Passive Sonar Fusion for Submarine C 2 Systems

Size: px
Start display at page:

Download "Passive Sonar Fusion for Submarine C 2 Systems"

Transcription

1 Passive Sonar Fusion for Submarine C 2 Systems Pailon Shar and X. Rong Li Department of Electrical Engineering University of New Orleans New Orleans, LA 70148, USA Phone: (504) , Fax: (504) , xli@uno.edu Abstract-The most important sensors for gathering target information onboard a submarine are passive sonars. Problems concerning fusion of these passive sonars are discussed. Three typical passive sonars - passive noise sonar, passive ranging sonar and acoustic pulse surveillance sonar are supposed to constitute a passive sonar system for data fusion. This paper is concerned mainly with problems of significance in system development, such as tactical application background, special fusion techniques and own-ship maneuver considerations. Key Words: fusion, sonar, submarine, sensor, command and control. 1. Introduction For tactic reasons, passive sonars are considered to be the most important sensors onboard a modern submarine, for which stealth is vital. Basic submarine underwater operations, such as surveillance, search, detection and tracking, are usually guided by passive sonars. Almost all of modern passive sonars are capable of processing multiple targets. They can detect, sort, track, record and display many targets simultaneously. When several such passive sonars are introduced on the same platform to form a multisensor system, fusion techniques are needed to handle this multisensor multitarget problem. This is the task of a unit known as fusion center, which is part of the command and control (C 2 ) system. Fusion center receives and processes the multitarget information from the sensors. The information received is usually in large amount, of miscellaneous type, inaccurate and could even be misleading. The output of the center is more concise, more accurate and more meaningful tactically. A modern submarine is usually equipped with many other sensors, e.g. radars and ESM, in addition to passive sonars. Fusion center should handle all these sensors, not just passive sonars. For the fusion system to be effective, it is important to coordinate the passive sonars and the other sensors. In reference [1], a fusion framework of a hierarchic structure for all the submarine sensors is proposed. It is suitable for systems with special groups of sensors that need to be handled relatively independently. Because of the importance of passive sonars and the similarity of their information, they can be treated as a group. Fusion may be conducted among themselves at first, then with other sensors or groups. This structure, among other things, makes submarine sensor fusion unique. In this framework, it is evident that the passive sonar fusion system, which is the major topic of this paper, is one subsystem of the entire sensor fusion system. Meanwhile, special requirements and problems arise from the overwhelming importance of passive information and the passive property of the information itself, and need to be satisfied or treated specially when such a passive fusion subsystem is developed. These specialties are exactly what interest us in this paper. Suppose the passive sonar system is composed of three typical passive sonars onboard submarines: passive noise sonar, passive ranging sonar and acoustic pulse surveillance sonar. Information collected by these sensors can basically be classified into two categories: positional information and characteristic information. Positional information reflects target position and motion, such as bearing, distance, course and velocity. Characteristic information includes target type and identity. The techniques to process them are quite different. This is concerned mainly with the former type of information. 2. Passive Sonar Systems and Tactical Background There are plenty of common techniques, devices, software and systems that can be used to develop military systems. Adjustments have to be made, how- Also named Peilun Xia, visiting scholar, on leave from Ocean University of Qingdao, P. R. China. Supported by ONR via Grant N , NSF via Grant ECS , and LEQSF via Grant ( )-RD-A-32.

