure Pairing using Ambient Wireless Signals ProxiMate : Proximity Based Secure Pairing using Ambient Wireless Signals Suhas Mathur AT&T Security Research Group Rob Miller, Alex Varshavsky, Wade Trappe, Narayan Madayam Suhas Mathur (AT&T) firstname

More information

Beamforming on mobile devices: A first study

Beamforming on mobile devices: A first study Beamforming on mobile devices: A first study Hang Yu, Lin Zhong, Ashutosh Sabharwal, David Kao http://www.recg.org Two invariants for wireless Spectrum is scarce Hardware is cheap and getting cheaper 2

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets Mohammed Eltayeb*, Junil Choi*, Tareq Al-Naffouri #, and Robert W. Heath Jr.* * Wireless Networking and Communications

More information

MIMO Channel Prediction Results on Outdoor Collected Data

MIMO Channel Prediction Results on Outdoor Collected Data MIMO Prediction Results on Outdoor Collected Data Patrick Bidigare Raytheon BBN Technologies Arlington, VA 22209 bidigare@ieee.org D. Richard Brown III Worcester Polytechnic Institute Worcester, MA 0609

More information

Spread-Spectrum Techniques for Distributed Space-Time Communication in Sensor Networks

Spread-Spectrum Techniques for Distributed Space-Time Communication in Sensor Networks Spread-Spectrum Techniques for Distributed Space-Time Communication in Sensor Networs R. Mudumbai Santa Barbara, CA 936 Email: raghu@ece.ucsb.edu G. Barriac Santa Barbara, CA 936 Email: barriac@engineering.ucsb.edu

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

Joint work with Dragana Bajović and Dušan Jakovetić. DLR/TUM Workshop, Munich,

Joint work with Dragana Bajović and Dušan Jakovetić. DLR/TUM Workshop, Munich, Slotted ALOHA in Small Cell Networks: How to Design Codes on Random Geometric Graphs? Dejan Vukobratović Associate Professor, DEET-UNS University of Novi Sad, Serbia Joint work with Dragana Bajović and

More information

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS RASHMI SABNUAM GUPTA 1 & KANDARPA KUMAR SARMA 2 1 Department of Electronics and Communication Engineering, Tezpur University-784028,

More information

A Unified View on the Interplay of Scheduling and MIMO Technologies in Wireless Systems

A Unified View on the Interplay of Scheduling and MIMO Technologies in Wireless Systems A Unified View on the Interplay of Scheduling and MIMO Technologies in Wireless Systems Li-Chun Wang and Chiung-Jang Chen National Chiao Tung University, Taiwan 03/08/2004 1 Outline MIMO antenna systems

More information

On the Value of Coherent and Coordinated Multi-point Transmission

On the Value of Coherent and Coordinated Multi-point Transmission On the Value of Coherent and Coordinated Multi-point Transmission Antti Tölli, Harri Pennanen and Petri Komulainen atolli@ee.oulu.fi Centre for Wireless Communications University of Oulu December 4, 2008

More information

Compact MIMO Antenna with Cross Polarized Configuration

Compact MIMO Antenna with Cross Polarized Configuration Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 2-22, 26 11 Compact MIMO Antenna with Cross Polarized Configuration Wannipa

More information

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels Jia-Chyi Wu Dept. of Communications,

More information

Reducing Intercarrier Interference in OFDM Systems by Partial Transmit Sequence and Selected Mapping

Reducing Intercarrier Interference in OFDM Systems by Partial Transmit Sequence and Selected Mapping Reducing Intercarrier Interference in OFDM Systems by Partial Transmit Sequence and Selected Mapping K.Sathananthan and C. Tellambura SCSSE, Faculty of Information Technology Monash University, Clayton

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

Distributed Beamforming for Safer Wireless Power Transferring

Distributed Beamforming for Safer Wireless Power Transferring Distributed Beamforming for Safer Wireless Power Transferring *, Han Ding**, Sugang Li*, Michael Sanzari*, Yanyong Zhang*, Wade Trappe*, Zhu Han*** and Richard Howard* *Wireless Information Network Laboratory

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

Implementation of OFDM Modulated Digital Communication Using Software Defined Radio Unit For Radar Applications

Implementation of OFDM Modulated Digital Communication Using Software Defined Radio Unit For Radar Applications Volume 118 No. 18 2018, 4009-4018 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Implementation of OFDM Modulated Digital Communication Using Software

More information

MIMO-Based Vehicle Positioning System for Vehicular Networks

MIMO-Based Vehicle Positioning System for Vehicular Networks MIMO-Based Vehicle Positioning System for Vehicular Networks Abduladhim Ashtaiwi* Computer Networks Department College of Information and Technology University of Tripoli Libya. * Corresponding author.

