Robust Wireless Video Transmission Employing Byte-aligned Variable-length Turbo Code

Size: px
Start display at page:

Download "Robust Wireless Video Transmission Employing Byte-aligned Variable-length Turbo Code"

Transcription

1 Robust Wireless Video Transmission Employing Byte-aligned Variable-length Turbo Code ChangWoo Lee* and JongWon Kim** * Department of Computer and Electronic Engineering, The Catholic University of Korea 43-1 Yoo 2-dong, Wonmi-gu, Puchon City, Kyunggi-do , Korea **Department of Information & Communication, Kwang-Ju Institute of Science & Technology 1 Oryong-Dong, Bu-Gu, KwangJu, , Korea. ABSTRACT Video transmission over the multi-path fading wireless channel has to overcome the inherent vulnerability of compressed video to the channel errors. To effectively prevent the corruption of video stream and its propagation in spatial and temporal domain, proactive error controls are widely being deployed. Among possible candidates, turbo code is nown to exhibit superior error correction performance over fading channel. Ordinary turbo codes, however, are not suitable to support the variable-size segment of the video stream. A version of turbo code, byte-aligned variablelength turbo code, is thus proposed and applied for the robust video transmission system. Protection performance of the proposed turbo code is evaluated by applying it to GOB-based variable-size ITU-T H.263 video pacets, where the protection level is controlled based on the joint source-channel criteria. The resulting performance comparison with the conventional RCPC code clearly demonstrates the possibility of the proposed approach for the time-varying correlated Rayleigh-fading channel. Keywords: Wireless video transmission, time-varying wireless channel, joint source-channel rate control, proactive error control, byte-aligned variable-length turbo code 1. INTRODUCTION The explosive growth of 3G wireless communication system has spared the increased demand for new and exciting information services based on the reliable transmission of continuous media. However, because of the fundamental limitations due to power, available spectrum, mobility, and fading, the quality of continuous media transmitted over time-varying wireless channel suffers heavily from the unstable and error-prone wireless channel [1]. Especially, wireless video transmission over the error-prone multi-path fading channel has to overcome the inherent sensitivity of compressed video to the channel errors and their propagation in spatial and temporal domain. Source-side schemes such as error-resilient encoding and error concealment are adopted in the ITU-T H.263 and ISO/IEC MPEG- 4 to address this weaness. From the channel side, the fluctuating wireless channel error on the continuous media streams is controlled at a suitable level with bandwidth, delay, and power-consumption constraint. As one of the promising error-control solutions, proactive FEC techniques have been widely proposed despite of their overhead channel rates. In case of wireless video, the mobile version of ITU-T H.324, H.324M, defines two inds of FEC codes, RCPC (rate-compatible punctured convolutional) code and shortened RS (Reed-Solomon) code in the H.223 multiplexing Annex C and Annex D, respectively [2,3]. The resulting FEC-based protection has the RC (ratecompatible) characteristic so that the error correction capability is increased gradually. Another potential candidate for FEC error control, an iterative decoding based turbo code, has attracted lots of interests due to its superior performance [4]. Turbo code, composed of encoder and interleaver, depends its error correction performance on the type and the size of interleaver. In addition, a rate-compatible version of turbo, namely RCPT (rate-compatible punctured turbo) code, has been proposed [5]. However, since the bloc size of turbo code depends on the adopted interleaver, its usage is * Correspondence: lcw@

2 restricted to the fixed size blocs (i.e., fixed size segment of video stream) and, as a result, it is hard to support the variable size segment of the video stream (e.g., GOB- or slice-based) without fragmentation or stuffing. Prior wors on turbo-coded wireless video have adopted this fixed bloc turbo code, albeit in tie with the burst-by-burst modulation adaptation [6]. In order to overcome this limitation of turbo code while preserving its superior performance, it is necessary to modify the interleaver to allow the bloc size variation per each bloc. The widely utilized random interleaver, nown to be the most efficient, is however difficult to be modified since it does not exhibit any ind of regularity. Thus, in this paper, a byte-aligned variable size turbo code is developed utilizing a different type of interleaver denoted as JPL interleaver. The JPL interleaver is nown to sustain the interleaving performance with a special regularity suitable for variable size realization [7]. With the additional modification to the JPL interleaving, we designed a byte-aligned variable size turbo code with the desired RC (rate-compatible) characteristic. The adaptive protection capability of the proposed FEC scheme is evaluated with a special attention to the dynamic and coordinated control of both channel and source rates. With the proposed RCPT, the source video stream, represented in series of compressed segments of GOB or slice, may be prioritized according to the layer it belongs and the strength of pacet loss/delay impact. Then, each priority group can be differently protected to jointly match the layered priority and channel condition. For these cases, we analyze and compare the proactive protection performance of turbo codes for the wireless ITU-T H.263 video. The adopted FEC codes, such as the RCPC code and the proposed RCPT code, are evaluated under both AWGN (additive white Gaussian noise) and time-varying correlated Rayleighfading wireless channels. That is, a simulation-based direct wireless lin is established and H.223-multiplexing transmission scenario is emulated for evaluation. The proactive protection is then performed for each H.223 pacet based on the joint source-channel criteria, where the source and channel coding rates are jointly optimized. The rest of paper is organized as follows. Section 2 describes the outline of the proposed video transmission system. Both RCPC and RCPT codes are introduced in Section 3, where detailed explanation on the proposed bytealigned variable length turbo is covered. Simulation results are shown in Section 4, where concluding remars are also given. 2. VIDEO TRANSMISSION SYSTEM ITU-T Recommendation H.324 describes terminal systems for low bit-rate multimedia communication, which may transmit real-time voice, video, and data [8]. Fig. 1 illustrates the major components of an H.324 terminal. For H.324M, a wireless interface with a wide range of bit rates can be used instead of V.34 to transmit the multimedia streams. The H.223 multiplexer interleaves video, audio, data and control streams into a single bit stream, and allows highly dynamic allocation of bandwidth to different channels. It consists of a lower multiplex layer, which actually mixes the different media streams, and a set of adaptation layers above. However, base mode of H.223 is not robust against errors since it is designed to wor in the low error-rate channel. To provide an error resiliency for the error- H.324 multimedia terminal Video I/O equipment Video codec H.263 Audio I/O equipment User data applications Audio codec G.723 Data protocols V.14, LAPM, etc. Receive path delay Multiplex/ demultiplex H.223 Modem V.34/V.8 System control Control protocol H.245 SRP/LAPM procedures Modem control V.25ter Fig. 1: ITU-T H.324 multimedia terminal.