2 ever, due to the special requirements of a particular system. These requirements are usually put forward by the system itself and the tactical environment to which the system is supposed to be exposed. Meeting these requirements is a basic prerequisite of system development. In fact, the importance of understanding the sensor system itself and its application background, especially the tactical background, can never be overemphasized. System developers should bear this in mind in the entire process of system development. 2.1 Passive Sonars Passive noise sonar is the fundamental sensor of a submarine. It serves both as search sensor and as attack sensor. For positional information, noise sonar provides the angle-of-arrival (azimuth angle, or bearing) measurement of an acoustic source. This bearing information is the basic information source for a submarine. Needless to say, a comprehensive modern passive noise sonar can provide much more information than bearing. The accuracy of bearing measurements is relatively good. Under some disadvantageous conditions, however, such as in shallow water, high water temperature, complex sea current, other sudden changes in the underwater acoustic transmission media, the measurement error can grow significantly. The inability of the noise sonar to provide distance information is compensated by passive ranging sonar. Ranging sonar has three or four groups of hydrophone symmetrically mounted on both flanks of the submarine. It provides passively both bearing and distance information by processing the time-of-arrival differences between the hydrophone groups. The problem is that the range measurement error is usually large, especially at the beginning of detection, and it is also geometrically correlated. Target distance and the relative bearing of the target to the submarine have a significant impact on the ranging error. The larger the distance, the larger the error. In addition, the error is the smallest when the target is on the beam of the submarine. The farther away the target is from the beam, the large the error. The ranging error sometimes is so large that the detected distance information cannot be directly used for fire control purposes. Acoustic pulse surveillance sonar intercepts acoustic transmissions from active sonars. It can provide bearing information of the detected pulses. Other information such as frequency, pulse length and pulse repetition frequency, is also available. The bearing measurement error is much larger than (usually several times of) its counterpart of the other two sonars. That is why its positional information plays a minor role in the fusion system. The detection regions of the three sonars are quite different. Acoustic pulse surveillance sonar is omnidirectional. Its detection range is the largest of the three. Passive noise sonar usually has a sector of blind zone around the stern of the submarine, because its array is usually located in the bow sonar dome. Its detection range is smaller than that of the acoustic pulse surveillance sonar, but larger than that of the passive ranging sonar. Passive ranging sonar has two sector blind zones around the stern and the bow, respectively. Its detection range is the smallest. Fig. 1 illustrates the detection zones of these sonars. noise Figure 1. Detection zones of the sonars Generally speaking, the ability of all these sonars to resolve or distinguish multiple targets is much weaker than their radar counterparts. This is also mainly due to the disadvantageous physical media. And the resolution is seriously affected by factors such as environment, geometry and signal intensity, other than sonar s own physical properties. All these factors should be considered and treated properly when the fusion system is developed. 2.2 Tactical Background surveillance ranging The most typical scenario of a multitarget engagement is a submarine versus military force formation (battle group) case. In this case, the targets are formatively scattered. Since the movability (speed) of a marine formation is limited and the separations between the targets are usually large enough (compared with air battle groups), it is quite often true that the first sensor contact involves only one target (and most likely made by the passive noise sonar). Gradually, as the formation gets closer, other targets enter the sight of the sensors, also caught by noise sonar first. This is a picture quite different from that of an air engagement

3 with radars as major sensors. In an air battle engagement case, the speed of the aircraft formation is so high that the first radar contact is quite possibly the whole formation, which is a dense target problem. From this point of view, it seems much easier to handle the sonar problem than the radar one. Unfortunately, this is not true because the sonar case has its own problems. The number of targets may be smaller, the requirements on reaction time may be not so stringent, but the available information usually has much poorer quality, is inadequate and quite often is of only a passive type. In addition, when the real engagement begins, which means that the targets notice the existence of the submarine, the situation becomes complicated immediately. Counter actions begin. The formation begins to change. Targets begin to maneuver. They begin to counter detect the submarine by using every possible measure. Before long, they may launch weapons, hard or soft. Only at this time, the real challenge for the sensor system as well as the fusion system comes. Of the three sonars, the operation of the acoustic pulse surveillance sonar is peculiar. It depends not only on the sonar itself but also on the operation of the active sonars onboard the targets. For the target warships to use active sonars, tactically it often means that they have noticed the submarine threat. If this is the case, the upcoming military actions will be hardly predictable. Although it is very difficult to cope with such a situation, and it seems to be a task more suitable for human intelligence, the fusion system should at least has some measures for this situation. 3. Single-Sensor Multitarget Processing It is essential to the fusion system that each sensor processes its multitarget positional information effectively. The prerequisite of excellent performance of any fusion system is that each single sensor can provide well-sorted multitarget information within its own domain. The most important positional information passive sonars can get is target bearing sequences. Therefore, the fusion problem is usually bearing-tobearing fusion or bearing-to-track fusion. There is no ideal tool for such fusion problems, although many powerful techniques are available, which are, however, more suitable for track-to-track fusion problems. In view of this, single-sensor processing is particularly important. According to the fusion structure proposed in [1], the main goal of single-sensor processing of positional information is to separate multitarget measurements into distinguishable measurement sequences or tracks. The original measurements might be incomplete, tangled with each other, and of course inaccurate, or might be simply false alarms. The basic procedure for such a multitarget processing problem for each sonar may be nothing special but the concrete techniques are not so common. Fig.2 illustrates the processing procedure of single-sensor multitarget information. Figure 2. Single sensor processing procedures 3.1 Initialization Initialization Sampling Association Evaluation Smoothing TMA Gate Adjustment Fusion Center System initialization is very important in that it affects the effectiveness of the system significantly. A poorly initialized system can take much longer time to get the desired results than that of a well-initialized one. Sometimes a system could even collapse because of bad initializations. For this passive sonar fusion system, initializations mainly include two aspects. One is the determination of the initial gate size for the measurement association process. The other is the initialization of the association algorithm itself, if the algorithm is a recursive one. Algorithm initialization is a widely studied problem (see, e.g., [2,3]), and thus will not be discussed here. Two types of measurements - bearings-only and bearings plus ranges - are involved in this system. Correspondingly there are two types of gates. For the bearings-only case, the shape and size of the gate are determined by the bearing gate, which is of a sector shape. For the bearings plus ranges case, the shape and size of the association gate are confined to the bearing gate and the range gate. The mostly widely adopted shape is a ring sector, although other shapes, such as rectangles, can also be used. Passive noise sonar and acoustic pulse surveillance sonar belong to the bearings-only category. The gate initialization - i.e., the determination of the initial bearing gate size - is not as easy as it appears. It is evident that an optimal size would depend upon many