More information

MIMO Radar and Communication Spectrum Sharing with Clutter Mitigation

MIMO Radar and Communication Spectrum Sharing with Clutter Mitigation MIMO Radar and Communication Spectrum Sharing with Clutter Mitigation Bo Li and Athina Petropulu Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey Work supported

More information

Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm

Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm Seare H. Rezenom and Anthony D. Broadhurst, Member, IEEE Abstract-- Wideband Code Division Multiple Access (WCDMA)

More information

Information flow over wireless networks: a deterministic approach

Information flow over wireless networks: a deterministic approach Information flow over wireless networks: a deterministic approach alman Avestimehr In collaboration with uhas iggavi (EPFL) and avid Tse (UC Berkeley) Overview Point-to-point channel Information theory

More information

Spectrum Sharing Between Matrix Completion Based MIMO Radars and A MIMO Communication System

Spectrum Sharing Between Matrix Completion Based MIMO Radars and A MIMO Communication System Spectrum Sharing Between Matrix Completion Based MIMO Radars and A MIMO Communication System Bo Li and Athina Petropulu April 23, 2015 ECE Department, Rutgers, The State University of New Jersey, USA Work

More information

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band 4.1. Introduction The demands for wireless mobile communication are increasing rapidly, and they have become an indispensable part

More information

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Christina Knill, Jonathan Bechter, and Christian Waldschmidt 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must

More information

Beamforming Techniques at Both Transmitter and Receiver for Indoor Wireless Communication

Beamforming Techniques at Both Transmitter and Receiver for Indoor Wireless Communication Journal of Applied Science and Engineering, Vol. 21, No. 3, pp. 407 412 (2018) DOI: 10.6180/jase.201809_21(3).0011 Beamforming Techniques at Both Transmitter and Receiver for Indoor Wireless Communication

More information

Bounds on Achievable Rates for Cooperative Channel Coding

Bounds on Achievable Rates for Cooperative Channel Coding Bounds on Achievable Rates for Cooperative Channel Coding Ameesh Pandya and Greg Pottie Department of Electrical Engineering University of California, Los Angeles {ameesh, pottie}@ee.ucla.edu Abstract

More information

COOPERATIVE ROUTING IN WIRELESS NETWORKS

COOPERATIVE ROUTING IN WIRELESS NETWORKS Chapter COOPERATIVE ROUTING IN WIRELESS NETWORKS Amir E. Khandani Laboratory for Information and Decision Systems Massachusetts Institute of Technology khandani@mit.edu Eytan Modiano Laboratory for Information

More information

THE EFFECT of multipath fading in wireless systems can

THE EFFECT of multipath fading in wireless systems can IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 1, FEBRUARY 1998 119 The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading Jack H. Winters, Fellow, IEEE Abstract In

More information

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER Dr. Cheng Lu, Chief Communications System Engineer John Roach, Vice President, Network Products Division Dr. George Sasvari,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Analysis and Simulation of UHF RFID System

Analysis and Simulation of UHF RFID System ICSP006 Proceedings Analysis and Simulation of UHF RFID System Jin Li, Cheng Tao Modern Telecommunication Institute, Beijing Jiaotong University, Beijing 00044, P. R. China Email: lijin3@63.com Abstract

More information

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison Prof. Xinyu Zhang Dept. of Electrical and Computer Engineering University of Wisconsin-Madison 1" Overview of MIMO communications Single-user MIMO Multi-user MIMO Network MIMO 3" MIMO (Multiple-Input Multiple-Output)

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

Wireless Bio- medical Sensor Network for Heartbeat and Respiration Detection

Wireless Bio- medical Sensor Network for Heartbeat and Respiration Detection Wireless Bio- medical Sensor Network for Heartbeat and Respiration Detection Mrs. Mohsina Anjum 1 1 (Electronics And Telecommunication, Anjuman College Of Engineering And Technology, India) ABSTRACT: A

More information

QAM Carrier Tracking for Software Defined Radio

QAM Carrier Tracking for Software Defined Radio QAM Carrier Tracking for Software Defined Radio SDR Forum Technical Conference 2008 James Schreuder SCHREUDER ENGINEERING www.schreuder.com.au Outline 1. Introduction 2. Analog versus Digital Phase Locked