3 prone mobile environment, additional logical framing, sequence numbering, error detection, and error correction have been defined in H.223 Annexes. Especially in H.223-Annex C and Annex D, RCPC and shortened-rs error correction code are defined [2,3]. Fig. 2 illustrates the procedure of applying RCPC code [2]. AL-SDU (adaptation layer-service data unit) provided by AL user is RCPC-encoded with a CRC (cyclic redundancy code) and a TB (tail bits). Since the code rate of the RCPC code is 1/4, we should puncture the parity bits to meet the system bandwidth. After adding the optional CF (control field), AL-PDU (adaptation layer-protocol data unit) is conveyed to the lower multiplex layer, forming MUX- SDU. At the decoder side, the boundaries of MUX-SDU s are detected using flags. Then, taing the channel code-rate into consideration, the length of each AL-SDU is determined. If we want to replace RCPC code with RCPT code, we just need to encode AL-SDU with RCPT code in the similar way (except for the variable-size issue). Shortly in Section 3, we will discuss the detailed characteristics of RCPC and RCPT codes. The resulting wireless video delivery framewor simulating ITU-T H.324M environment is depicted in Fig. 3. At the sender, H.263 video with simple error resilience and compression efficiency options is currently adopted. A Bitstream Application Layer AL-SDU AL-SDU AL-SDU AL-SDU* CRC TB convolutional encoding convolutional decoding AL-SDU* CRC TB Adaptation Layer transmitting punctured data CF AL-PDU Payload inserting punctured data from (re)-transmission AL-PDU MUX-SDU Multiplex Layer Fig. 2: Applying RCPC code in the H.223 layer. Video Encoder (ITU-T H.263) H.223 MUX for Mobile Channel Modulation Wireless Transmission over Fading Channel Channel Demodulation H.223 DE- MUX Error Resilient Video Decoder Layered Priority (optional) Feedbac with delay for update retransmission (optional) Clean Pacet Corrupted Pacet Fatal Pacet Fig. 3: Proposed wireless video transmission system framewor.

4 variable-size pacet (i.e., segment) is generated for every GOB that contains a fixed number of macroblocs (MB s). Each pacet is then multiplexed based on the simplified H.223 Annex C. In order to support the variable size nature of the video stream (e.g., GOB or slice) without fragmentation or stuffing, the size of AL-SDU should be variable. Fig. 4 shows the respective average size of GOB segments per each frame for Foreman, Carphone, and Claire sequences at bit rate of 64bps. The cyclic redundancy code (CRC) is calculated to chec its payload and appended for error detection. Based on the layered priority and the pacet size along with the channel state information, unequal error protection (UEP) can be conducted with the chosen RCPC or RCPT FEC codes. However, the layered priority has not been incorporated for the UEP at current stage, since we are mainly comparing the performance between RCPC and byte-aligned variable-length RCPT. Finally, the resulting channel pacet is modulated and transmitted to the underlying wireless channel. At the receiver, the received signal is decoded by the ML (maximum lielihood)-based scheme. The partial update re-transmission capability of H.223 Annex C RCPC is not utilized at current stage. Decoded pacets after the de-multiplexing stage are classified into three types: clean, corrupted (CRC chec failure) and fatal (unrecoverable error in the header, the synchronization or the control fields of multiplexing pacet). Finally, to provide the end-to-end performance in both subjective and objective measures, a decoder capable of handling the corrupted video stream is used for video decoding Foreman Carphone Claire Average pacet size (# of byte) Decoded frame # Fig. 4: Average sizes of GOB. 3. RCPC CODE AND BYTE-ALIGNED VARIABLE-LENGTH RCPT CODE 3.1 RCPC code and RCPT code The RCPC channel encoder defined in H.223-Annex C is based on a systematic recursive convolutional (SRC) encoder with rate R=1/4 [2]. RCPC is a family of convolutional codes derived from a mother code rate (1/4 in this case), a set of generating polynomials with memory, and a puncture table. In Fig. 5, bloc diagram of the RCPC encoder is depicted, where puncturing of the SRC encoder output allows different channel rates starting from 1/4 up to 1. Due to the flexibility in changing the code ratio, RCPC has been widely used in UEP FEC and hybrid ARQ/FEC protection. That is, by changing the puncture table of Table 1 to obtain different ratios, the level of protection can be altered. From Table 1, you can verify that, for all rates, the puncturing at a certain rate includes the puncturing of every bit of all lower rates plus additional bit(s), maing the code rate compatible. Another potential candidate for error correction, an iterative decoding based turbo code, has attracted lots of

5 interests due to its superior performance close to theoretical limits [4]. Fig. 6 shows the turbo encoder, composed of RSC (recursive systematic convolutional) encoder and interleaver. The optimum RSC encoder with 16 states, which minimizes the bit error probability by maximizing the effective free distance, is shown in Fig. 7 [9]. For a given RSC encoder, the error-correction performance of turbo code depends on the type and size of interleaver. Similar to the case of RCPC code, we can puncture the parity bits of turbo code to match the bandwidth constraint of underlying transmission channel. Table 2 shows the puncturing mechanism for RCPT code, where the channel code rate ranges from 8/24 to 8/8. V t (1) U t D D D D V t (2) V t (3) V t (4) Fig. 5: RCPC encoder. Data Upper RSC Encoder x p Parity 1 output p 2 Systematic output Puncturing Mechanism Interleaver Lower RSC Encoder Parity output A B Fig. 6: Turbo encoder. Systematic bit Input D D D D Parity bit Fig. 7: Optimum RSC encoder module for turbo encoder. Table 1: Puncturing tables for RCPC code (all values in hexadecimal representation). Rate γ 8/8 8/10 8/11 8/12 8/14 8/16 8/18 8/20 8/22 8/24 8/32 V t (1) FF FF FF FF FF FF FF FF FF FF FF V t (2) A8 AA EE FF FF FF FF FF FF V t (3) AA EE FF FF V t (4) FF