4 factors, such as the sampling interval, the speeds and courses of and the distance between the target and the own-ship, the measurement error level and the resolution capability of the corresponding sonar. Most of these factors are not obtainable and thus it is impossible to get a perfect gate size. In practice, conservative measures are taken to get a larger gate. For example, the speeds of the target and the own-ship are replaced by their maximum possible values. For passive ranging sonar, the sizes of the initial bearing gate and range gate should be determined. Conservative measures are also needed in this case to account for the initial uncertainties. For example, at the beginning, the distance measurement error may be much higher than the normal level, for the distance processor of the sonar may be not yet stable. Factors like this have to be taken into account when determining the gate size. Anyway, sector ring shaped gate is a very common gate. Its counterpart can be easily found in other sensor fusion (e.g., radar fusion) applications. 3.2 Association In each step, new measurements should be evaluated to determine if they could be associated with any existing sequences or tracks, or simply a starting point of a new sequence or track. When the association gate is determined, this should not be a difficult problem, for which many algorithms are available (see, e.g., [3]). What is important is to develop an algorithm that is acceptable from an engineering point of view. A common approach is to modify an existing algorithm according to the particular requirements of the application. 3.3 Evaluation of Track or Sequence Quality At the end of each step in the recursive process, each sequence or track should be evaluated in some way. The evaluation result is used to decide as to maintain, modify or abandon the existing sequences or tracks, or to initiate new sequences or tracks. Practically, some simple yet effective techniques are used in real system development. For example, a credit accumulator may be designed to serve as such an evaluator for each sequence or track. For each step, if there is a new measurement that is successfully associated with a particular sequence or track, a certain number of credits are added to the corresponding accumulator. Otherwise, the credits are lowered. Relying on the credit number, a sequence or track may be declared as a false one, a possible one, a conformed one, or discarded one, etc. The thresholds can be determined by offline simulations and underwater trial tests. 3.4 Smoothing and TMA For a conformed sequence or track, further processing like measurement sequence smoothing and target motion analysis (TMA) can be done to improve the association result. However, it is not necessarily conducted at this stage. With more processed information available, smoothing and TMA may be done more effectively in the fusion center. The fact that bearingsonly TMA is difficult and time consuming due to poor observability [4] makes it probably better to handle it in the fusion center. That is why the corresponding boxes of these two parts in Fig. 2 are drawn in dashed lines. 3.5 Gate Adjustment With more and more information poured in, the picture becomes clearer and clearer. It is very natural that the association gate, usually the gate size only, should be adjusted, although the shape also can be changed. The size can be reduced gradually, i.e., step by step. It can also be reduced periodically. Sometimes it needs to be enlarged when a normal association fails. Albeit seemingly easy, this problem can be troublesome. In practice, however, to determine when and how to adjust the associate gate is a problem of more engineering than theoretical. So engineering tools, such as simulation and trial and error, are always available and are powerful weapons for fighting against this problem. 4. Multisensor Fusion Multisensor fusion is the fusion center s task. Because the input data from each sensor may be bearing sequences or tracks, three possible fusion forms exist: bearing-to-bearing, bearing-to-track and track-to-track fusion. Which form the fusion center should take depends on the type of data it can get. If bearings-only TMA is not done at the sensor level, which means noise sonar and surveillance sonar can not provide track data, then track-to-track fusion is not possible in this case, because only ranging sonar can provide track data. Even if bearings-only TMA is conducted at the sensor level, track-to-track fusion is not the only fusion form. Bearings-only TMA sometimes can not provide a unique track solution (e.g., before an ownship maneuver), or can only provide a poor solution (e.g., shortly after an own-ship maneuver, or more generally, under poor observability conditions) [4]. Bearing-to-bearing fusion or bearing-to-track fusion is still necessary in these cases. Anyhow, bearing-to-