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

A scalable architecture for distributed transmit beamforming with commodity radios: design and proof of concept

A scalable architecture for distributed transmit beamforming with commodity radios: design and proof of concept A scalable architecture for distributed transmit beamforming with commodity radios: design and proof of concept F. Quitin, M. M. U. Rahman, R. Mudumbai and U. Madhow 1 Abstract We describe a fully-wireless

More information

RADIATING SENSOR SELECTION FOR DISTRIBUTED BEAMFORMING IN WIRELESS SENSOR NETWORKS

RADIATING SENSOR SELECTION FOR DISTRIBUTED BEAMFORMING IN WIRELESS SENSOR NETWORKS RADIATING SENSOR SELECTION FOR DISTRIBUTED BEAMFORMING IN WIRELESS SENSOR NETWORKS Che-Wei Chang, Akshay Kothari, Ali Jafri, Dimitrios Koutsonikolas, Dimitrios Peroulis, Y. Charlie Hu School of Electrical

More information

NI USRP Lab: DQPSK Transceiver Design

NI USRP Lab: DQPSK Transceiver Design NI USRP Lab: DQPSK Transceiver Design 1 Introduction 1.1 Aims This Lab aims for you to: understand the USRP hardware and capabilities; build a DQPSK receiver using LabVIEW and the USRP. By the end of this

More information

Time Delay Estimation: Applications and Algorithms

Time Delay Estimation: Applications and Algorithms Time Delay Estimation: Applications and Algorithms Hing Cheung So http://www.ee.cityu.edu.hk/~hcso Department of Electronic Engineering City University of Hong Kong H. C. So Page 1 Outline Introduction

More information

By Nour Alhariqi. nalhareqi

By Nour Alhariqi. nalhareqi By Nour Alhariqi nalhareqi - 2014 1 Outline Basic background Research work What I have learned nalhareqi - 2014 2 DS-CDMA Technique For years, direct sequence code division multiple access (DS-CDMA) appears

More information

Opportunistic Collaborative Beamforming with One-Bit Feedback

Opportunistic Collaborative Beamforming with One-Bit Feedback Opportunistic Collaborative Beamforming with One-Bit Feedback Man-On Pun, D. Richard Brown III and H. Vincent Poor arxiv:0807.75v cs.it] 5 Jul 008 Abstract An energy-efficient opportunistic collaborative

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Performance of Combined Error Correction and Error Detection for very Short Block Length Codes

Performance of Combined Error Correction and Error Detection for very Short Block Length Codes Performance of Combined Error Correction and Error Detection for very Short Block Length Codes Matthias Breuninger and Joachim Speidel Institute of Telecommunications, University of Stuttgart Pfaffenwaldring

More information

Mathematical Problems in Networked Embedded Systems

Mathematical Problems in Networked Embedded Systems Mathematical Problems in Networked Embedded Systems Miklós Maróti Institute for Software Integrated Systems Vanderbilt University Outline Acoustic ranging TDMA in globally asynchronous locally synchronous

More information

BPSK System on Spartan 3E FPGA

BPSK System on Spartan 3E FPGA INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGIES, VOL. 02, ISSUE 02, FEB 2014 ISSN 2321 8665 BPSK System on Spartan 3E FPGA MICHAL JON 1 M.S. California university, Email:santhoshini33@gmail.com. ABSTRACT-

More information

AN FPGA IMPLEMENTATION OF ALAMOUTI S TRANSMIT DIVERSITY TECHNIQUE

AN FPGA IMPLEMENTATION OF ALAMOUTI S TRANSMIT DIVERSITY TECHNIQUE AN FPGA IMPLEMENTATION OF ALAMOUTI S TRANSMIT DIVERSITY TECHNIQUE Chris Dick Xilinx, Inc. 2100 Logic Dr. San Jose, CA 95124 Patrick Murphy, J. Patrick Frantz Rice University - ECE Dept. 6100 Main St. -

More information

Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh Fading Channels

Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh Fading Channels 2015 IJSRSET Volume 1 Issue 1 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh

More information

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM N.Prabakaran Research scholar, Department of ETCE, Sathyabama University, Rajiv Gandhi Road, Chennai, Tamilnadu 600119, India prabakar_kn@yahoo.co.in

More information