6 Table 2: Puncturing tables for RCPT code (all values in hexadecimal representation). Rate γ 8/8 8/10 8/11 8/12 8/14 8/16 8/18 8/20 8/22 8/24 X FF FF FF FF FF FF FF FF FF FF P AA AA EE FF FF FF P FF As discussed in Section 2, if we want to apply the RCPT for each GOB of variable-length size, the RCPC should be byte-aligned with the synchronization codeword. It is thus necessary to modify the interleaver to support the bloc size variation per each bloc. However, the widely utilized random interleaver, nown to be the most efficient, is difficult to be converted since it does not exhibit any ind of regularity. On the other hand, we can easily mae the bytealigned RCPT code with the simple bloc interleaver. However, its performance is inferior due to the poor decorrelating property. Among the various types of interleavers, the JPL interleaver is nown to exhibit good interleaving performance with a special regularity suitable for variable size realization [7]. We have modified the JPL interleaver structure so as to match all sizes of byte-aligned GOB input. Fig. 8 illustrates the input-output relation for the modified JPL interleaver, where the repetitive tiling of regular patterns are shown Fig. 8: Input-output relation of the modified JPL interleaver (bloc size 4096). 3.2 Performance comparison of RCPC code and byte-aligned variable-length RCPT code The wireless channel model used to simulate the real-world situation includes the short-term fading, the long-term fading (i.e., shadowing), and the path loss. The multi-path phenomenon generates an amplitude variation of the transmitted channel signal that leads to the short-term fading. The path loss reflects the degradation of the signal strength over a distance. Fluctuation of the expected power level around the path-loss model is called the long-term fading effect and this long-term fading can be obtained by averaging the short-term fading SNR. In this paper, all simulations have been conducted assuming an urban micro-cell wireless environment [10]. The carrier frequency f c is set to 2 GHz and the mobile unit moves at a moderate velocity of 34 m/hr. The normalized Doppler frequency used to construct the fading is set to 10-3 while the short-term fading is modeled as the Rayleigh flat fading channel. For simplicity, it is assumed that power degradation due to the path loss is perfectly compensated by the power control method, and the SNR operational point is maintained throughout the wireless communication process. Thus, for a BPSK-modulated transmission, the fading model can be written as y a x n =, (1) where y is the received signal symbol at the decoder, a is the variation of Rayleigh flat fading amplitude, x is

7 the BPSK modulated signal, and n is the additive white Gaussian noise (AWGN), respectively. The resulting variation of the amplitude a under this urban micro-cell channel (normalized) is shown in Fig Fig. 9: Amplitude variation of time-varying correlated Rayleigh fading channel. For the RCPT code and the RCPC code, the BER performance has been computed using Monte Carlo method, as a function of variable pacet sizes. Fig. 10 and Fig. 11 illustrate BER and pacet-error rate performances of RCPC codes and proposed RCPT codes in the time-varying correlated Rayleigh-fading channel with a symbol to additive noise variance Es/No=15.0dB. As expected, RCPT code with the modified JPL interleaver shows superior performance to RCPC code. Moreover, the BER for the RCPC code decreases rapidly when we increase the pacet size. On the contrary, the pacet size has little effect on the BER performance for the RCPC code. In case of RCPT, this phenomenon continues even for pacet-error rates. That is, for RCPT code, pacet-error rates decreases as pacet-size increases. When we use the variable-size pacet to match the video segment (e.g., GOB), this means that GOB-pacet with intra-mb s can be better protected than GOB-pacet only with inter-mb s. Considering the error propagation, this can be another merit for using the proposed RCPT code. 1.00E E-03 BER 1.00E E Pacet Size No Code RCPC (8/12) RCPC (8/14) RCPT (8/12) RCPT (8/14) Fig. 10: BER performance of RCPC code and RCPT code in the time-varying correlated Rayleigh-fading channel (Es/No: 15 db).

8 1.00E00 Pacet Error Rate 1.00E E E Pacet Size No Code RCPC (8/12) RCPC (8/14) RCPT (8/12) RCPT (8/14) Fig. 11: Pacet-error rate performance comparison of RCPC code and RCPT code in the time-varying correlated Rayleigh-fading channel (Es/No: 15 db). 4. SIMULATION RESULTS AND CONCLUSION The performance comparison between RCPC code and byte-aligned variable-length RCPT code is continued here for the wireless video transmission. ITU-T H.263 video with simple error resilience and compression efficiency options is currently adopted. A variable-size pacet is generated for every GOB that contains a fixed number of MB s. Each pacet is then multiplexed based on the simplified H.223 Annex C. That is, each GOB-pacet of H.263 stream is used as a pacet of AL-SDU* illustrated in Fig. 2. This application-layer framed pacet, where compression-related segments are chosen as the delivery unit, has the potential of maing the error detection and concealment at the decoder more flexible and robust, hence improving the performance. Note that, if the pacet size is fixed, a channel pacet may contain irregular number of fragmented video segments and it complicates the decoder job. However, only simple error concealment based on the repetition is employed in our current evaluation, leaving the chance of future improvement. As mentioned in Section 2, the degree of error protection (i.e., the FEC code ratio) is controlled only by the pacet size and channel state. That is, UEP based on the layered priority and others has not been performed at current stage, since we want to focus on the performance comparison between RCPC and byte-aligned variable-length RCPT. Thus, the proactive protection is performed for each H.223 pacet based on the joint source-channel criteria, where the source and channel coding rates are jointly optimized as follows. To maintain a constant channel transmission rate R t, the available rate for the source should be reduced to Rs = γ R t, where γ [0,1] is a chosen channel code-ratio and the rate for the error correction becomes Rc ( = (1 γ ) Rt ). Assuming that the distortion D s and D c, which are induced by source compression and transmission error respectively, are independent of each other, the total distortion D can be expressed as D d ( c S s c c c γ, S ) = D ( R ( γ )) D ( R ( γ ), S ), (2) d where S c represents the channel status, which is determined by the signal-to-noise ratio in the AWGN or the time-