5 bearing fusion and bearing-to-track fusion are more fundamental in passive sonar fusion applications. Detailed techniques for the aforementioned fusion forms have been introduced in [1]. Fusion results can be sent back to sensor level processors to improve their performances. This feedback channel can also be used by the sensors to help each other. The fact that the detection radius of noise sonar is usually larger than that of ranging sonar makes it quite possible that the multitarget information has already been well processed (e.g., initiated, classified) by the noise sonar before the ranging sonar can detect the target. In this case, the ranging sonar information can be used to refine and enforce the results of the noise sonar. On the other hand, the result of the noise sonar can be used by the ranging sonar to improve its own multitarget information. The poor quality of the bearing measurements makes it very difficult for the surveillance sonar to finish the multitarget positional information processing by itself. The help from the other two sonars and the fusion center is very valuable. 5. Own-Ship Maneuver Own-ship maneuver is very important in multisensor multitarget tracking. It is also a difficult problem because many factors must be taken into account and not fewer requirements need to be considered. For example, at the initial phase, own-ship maneuver is mainly concerned with enhancing the sensors capability to detect and distinguish multiple targets. The corresponding requirements, however, differ significantly for different sensors. Own-ship maneuver in a multitarget environment is quite different from that of a single target. In the single target case, the goal of maneuver is to maximize the degree of the system observability. From a more practical point of view, the criterion is to find maneuver strategies so that the solution of the system converges in the shortest period of time. This has been shown to be a difficult problem. It is further complicated when other basic practical considerations are taken into account, such as ensuring ideal observation of the tracking sensor and ideal target and own-ship geometry for the possible forthcoming attack or other tactical operations. The multitarget case is no doubt much more challenging. Theoretically, the maneuver optimization criterion for a multitarget system can be defined as maximization of the so-called global degree of observability of the tracking system, which is an index used to measure the comprehensive ability of the system to track all the targets as a whole. However, to use such a criterion to optimize own-ship maneuver strategies may be difficult. First, it is next to impossible to define such a global degree of observability due to the complexity of the problem. As a matter of fact, even the degree of observability for the single target case is still not perfectly defined. Secondly, it would be very difficult to get precise and optimal results that are physically meaningful using this criterion. Thirdly, the implementation of such optimal maneuver strategies, if exist, is very difficult, if not impossible, in practical situations. Some compromise measures may be taken to cope with this problem. For example, instead of trying to maximize the global degree of observability of the system, a practical alternative is to maximize the degree of observability of a single-target system that involves only the most interesting target. Since it is almost impossible to obtain the states of all targets simultaneously, a surely reasonable solution would be to try to get the state of the most interesting target. How to select the most interesting target is a problem, but not a difficult one. In fact, there are several choices, including the one with the highest signal to noise (S/N) ratio, the one with the fastest rate of bearing changes, the one that exhibits the most serious potential threat, to mention a few. As such, the complicated problem of own-ship maneuver optimization for multitarget tracking is converted into the simpler problem of maneuver optimization for single-target tracking. While a really optimal solution to the singletarget tracking problem is still difficult to obtain [5,6], there exist at minimum many rule-of-thumb maneuver strategies that are effective and can be easily implemented (see, e.g., [7]). Similar to the single-target case, observability is sometimes not the only concern. There might be many other things that should be considered. In practice, the objective of own-ship maneuver in a multitarget environment varies from case to case. For example, when targets are detected by the noise sonar only, which means they are still out of the reach of the ranging sonar. If the range information is needed urgently, the maneuver strategies should be those that get the targets into the detectable zone of the ranging sonar as soon as possible. The resultant maneuver strategies out of this requirement should be quite different than those from the bearings-only observability approach. For the passive ranging sonar, the requirements are relatively simple. The basic rule is that putting most

6 targets or the most interesting target on or around the beams of the submarine. In some cases, however, this is not enough. Sensor properties, application environment, and even tracking algorithms can affect ownship maneuver strategies. For example, under some ideal conditions the detected distance information is highly reliable. Maneuver is not necessary if this is the case. When the detected distance is not so ideal, some algorithms weigh the detected bearing information much heavier than the detected distance information. These algorithms are relatively close to those bearings-only tracking algorithms and distance information plays a supplementary role. Own-ship maneuver strategies no doubt should be also close to those strategies for bearings-only tracking in such cases. Because the operation range of a passive ranging sonar is relatively small, maintaining stealth while maneuvering is another important concern. Under some more complicated circumstances, e.g., the targets are also aware of the existence of the submarine, maneuver is not mere a fusion concern any more. It is more a tactical problem in this case. The real decision making burden is left for the commander of the submarine, although some maneuver strategies may be recommended. 6. Some Further Considerations The corner stone of the hierarchic fusion structure recommended in [1] is distributed processing. It is well known that centralized systems have some advantages over distributed systems, such as higher accuracy. The recommendation of the distributed instead of centralized structure has been justified in [1]. In fact, such a centralized system is very difficult, if not impossible, to realize. For a centralized sonar fusion to be really superior in aspects such as accuracy, the input information has to be directly from the hydrophones of all the sonar arrays. This is almost impossible, especially if the sonars and the fusion system are developed by different manufacturers. In addition, the complexity of underwater acoustic signal processing makes the task of fusing all this tremendous amount of information in a central fashion unbearably tough. Besides the fact they are easy to realize, distributed fusion systems have many nice properties, such as more flexibility and better survivability, that are extremely important for military systems and can well compensate for the possible loss of accuracy. The coordination of the passive fusion system and the other related systems is another problem that needs attention. Closely or loosely, directly or indirectly, passive sonar fusion system is connected to many other systems, such as other sensor systems, C 2 system, navigation system, weapon system, steering system. The information flow between these systems is very complicated, especially during intensified engagements. The system might collapse if it is not well designed to handle this problem effectively. It is intrinsically a problem of information flow control and management. There are many commercial systems and techniques for this problem, but careful selection and adaptation is required. 7. Conclusion Passive sonar fusion is the basic and key component of submarine sensor fusion. There are many distinctive features in such a fusion system that need to be properly treated. Only some major aspects have been presented. Several problem-solving principles for system development have also been discussed. It should be emphasized that a modern passive sonar system could be more complex than the model system used in this paper [8]. The system may include more passive sonars, and they may be more diversified. The structure of the system itself may be quite different. In some systems, the sonars are completely independent. There is no information channel at the sensor level. Some other systems, however, are highly synthesized. All their component sonars are connected and organized by data buses, which means the systems themselves are distributed. While the realizations of these systems can be quite different, the basic principles and considerations should be similar. References 1. P. Shar and X. R. Li, Some Considerations of Submarine Sensor Fusion, Proc. of 1998 Int. Conf. on Information Fusion (FUSION 98), Vol. II, Las Vegas, Nevada. July Y. Bar-Shalom and X. R. Li, Estimation and Tracking, Artech House, Y. Bar-Shalom and X. R. Li, Multitarget- Multisensor Tracking, YBS Publishing, S. C. Nardone and V. J. Aidala, Observability Criteria for Bearings-Only Tracking, IEEE T- AES-17, No. 2, July J. P. Helferty and D. R. Mudgett, Optimal Observer Trajectories for Bearings-Only Tracking by Minimizing the Trace of the Cramer-Rao Lower Bound, Proc. of the 32 nd Conf. on Decision and Control, San Antonio, Texas, Dec J. M. Passerieux and D. Van Cappel, Optimal Observer Maneuver for Bearings-Only Tracking, IEEE T-AES-34, No. 3, July 1998.

7 7. B. J. MacCabe, Accuracy and Tactical Implications of Bearings-Only Ranging Algorithms, Operation Research, Vol. 33, No. 1, Jan.-Feb N. H. Guertin and R. W. Miller, A-RCI The Right Way to Submarine Superiority, Naval Engineers Journal, Mar

Support Systems and Techniques for Submarine Sensor Fusion

Support Systems and Techniques for Submarine Sensor Fusion Support Systems and Techniques for Submarine Sensor Fusion Pailon Shar * and X. Rong Li Department of Electrical Engineering University of New Orleans New Orleans, LA 70148, USA Phone: (504)280-7416, Fax:

More information

Insights Gathered from Recent Multistatic LFAS Experiments

Insights Gathered from Recent Multistatic LFAS Experiments Frank Ehlers Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik (FWG) Klausdorfer Weg 2-24, 24148 Kiel Germany FrankEhlers@bwb.org ABSTRACT After conducting multistatic low frequency active

More information

OVERVIEW OF RADOME AND OPEN ARRAY RADAR TECHNOLOGIES FOR WATERBORNE APPLICATIONS INFORMATION DOCUMENT

OVERVIEW OF RADOME AND OPEN ARRAY RADAR TECHNOLOGIES FOR WATERBORNE APPLICATIONS INFORMATION DOCUMENT OVERVIEW OF RADOME AND OPEN ARRAY RADAR TECHNOLOGIES FOR WATERBORNE APPLICATIONS INFORMATION DOCUMENT Copyright notice The copyright of this document is the property of KELVIN HUGHES LIMITED. The recipient

More information

A Comparative Study on different AI Techniques towards Performance Evaluation in RRM(Radar Resource Management)

A Comparative Study on different AI Techniques towards Performance Evaluation in RRM(Radar Resource Management) A Comparative Study on different AI Techniques towards Performance Evaluation in RRM(Radar Resource Management) Madhusudhan H.S, Assistant Professor, Department of Information Science & Engineering, VVIET,