9 varying correlated Rayleigh fading channels [11,12]. The normalized Doppler frequency for the time-varying correlated Rayleigh fading channel is assumed to be For minimizing the total distortion D d, it is therefore important to understand how much we can improve the reliability at the cost of source rate. In other words, we need to find the optimum ratio γ that shows the best performance. For the evaluation of the video transmission system, it is necessary to average the distortion over the whole sequence in order to provide a single figure of merit. The video quality is measured by the mean-squared-error (MSE) distortion averaged over all encoded frames. The overall MSE D d for a whole sequence after decoding is also equivalent to the common PSNR measure, in fact, the average PSNR, 2 PSNR = 10log10 (255 / Dd ). For the joint optimization of the compression ratio and the error correction code ratio, we have chosen a total channel rate of R t = 96 bps. Finally, the end-to-end performance of wireless video transmission is evaluated for the AWGN channel with Es/No=1.5dB and the time-varying correlated Rayleigh-fading channel with Es/No=15.0dB. Fig. 12 and Fig. 13 illustrate the comparison performances for the RCPC code and the proposed RCPT code. We have used Foreman and Miss America sequences, which have relatively higher and lower frequency components, respectively. The proposed RCPT performs well even at channel code-ratio γ=8/14, while the performance for the RCPC degrades rapidly with the increase of channel code-ratio γ. The channel code-ratio γ for RCPC code should be lower than 0.44 for reliable wireless video, which means too much redundant bits under low bit rates. With proper joint source-channel rate control, we can verify from these results that the proposed byte-aligned variable-length turbo code can enhance the robustness of underlying wireless video transmission. We have proposed the use of byte-aligned variable-length turbo code, especially RCPT, for the robust wireless video transmission. Byte-aligned RCPT code with the modified JPL interleaver has been designed. Then, RCPT based on this interleaver is evaluated by its performance under the AWGN and time-varying correlated Rayleigh-fading channels. The simulation results demonstrate the superior performance as well as the potential of the proposed scheme. In our future wors, we will further investigate the performance of the proposed system under more elaborated wireless video transmission framewor, where the UEP based on the layered priority is performed with the intelligent receiver with better error detection and concealment PSNR(dB) /γ RCPT(Fading Channel, Es/No:15.0dB) RCPT(AWGN Channel, Es/No:1.5dB) RCPC(Fading Channel, Es/No:15.0dB) RCPC(AWGN Channel, Es/No:1.5dB) Fig. 12: PSNR performance comparison of RCPC and RCPT codes (as a function of 1/γ, Foreman).

10 PSNR(dB) /γ RCPT(Fading Channel, Es/No:15.0dB) RCPT(AWGN Channel, Es/No:1.5dB) RCPC(Fading Channel, Es/No:15.0dB) RCPC(AWGN Channel, Es/No:1.5dB) Fig. 13: PSNR performance comparison of RCPC and RCPT codes (as a function of 1/γ, Miss America). ACKNOWLEDGEMENTS This wor was supported by grant No. R from the Basic Research Program of the Korea Science & Engineering Foundation. REFERENCES 1. Y. Wang and Q. Zhu, Error control and concealment for video communication: A review, Proc. of the IEEE, vol. 86, pp , May ITU-T, Multiplexing protocol for low bitrate multimedia communication over highly error-prone channels, ITU-T recommendation H.223-Annex C, Dec ITU-T, Optional multiplexing protocol for low bitrate multimedia communication over highly error-prone channel, ITU-T recommendation H.223-Annex D, Dec C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error correcting coding and decoding: Turbo codes," in Proc. IEEE ICC '93, pp , Geneva, Switzerland, May S. A. Barbulescu, Iterative decoding of turbo codes and other concatenated codes, Ph.D. thesis, University of South Australia, Feb P. Cherriman, C. H. Wong, and L. Hanzo, Turbo- and BCH-coded wide-band burst-by-burst adaptive H.263- assisted wireless video telephony, IEEE Trans. on Circuits and Systems for Video Tech., vol. 10, pp , Dec C. Heegard and S. B. Wicer, Turbo coding, Boston: Kluwer Academic Publisher, N. Farber, B. Girod and J. Villasenor, Extension of ITU-T recommendation H.324 for error-resilient video transmission, IEEE Commun. Magazine, vol. 36, pp , June S. Benedetto and G. Montorsi, Design of parallel concatenated convolutional codes, IEEE Trans. on Commun., vol.

11 44, pp , May A. Anastasopoulos and K. M. Chugg, An efficient method for simulation of frequency selective isotropic Rayleigh fading, in Proc. Vehicular Technology Conference, pp , Phoenix, AZ, May K. Stuhlmuller, N. Farber, M Lin, and B. Girod, Analysis of video transmission over lossy channels, IEEE Journal on Selected Areas in Commun., vol. 18, pp , June M. Bystrom and J. W. Modestino, Combined source-channel coding schemes for video transmission over additive white Gaussian noise channel, IEEE Journal on Selected Areas in Commun., vol. 18, pp , June 2000.

Performance comparison of convolutional and block turbo codes

Performance comparison of convolutional and block turbo codes Performance comparison of convolutional and block turbo codes K. Ramasamy 1a), Mohammad Umar Siddiqi 2, Mohamad Yusoff Alias 1, and A. Arunagiri 1 1 Faculty of Engineering, Multimedia University, 63100,

More information

TURBOCODING PERFORMANCES ON FADING CHANNELS

TURBOCODING PERFORMANCES ON FADING CHANNELS TURBOCODING PERFORMANCES ON FADING CHANNELS Ioana Marcu, Simona Halunga, Octavian Fratu Telecommunications Dept. Electronics, Telecomm. & Information Theory Faculty, Bd. Iuliu Maniu 1-3, 061071, Bucharest

More information

JPEG Image Transmission over Rayleigh Fading Channel with Unequal Error Protection

JPEG Image Transmission over Rayleigh Fading Channel with Unequal Error Protection International Journal of Computer Applications (0975 8887 JPEG Image Transmission over Rayleigh Fading with Unequal Error Protection J. N. Patel Phd,Assistant Professor, ECE SVNIT, Surat S. Patnaik Phd,Professor,

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Nakagami Multipath M-Fading Channel

Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Nakagami Multipath M-Fading Channel Vol. 2 (2012) No. 5 ISSN: 2088-5334 Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Naagami Multipath M-Fading Channel Mohamed Abd El-latif, Alaa El-Din Sayed Hafez, Sami H.