More information

Resource Allocation in Distributed MIMO Radar for Target Tracking

Resource Allocation in Distributed MIMO Radar for Target Tracking Resource Allocation in Distributed MIMO Radar for Target Tracking Xiyu Song 1,a, Nae Zheng 2,b and Liuyang Gao 3,c 1 Zhengzhou Information Science and Technology Institute, Zhengzhou, China 2 Zhengzhou

More information

An Automated Approach to Passive Sonar Track Segment Association

An Automated Approach to Passive Sonar Track Segment Association An Automated Approach to Passive Sonar Track Segment Association Dr. Garfield R. Mellema Defence R&D Canada Atlantic PO Box 1012, Dartmouth, NS Canada B2Y 3Z7 (902) 426-3100 x-252 Garfield.Mellema@drdc-rddc.gc.ca

More information

Concordia University Department of Computer Science and Software Engineering. SOEN Software Process Fall Section H

Concordia University Department of Computer Science and Software Engineering. SOEN Software Process Fall Section H Concordia University Department of Computer Science and Software Engineering 1. Introduction SOEN341 --- Software Process Fall 2006 --- Section H Term Project --- Naval Battle Simulation System The project

More information

Integrated Detection and Tracking in Multistatic Sonar

Integrated Detection and Tracking in Multistatic Sonar Stefano Coraluppi Reconnaissance, Surveillance, and Networks Department NATO Undersea Research Centre Viale San Bartolomeo 400 19138 La Spezia ITALY coraluppi@nurc.nato.int ABSTRACT An ongoing research

More information

Early Design Naval Systems of Systems Architectures Evaluation

Early Design Naval Systems of Systems Architectures Evaluation ABSTRACT Early Design Naval Systems of Systems Architectures Evaluation Mona Khoury Gilbert Durand DGA TN Avenue de la Tour Royale BP 40915-83 050 Toulon cedex FRANCE mona.khoury@dga.defense.gouv.fr A

More information

Active Towed Array Sonar Outstanding Over-The-Horizon Surveillance

Active Towed Array Sonar Outstanding Over-The-Horizon Surveillance Active Towed Array Sonar Outstanding Over-The-Horizon Surveillance ACTAS Anti-Submarine Warfare... a sound decision ACTAS Philosophy Background Detect and Attack Effective Sonar Systems for Surface and

More information

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit)

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) , R-1 #49 COST (In Millions) FY 2000 FY2001 FY2002 FY2003 FY2004 FY2005 FY2006 FY2007 Cost To Complete Total Cost Total Program Element (PE) Cost 21.845 27.937 41.497 31.896 45.700 57.500 60.200 72.600

More information

DEFENSE and SECURITY RIGEL ES AND. Defense and security in five continents. indracompany.com

DEFENSE and SECURITY RIGEL ES AND. Defense and security in five continents. indracompany.com DEFENSE and SECURITY RIGEL ES AND EA Systems Defense and security in five continents indracompany.com RIGEL ES EA Systems RIGEL ES AND EA Systems RIGEL ES System The Naval Radar ES and EA systems provide

More information

The Application of Wargaming to Education in Naval Design & Survivability

The Application of Wargaming to Education in Naval Design & Survivability The Application of Wargaming to Education in Naval Design & Survivability Dr Nick Bradbeer RCNC Mr David Manley RCNC UCL Naval Architecture & Marine Engineering Office & UK MoD Naval Authority Group Good

More information

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments David R. Dowling Department of Mechanical Engineering

More information

Ultra Electronics Integrated Sonar Suite

Ultra Electronics Integrated Sonar Suite Sonar Systems Crown Copyright Ultra Electronics Integrated Sonar Suite COMPREHENSIVE NETWORK CENTRIC WARFARE SYSTEM COMPRISING: HULL-MOUNT SONAR VARIABLE DEPTH SONAR TORPEDO DEFENCE INNOVATION PERFORMANCE

More information

Comparison of Two Detection Combination Algorithms for Phased Array Radars

Comparison of Two Detection Combination Algorithms for Phased Array Radars Comparison of Two Detection Combination Algorithms for Phased Array Radars Zhen Ding and Peter Moo Wide Area Surveillance Radar Group Radar Sensing and Exploitation Section Defence R&D Canada Ottawa, Canada

More information

Autonomous Underwater Vehicle Navigation.

Autonomous Underwater Vehicle Navigation. Autonomous Underwater Vehicle Navigation. We are aware that electromagnetic energy cannot propagate appreciable distances in the ocean except at very low frequencies. As a result, GPS-based and other such

More information

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of Table of Contents Game Mechanics...2 Game Play...3 Game Strategy...4 Truth...4 Contrapositive... 5 Exhaustion...6 Burnout...8 Game Difficulty... 10 Experiment One... 12 Experiment Two...14 Experiment Three...16

More information

Target Recognition and Tracking based on Data Fusion of Radar and Infrared Image Sensors

Target Recognition and Tracking based on Data Fusion of Radar and Infrared Image Sensors Target Recognition and Tracking based on Data Fusion of Radar and Infrared Image Sensors Jie YANG Zheng-Gang LU Ying-Kai GUO Institute of Image rocessing & Recognition, Shanghai Jiao-Tong University, China

More information

Study on the UWB Rader Synchronization Technology

Study on the UWB Rader Synchronization Technology Study on the UWB Rader Synchronization Technology Guilin Lu Guangxi University of Technology, Liuzhou 545006, China E-mail: lifishspirit@126.com Shaohong Wan Ari Force No.95275, Liuzhou 545005, China E-mail:

More information

AHAPTIC interface is a kinesthetic link between a human

AHAPTIC interface is a kinesthetic link between a human IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 5, SEPTEMBER 2005 737 Time Domain Passivity Control With Reference Energy Following Jee-Hwan Ryu, Carsten Preusche, Blake Hannaford, and Gerd

More information

Time Delay Estimation: Applications and Algorithms

Time Delay Estimation: Applications and Algorithms Time Delay Estimation: Applications and Algorithms Hing Cheung So http://www.ee.cityu.edu.hk/~hcso Department of Electronic Engineering City University of Hong Kong H. C. So Page 1 Outline Introduction

More information

Systematical Methods to Counter Drones in Controlled Manners

Systematical Methods to Counter Drones in Controlled Manners Systematical Methods to Counter Drones in Controlled Manners Wenxin Chen, Garrett Johnson, Yingfei Dong Dept. of Electrical Engineering University of Hawaii 1 System Models u Physical system y Controller

More information

ONR Graduate Traineeship Award in Ocean Acoustics for Sunwoong Lee

ONR Graduate Traineeship Award in Ocean Acoustics for Sunwoong Lee ONR Graduate Traineeship Award in Ocean Acoustics for Sunwoong Lee PI: Prof. Nicholas C. Makris Massachusetts Institute of Technology 77 Massachusetts Avenue, Room 5-212 Cambridge, MA 02139 phone: (617)

More information

Applying Multisensor Information Fusion Technology to Develop an UAV Aircraft with Collision Avoidance Model

Applying Multisensor Information Fusion Technology to Develop an UAV Aircraft with Collision Avoidance Model Applying Multisensor Information Fusion Technology to Develop an UAV Aircraft with Collision Avoidance Model by Dr. Buddy H Jeun and John Younker Sensor Fusion Technology, LLC 4522 Village Springs Run

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 12 Modern Radar Signal Processor Dr. K K Sharma Assoc Prof, Department of Electronics & Communication, Lingaya

More information

Radar Detection of Marine Mammals

Radar Detection of Marine Mammals DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Detection of Marine Mammals Charles P. Forsyth Areté Associates 1550 Crystal Drive, Suite 703 Arlington, VA 22202

More information

Sea-battlefield Situation Assessment based on Improved Decision Tree

Sea-battlefield Situation Assessment based on Improved Decision Tree Applied Mechanics and Materials Submitted: 2014-05-14 ISSN: 1662-7482, Vol. 574, pp 639-645 Accepted: 2014-05-15 doi:10.4028/www.scientific.net/amm.574.639 Online: 2014-07-18 2014 Trans Tech Publications,

More information

RADAR AND ATM PERFORMANCE ANALYSIS SUITE (RAPAS)

RADAR AND ATM PERFORMANCE ANALYSIS SUITE (RAPAS) RADAR AND ATM PERFORMANCE ANALYSIS SUITE (RAPAS) I2M Systems Inc. has a significant experience in developing ATC-related software. We have a proven record in developing software for Surveillance purposes

More information

Trajectory Assessment Support for Air Traffic Control

Trajectory Assessment Support for Air Traffic Control AIAA Infotech@Aerospace Conference andaiaa Unmanned...Unlimited Conference 6-9 April 2009, Seattle, Washington AIAA 2009-1864 Trajectory Assessment Support for Air Traffic Control G.J.M. Koeners

More information

Research on Management of the Design Patent: Perspective from Judgment of Design Patent Infringement

Research on Management of the Design Patent: Perspective from Judgment of Design Patent Infringement 1422 Research on Management of the Design Patent: Perspective from Judgment of Design Patent Infringement Li Ming, Xu Zhinan School of Arts and Law, Wuhan University of Technology, Wuhan, P.R.China, 430070