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting

Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting IEEE TRANSACTIONS ON BROADCASTING, VOL. 46, NO. 1, MARCH 2000 49 Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting Sae-Young Chung and Hui-Ling Lou Abstract Bandwidth efficient

More information

Performance Optimization of Hybrid Combination of LDPC and RS Codes Using Image Transmission System Over Fading Channels

Performance Optimization of Hybrid Combination of LDPC and RS Codes Using Image Transmission System Over Fading Channels European Journal of Scientific Research ISSN 1450-216X Vol.35 No.1 (2009), pp 34-42 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ejsr.htm Performance Optimization of Hybrid Combination

More information

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels Jia-Chyi Wu Dept. of Communications,

More information

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel Research Letters in Communications Volume 2009, Article ID 695620, 4 pages doi:0.55/2009/695620 Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel Haris Gacanin and

More information

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES Michelle Foltran Miranda Eduardo Parente Ribeiro mifoltran@hotmail.com edu@eletrica.ufpr.br Departament of Electrical Engineering,

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Rep. ITU-R BO REPORT ITU-R BO SATELLITE-BROADCASTING SYSTEMS OF INTEGRATED SERVICES DIGITAL BROADCASTING

Rep. ITU-R BO REPORT ITU-R BO SATELLITE-BROADCASTING SYSTEMS OF INTEGRATED SERVICES DIGITAL BROADCASTING Rep. ITU-R BO.7- REPORT ITU-R BO.7- SATELLITE-BROADCASTING SYSTEMS OF INTEGRATED SERVICES DIGITAL BROADCASTING (Questions ITU-R 0/0 and ITU-R 0/) (990-994-998) Rep. ITU-R BO.7- Introduction The progress

More information

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion Research Journal of Applied Sciences, Engineering and Technology 4(18): 3251-3256, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 28, 2011 Accepted: March 02, 2012 Published:

More information

II. FRAME STRUCTURE In this section, we present the downlink frame structure of 3GPP LTE and WiMAX standards. Here, we consider

II. FRAME STRUCTURE In this section, we present the downlink frame structure of 3GPP LTE and WiMAX standards. Here, we consider Forward Error Correction Decoding for WiMAX and 3GPP LTE Modems Seok-Jun Lee, Manish Goel, Yuming Zhu, Jing-Fei Ren, and Yang Sun DSPS R&D Center, Texas Instruments ECE Depart., Rice University {seokjun,

More information

BANDWIDTH EFFICIENT TURBO CODING FOR HIGH SPEED MOBILE SATELLITE COMMUNICATIONS

BANDWIDTH EFFICIENT TURBO CODING FOR HIGH SPEED MOBILE SATELLITE COMMUNICATIONS BANDWIDTH EFFICIENT TURBO CODING FOR HIGH SPEED MOBILE SATELLITE COMMUNICATIONS S. Adrian BARBULESCU, Wade FARRELL Institute for Telecommunications Research, University of South Australia, Warrendi Road,

More information

Testing The Effective Performance Of Ofdm On Digital Video Broadcasting

Testing The Effective Performance Of Ofdm On Digital Video Broadcasting The 1 st Regional Conference of Eng. Sci. NUCEJ Spatial ISSUE vol.11,no.2, 2008 pp 295-302 Testing The Effective Performance Of Ofdm On Digital Video Broadcasting Ali Mohammed Hassan Al-Bermani College

More information

Adaptive Coding in MC-CDMA/FDMA Systems with Adaptive Sub-Band Allocation

Adaptive Coding in MC-CDMA/FDMA Systems with Adaptive Sub-Band Allocation Adaptive Coding in MC-CDMA/FDMA Systems with Adaptive Sub-Band Allocation P. Trifonov, E. Costa and A. Filippi Siemens AG, ICM N PG SP RC, D-81739- Munich Abstract. The OFDM-based MC-CDMA/FDMA transmission

More information

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 11, NOVEMBER 2002 1719 SNR Estimation in Nakagami-m Fading With Diversity Combining Its Application to Turbo Decoding A. Ramesh, A. Chockalingam, Laurence

More information

Convolutional Coding in Hybrid Type-II ARQ Schemes on Wireless Channels Sorour Falahati, Tony Ottosson, Arne Svensson and Lin Zihuai Chalmers Univ. of Technology, Dept. of Signals and Systems, Communication

More information

Systems for Audio and Video Broadcasting (part 2 of 2)

Systems for Audio and Video Broadcasting (part 2 of 2) Systems for Audio and Video Broadcasting (part 2 of 2) Ing. Karel Ulovec, Ph.D. CTU in Prague, Faculty of Electrical Engineering xulovec@fel.cvut.cz Only for study purposes for students of the! 1/30 Systems

More information

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Anshu Aggarwal 1 and Vikas Mittal 2 1 Anshu Aggarwal is student of M.Tech. in the Department of Electronics

More information

1 Introduction. Abstract

1 Introduction. Abstract Abstract We extend the work of Sherwood and Zeger [1, 2] to progressive video coding for noisy channels. By utilizing a three-dimensional (3-D) extension of the set partitioning in hierarchical trees (SPIHT)

More information

On the performance of Turbo Codes over UWB channels at low SNR

On the performance of Turbo Codes over UWB channels at low SNR On the performance of Turbo Codes over UWB channels at low SNR Ranjan Bose Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA Abstract - In this paper we propose the use

More information

A Survey of Advanced FEC Systems

A Survey of Advanced FEC Systems A Survey of Advanced FEC Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material from Bo Xia,

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter n Soft decision decoding (can be analyzed via an equivalent binary-input additive white Gaussian noise channel) o The error rate of Ungerboeck codes (particularly at high SNR) is dominated by the two codewords

More information

RECOMMENDATION ITU-R BT Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting

RECOMMENDATION ITU-R BT Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting Rec. ITU-R BT.1306-3 1 RECOMMENDATION ITU-R BT.1306-3 Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting (Question ITU-R 31/6) (1997-2000-2005-2006)

More information

Turbo coding (CH 16)

Turbo coding (CH 16) Turbo coding (CH 16) Parallel concatenated codes Distance properties Not exceptionally high minimum distance But few codewords of low weight Trellis complexity Usually extremely high trellis complexity

More information

Cooperative Source and Channel Coding for Wireless Multimedia Communications

Cooperative Source and Channel Coding for Wireless Multimedia Communications IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 1, MONTH, YEAR 1 Cooperative Source and Channel Coding for Wireless Multimedia Communications Hoi Yin Shutoy, Deniz Gündüz, Elza Erkip,

More information

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 44 CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 3.1 INTRODUCTION A unique feature of the OFDM communication scheme is that, due to the IFFT at the transmitter and the FFT

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

THE idea behind constellation shaping is that signals with

THE idea behind constellation shaping is that signals with IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 3, MARCH 2004 341 Transactions Letters Constellation Shaping for Pragmatic Turbo-Coded Modulation With High Spectral Efficiency Dan Raphaeli, Senior Member,

More information

Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication

Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication Arjuna Muduli, R K Mishra Electronic science Department, Berhampur University, Berhampur, Odisha, India Email: arjunamuduli@gmail.com

More information

Performance Evaluation and Comparative Analysis of Various Concatenated Error Correcting Codes Using BPSK Modulation for AWGN Channel

Performance Evaluation and Comparative Analysis of Various Concatenated Error Correcting Codes Using BPSK Modulation for AWGN Channel International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 3 (2012), pp. 235-244 International Research Publication House http://www.irphouse.com Performance Evaluation

More information

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding A. Ramesh, A. Chockalingam Ý and L. B. Milstein Þ Wireless and Broadband Communications Synopsys (India) Pvt. Ltd., Bangalore 560095,

More information

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes Neha Aggarwal 1 Shalini Bahel 2 Teglovy Singh Chohan 3 Jasdeep Singh 4 1,2,3,4 Department of Electronics

More information

A Review of Second Generation of Terrestrial Digital Video Broadcasting System

A Review of Second Generation of Terrestrial Digital Video Broadcasting System A Review of Second Generation of Terrestrial Digital Video Broadcasting System Abstract *Kruti Shukla 1, Shruti Dixit 2,Priti Shukla 3, Satakshi Tiwari 4 1.M.Tech Scholar, EC Dept, SIRT, Bhopal 2.Associate

More information

PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC)

PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC) Progress In Electromagnetics Research C, Vol. 5, 125 133, 2008 PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC) A. Ebian, M. Shokair, and K. H. Awadalla Faculty of Electronic

More information

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK Department of Electronics Technology, GND University Amritsar, Punjab, India Abstract-In this paper we present a practical RS-CC

More information

Low Complexity Decoding of Bit-Interleaved Coded Modulation for M-ary QAM

Low Complexity Decoding of Bit-Interleaved Coded Modulation for M-ary QAM Low Complexity Decoding of Bit-Interleaved Coded Modulation for M-ary QAM Enis Aay and Ender Ayanoglu Center for Pervasive Communications and Computing Department of Electrical Engineering and Computer

More information

Performance Evaluation of different α value for OFDM System

Performance Evaluation of different α value for OFDM System Performance Evaluation of different α value for OFDM System Dr. K.Elangovan Dept. of Computer Science & Engineering Bharathidasan University richirappalli Abstract: Orthogonal Frequency Division Multiplexing

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

A rate one half code for approaching the Shannon limit by 0.1dB

A rate one half code for approaching the Shannon limit by 0.1dB 100 A rate one half code for approaching the Shannon limit by 0.1dB (IEE Electronics Letters, vol. 36, no. 15, pp. 1293 1294, July 2000) Stephan ten Brink S. ten Brink is with the Institute of Telecommunications,

More information

M4B-4. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM. Nyembezi Nyirongo, Wasim Q. Malik, and David. J.

M4B-4. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM. Nyembezi Nyirongo, Wasim Q. Malik, and David. J. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM Nyembezi Nyirongo, Wasim Q. Malik, and David. J. Edwards M4B-4 Department of Engineering Science, University of Oxford, Parks Road,

More information

Bit-Interleaved Coded Modulation: Low Complexity Decoding

Bit-Interleaved Coded Modulation: Low Complexity Decoding Bit-Interleaved Coded Modulation: Low Complexity Decoding Enis Aay and Ender Ayanoglu Center for Pervasive Communications and Computing Department of Electrical Engineering and Computer Science The Henry

More information

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels Nghia H. Ngo, S. Adrian Barbulescu and Steven S. Pietrobon Abstract This paper investigates the effects of the distribution of a

More information

BER Analysis of BPSK and QAM Modulation Schemes using RS Encoding over Rayleigh Fading Channel

BER Analysis of BPSK and QAM Modulation Schemes using RS Encoding over Rayleigh Fading Channel BER Analysis of BPSK and QAM Modulation Schemes using RS Encoding over Rayleigh Fading Channel Faisal Rasheed Lone Department of Computer Science & Engineering University of Kashmir Srinagar J&K Sanjay

More information

A Hybrid Synchronization Technique for the Frequency Offset Correction in OFDM

A Hybrid Synchronization Technique for the Frequency Offset Correction in OFDM A Hybrid Synchronization Technique for the Frequency Offset Correction in OFDM Sameer S. M Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur West

More information

UEP based on Proximity Pilot Subcarriers with QAM in OFDM

UEP based on Proximity Pilot Subcarriers with QAM in OFDM UEP based on Proximity Pilot with QAM in OFDM Tony Gladvin George Research Scholar, Vinayaka Mission University, Salem, Tamilnadu, India Dr.N.Malmurugan Principal, Kalaignar Karunanithi Institute of Technology,

More information

Chapter 7. Conclusion and Future Scope

Chapter 7. Conclusion and Future Scope Chapter 7 Conclusion and Future Scope CHAPTER 7 CONCLUSION AND FUTURE SCOPE This chapter starts presenting the prominent results and conclusion obtained from this research. The digital communication system

More information

Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh Fading Channels

Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh Fading Channels 2015 IJSRSET Volume 1 Issue 1 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh

More information

Abstract. Keywords - Cognitive Radio, Bit Error Rate, Rician Fading, Reed Solomon encoding, Convolution encoding.

Abstract. Keywords - Cognitive Radio, Bit Error Rate, Rician Fading, Reed Solomon encoding, Convolution encoding. Analysing Cognitive Radio Physical Layer on BER Performance over Rician Fading Amandeep Kaur Virk, Ajay K Sharma Computer Science and Engineering Department, Dr. B.R Ambedkar National Institute of Technology,

More information

RECOMMENDATION ITU-R M.1181

RECOMMENDATION ITU-R M.1181 Rec. ITU-R M.1181 1 RECOMMENDATION ITU-R M.1181 Rec. ITU-R M.1181 MINIMUM PERFORMANCE OBJECTIVES FOR NARROW-BAND DIGITAL CHANNELS USING GEOSTATIONARY SATELLITES TO SERVE TRANSPORTABLE AND VEHICULAR MOBILE

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

H.264 Video with Hierarchical QAM

H.264 Video with Hierarchical QAM Prioritized Transmission of Data Partitioned H.264 Video with Hierarchical QAM B. Barmada, M. M. Ghandi, E.V. Jones and M. Ghanbari Abstract In this Letter hierarchical quadrature amplitude modulation

More information

Implementation of Reed-Solomon RS(255,239) Code

Implementation of Reed-Solomon RS(255,239) Code Implementation of Reed-Solomon RS(255,239) Code Maja Malenko SS. Cyril and Methodius University - Faculty of Electrical Engineering and Information Technologies Karpos II bb, PO Box 574, 1000 Skopje, Macedonia

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team Advanced channel coding : a good basis Alexandre Giulietti, on behalf of the T@MPO team Errors in transmission are fowardly corrected using channel coding e.g. MPEG4 e.g. Turbo coding e.g. QAM source coding

More information

PERFORMANCE OF TWO LEVEL TURBO CODED 4-ARY CPFSK SYSTEMS OVER AWGN AND FADING CHANNELS

PERFORMANCE OF TWO LEVEL TURBO CODED 4-ARY CPFSK SYSTEMS OVER AWGN AND FADING CHANNELS ISTANBUL UNIVERSITY JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING YEAR VOLUME NUMBER : 006 : 6 : (07- ) PERFORMANCE OF TWO LEVEL TURBO CODED 4-ARY CPFSK SYSTEMS OVER AWGN AND FADING CHANNELS Ianbul University

More information

Improved concatenated (RS-CC) for OFDM systems

Improved concatenated (RS-CC) for OFDM systems Improved concatenated (RS-CC) for OFDM systems Mustafa Dh. Hassib 1a), JS Mandeep 1b), Mardina Abdullah 1c), Mahamod Ismail 1d), Rosdiadee Nordin 1e), and MT Islam 2f) 1 Department of Electrical, Electronics,

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngECE-2009/10-- Student Name: CHEUNG Yik Juen Student ID: Supervisor: Prof.

More information

Open Access Concatenated RS-Convolutional Codes for Cooperative Wireless Communication

Open Access Concatenated RS-Convolutional Codes for Cooperative Wireless Communication Send Orders of Reprints at reprints@benthamscience.net The Open Electrical & Electronic Engineering Journal, 2013, 7, 9-20 9 Open Access Concatenated RS-Convolutional Codes for Cooperative Wireless Communication

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

ISSN: Page 320

ISSN: Page 320 To Reduce Bit Error Rate in Turbo Coded OFDM with using different Modulation Techniques Shivangi #1, Manoj Sindhwani *2 #1 Department of Electronics & Communication, Research Scholar, Lovely Professional

More information

Input weight 2 trellis diagram for a 37/21 constituent RSC encoder

Input weight 2 trellis diagram for a 37/21 constituent RSC encoder Application of Distance Spectrum Analysis to Turbo Code Performance Improvement Mats Oberg and Paul H. Siegel Department of Electrical and Computer Engineering University of California, San Diego La Jolla,

More information

Journal of Babylon University/Engineering Sciences/ No.(5)/ Vol.(25): 2017

Journal of Babylon University/Engineering Sciences/ No.(5)/ Vol.(25): 2017 Performance of Turbo Code with Different Parameters Samir Jasim College of Engineering, University of Babylon dr_s_j_almuraab@yahoo.com Ansam Abbas College of Engineering, University of Babylon 'ansamabbas76@gmail.com

More information

Bridging the Gap Between Parallel and Serial Concatenated Codes

Bridging the Gap Between Parallel and Serial Concatenated Codes Bridging the Gap Between Parallel and Serial Concatenated Codes Naveen Chandran and Matthew C. Valenti Wireless Communications Research Laboratory West Virginia University Morgantown, WV 26506-6109, USA

More information

Contents Chapter 1: Introduction... 2

Contents Chapter 1: Introduction... 2 Contents Chapter 1: Introduction... 2 1.1 Objectives... 2 1.2 Introduction... 2 Chapter 2: Principles of turbo coding... 4 2.1 The turbo encoder... 4 2.1.1 Recursive Systematic Convolutional Codes... 4

More information

Improvement Of Block Product Turbo Coding By Using A New Concept Of Soft Hamming Decoder

Improvement Of Block Product Turbo Coding By Using A New Concept Of Soft Hamming Decoder European Scientific Journal June 26 edition vol.2, No.8 ISSN: 857 788 (Print) e - ISSN 857-743 Improvement Of Block Product Turbo Coding By Using A New Concept Of Soft Hamming Decoder Alaa Ghaith, PhD

More information

2476 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 11, NOVEMBER 2009

2476 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 11, NOVEMBER 2009 2476 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 11, NOVEMBER 2009 Channel Coding for Progressive Images in a 2-D Time-Frequency OFDM Block With Channel Estimation Errors Laura Toni, Student Member,

More information

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

Performance Analysis of WiMAX Physical Layer Model using Various Techniques Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 316-320 Performance Analysis of WiMAX Physical

More information

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems , 2009, 5, 351-356 doi:10.4236/ijcns.2009.25038 Published Online August 2009 (http://www.scirp.org/journal/ijcns/). Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems Zhongpeng WANG

More information

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Error Control Coding Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Topics Introduction The Channel Coding Problem Linear Block Codes Cyclic Codes BCH and Reed-Solomon

More information

Improved PHR coding of the MR-O-QPSK PHY

Improved PHR coding of the MR-O-QPSK PHY Improved PHR coding of the MR-O-QPSK PHY Michael Schmidt- ATMEL July 12, 2010 1/ 48 IEEE P802.15 Wireless Personal Area Networks Title: Improved PHR coding of the MR-O-QPSK PHY Date Submitted: July 12,

More information

ORTHOGONAL frequency division multiplexing (OFDM)

ORTHOGONAL frequency division multiplexing (OFDM) 144 IEEE TRANSACTIONS ON BROADCASTING, VOL. 51, NO. 1, MARCH 2005 Performance Analysis for OFDM-CDMA With Joint Frequency-Time Spreading Kan Zheng, Student Member, IEEE, Guoyan Zeng, and Wenbo Wang, Member,

More information

A Novel Hybrid ARQ Scheme Using Packet Coding

A Novel Hybrid ARQ Scheme Using Packet Coding 27-28 January 26, Sophia Antipolis France A Novel Hybrid ARQ Scheme Using Pacet Coding LiGuang Li (ZTE Corperation), Jun Xu (ZTE Corperation), Can Duan (ZTE Corperation), Jin Xu (ZTE Corperation), Xiaomei

More information

PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER

PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER 1008 PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER Shweta Bajpai 1, D.K.Srivastava 2 1,2 Department of Electronics & Communication

More information

Decoding of Block Turbo Codes

Decoding of Block Turbo Codes Decoding of Block Turbo Codes Mathematical Methods for Cryptography Dedicated to Celebrate Prof. Tor Helleseth s 70 th Birthday September 4-8, 2017 Kyeongcheol Yang Pohang University of Science and Technology

More information

- 1 - Rap. UIT-R BS Rep. ITU-R BS.2004 DIGITAL BROADCASTING SYSTEMS INTENDED FOR AM BANDS

- 1 - Rap. UIT-R BS Rep. ITU-R BS.2004 DIGITAL BROADCASTING SYSTEMS INTENDED FOR AM BANDS - 1 - Rep. ITU-R BS.2004 DIGITAL BROADCASTING SYSTEMS INTENDED FOR AM BANDS (1995) 1 Introduction In the last decades, very few innovations have been brought to radiobroadcasting techniques in AM bands

More information

Convolutional Coding and ARQ Schemes for Wireless Communications Sorour Falahati, Pal Frenger, Pal Orten, Tony Ottosson and Arne Svensson Communicatio

Convolutional Coding and ARQ Schemes for Wireless Communications Sorour Falahati, Pal Frenger, Pal Orten, Tony Ottosson and Arne Svensson Communicatio Convolutional Coding and ARQ Schemes for Wireless Communications Sorour Falahati, Pal Frenger, Pal Orten, Tony Ottosson and Arne Svensson Communication Systems Group, Dept. of Signals and Systems Chalmers

More information

Encoding of Control Information and Data for Downlink Broadcast of Short Packets

Encoding of Control Information and Data for Downlink Broadcast of Short Packets Encoding of Control Information and Data for Downlin Broadcast of Short Pacets Kasper Fløe Trillingsgaard and Petar Popovsi Department of Electronic Systems, Aalborg University 9220 Aalborg, Denmar Abstract

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS i i i i i iv v vi ix xi xiv 1 INTRODUCTION 1 1.1

More information

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 19-21 www.iosrjen.org Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing 1 S.Lakshmi,

More information

New Forward Error Correction and Modulation Technologies Low Density Parity Check (LDPC) Coding and 8-QAM Modulation in the CDM-600 Satellite Modem

New Forward Error Correction and Modulation Technologies Low Density Parity Check (LDPC) Coding and 8-QAM Modulation in the CDM-600 Satellite Modem New Forward Error Correction and Modulation Technologies Low Density Parity Check (LDPC) Coding and 8-QAM Modulation in the CDM-600 Satellite Modem Richard Miller Senior Vice President, New Technology

More information

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY Study Of IEEE P802.15.3a physical layer proposals for UWB: DS-UWB proposal and Multiband OFDM

More information

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p-issn: 2278-8727, Volume 20, Issue 3, Ver. III (May. - June. 2018), PP 78-83 www.iosrjournals.org Hybrid throughput aware variable puncture

More information

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Sara Viqar 1, Shoab Ahmed 2, Zaka ul Mustafa 3 and Waleed Ejaz 4 1, 2, 3 National University

More information

Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision

Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision Pablo Corral 1, Juan Luis Corral 2 and Vicenç Almenar 2 Universidad Miguel ernández,

More information

Digital Television Lecture 5

Digital Television Lecture 5 Digital Television Lecture 5 Forward Error Correction (FEC) Åbo Akademi University Domkyrkotorget 5 Åbo 8.4. Error Correction in Transmissions Need for error correction in transmissions Loss of data during

More information

IDMA Technology and Comparison survey of Interleavers

IDMA Technology and Comparison survey of Interleavers International Journal of Scientific and Research Publications, Volume 3, Issue 9, September 2013 1 IDMA Technology and Comparison survey of Interleavers Neelam Kumari 1, A.K.Singh 2 1 (Department of Electronics

More information

Periodic Impulsive Noise Suppression in OFDM- Based Power-Line Communications through Filtering Under Different Coding Schemes

Periodic Impulsive Noise Suppression in OFDM- Based Power-Line Communications through Filtering Under Different Coding Schemes http:// Periodic Impulsive Noise Suppression in OFDM- Based Power-Line Communications through Filtering Under Different Coding Schemes Sree Lekshmi.K 1, 1 M.Tech Scholar, ECE Department, TKM Institute

More information

PERFORMANCE GAIN OF SMART DUAL ANTENNAS AT HANDSETS IN 3G CDMA SYSTEM

PERFORMANCE GAIN OF SMART DUAL ANTENNAS AT HANDSETS IN 3G CDMA SYSTEM PERFORMANCE GAIN OF SMART DUAL ANTENNAS AT HANDSETS IN 3G CDMA SYSTEM Suk Won Kim 1,DongSamHa 1,andJeongHoKim 2 1 VTVT (Virginia Tech VLSI for Telecommunications) Laboratory Department of Electrical and

More information

WIRELESS multimedia services that require high data

WIRELESS multimedia services that require high data IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005 3297 Channel-Aware Priority Transmission Scheme Using Joint Channel Estimation Data Loading for OFDM Systems Charles Pana, Yan Sun, K.

More information

AFRL-RI-RS-TR

AFRL-RI-RS-TR AFRL-RI-RS-TR-2014-153 MULTIMEDIA-BASED INTEGRATION OF CROSS-LAYER TECHNIQUES SAN DIEGO STATE UNIVERSITY JUNE 2014 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY

More information

On Iterative Multistage Decoding of Multilevel Codes for Frequency Selective Channels

On Iterative Multistage Decoding of Multilevel Codes for Frequency Selective Channels On terative Multistage Decoding of Multilevel Codes for Frequency Selective Channels B.Baumgartner, H-Griesser, M.Bossert Department of nformation Technology, University of Ulm, Albert-Einstein-Allee 43,

More information

Robust Reed Solomon Coded MPSK Modulation

Robust Reed Solomon Coded MPSK Modulation ITB J. ICT, Vol. 4, No. 2, 2, 95-4 95 Robust Reed Solomon Coded MPSK Modulation Emir M. Husni School of Electrical Engineering & Informatics, Institut Teknologi Bandung, Jl. Ganesha, Bandung 432, Email:

More information

DSRC using OFDM for roadside-vehicle communication systems

DSRC using OFDM for roadside-vehicle communication systems DSRC using OFDM for roadside-vehicle communication systems Akihiro Kamemura, Takashi Maehata SUMITOMO ELECTRIC INDUSTRIES, LTD. Phone: +81 6 6466 5644, Fax: +81 6 6462 4586 e-mail:kamemura@rrad.sei.co.jp,

More information