More information

From Torpedo Fire Control to Sonar at Librascope by Dave Ghen

From Torpedo Fire Control to Sonar at Librascope by Dave Ghen From Torpedo Fire Control to Sonar at Librascope by Dave Ghen Librascope made a business decision in the late 1960 s or early 1970 s to try to expand its very successful surface ship and submarine torpedo

More information

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS Daniel Doonan, Chris Utley, and Hua Lee Imaging Systems Laboratory Department of Electrical

More information

A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios

A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios Noha El Gemayel, Holger Jäkel, Friedrich K. Jondral Karlsruhe Institute of Technology, Germany, {noha.gemayel,holger.jaekel,friedrich.jondral}@kit.edu

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Application review on underwater radiated noise measurement by using a vessel s own towed array

Application review on underwater radiated noise measurement by using a vessel s own towed array Application review on underwater radiated noise measurement by using a vessel s own towed array Jia-xuan Yang 1, Lin He 2, Chang-geng Shuai 3 Institute of Noise and Vibration, Naval University of Engineering,

More information

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS MODELING, IDENTIFICATION AND CONTROL, 1999, VOL. 20, NO. 3, 165-175 doi: 10.4173/mic.1999.3.2 AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS Kenneth Gade and Bjørn Jalving

More information

How to configure processing on an HPx card to get the most information from the incoming radar video

How to configure processing on an HPx card to get the most information from the incoming radar video Successful Configuration of HPx Cards How to configure processing on an HPx card to get the most information from the incoming radar video Summary It is important to configure the processing on the HPx

More information

Coverage Metric for Acoustic Receiver Evaluation and Track Generation

Coverage Metric for Acoustic Receiver Evaluation and Track Generation Coverage Metric for Acoustic Receiver Evaluation and Track Generation Steven M. Dennis Naval Research Laboratory Stennis Space Center, MS 39529, USA Abstract-Acoustic receiver track generation has been

More information

Estimating Fish Densities from Single Fish Echo Traces

Estimating Fish Densities from Single Fish Echo Traces The Open Ocean Engineering Journal, 2009, 2, 17-32 17 Estimating Fish Densities from Single Fish Echo Traces Open Access Magnar Aksland * University of Bergen, Department of Biology, P.O. Box 7800, N-5020

More information

COMPANY RESTRICTED NOT EXPORT CONTROLLED NOT CLASSIFIED Your Name Document number Issue X FIGHTING THE BATTLE. Thomas Kloos, Björn Bengtsson

COMPANY RESTRICTED NOT EXPORT CONTROLLED NOT CLASSIFIED Your Name Document number Issue X FIGHTING THE BATTLE. Thomas Kloos, Björn Bengtsson FIGHTING THE BATTLE Thomas Kloos, Björn Bengtsson 2 THE 9LV COMBAT SYSTEM FIRST TO KNOW, FIRST TO ACT Thomas Kloos, Naval Business Development Business Unit Surveillance 9LV 47,5 YEARS OF PROUD HISTORY

More information

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Kristin Larson, Dave Gaylor, and Stephen Winkler Emergent Space Technologies and Lockheed Martin Space Systems 36

More information

Work Domain Analysis for the Interface Design of a Sonobuoy System

Work Domain Analysis for the Interface Design of a Sonobuoy System PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 51st ANNUAL MEETING 2007 283 Work Domain Analysis for the Interface Design of a Sonobuoy System Huei-Yen Chen, Catherine M. Burns Advanced Interface

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

UNCLASSIFIED INTRODUCTION TO THE THEME: AIRBORNE ANTI-SUBMARINE WARFARE

UNCLASSIFIED INTRODUCTION TO THE THEME: AIRBORNE ANTI-SUBMARINE WARFARE U.S. Navy Journal of Underwater Acoustics Volume 62, Issue 3 JUA_2014_018_A June 2014 This introduction is repeated to be sure future readers searching for a single issue do not miss the opportunity to

More information

RIGEL RESM AND RECM SYSTEMS

RIGEL RESM AND RECM SYSTEMS DEFENSE AND SECURITY RIGEL RESM AND RECM SYSTEMS Defense and security in five continents indracompany.com RIGEL RESM RECM SYSTEMS RIGEL RESM AND RECM SYSTEMS RIGEL RESM System The Naval Radar RESM and

More information

PASSIVE SONAR WITH CYLINDRICAL ARRAY J. MARSZAL, W. LEŚNIAK, R. SALAMON A. JEDEL, K. ZACHARIASZ

PASSIVE SONAR WITH CYLINDRICAL ARRAY J. MARSZAL, W. LEŚNIAK, R. SALAMON A. JEDEL, K. ZACHARIASZ ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 365 371 (2006) PASSIVE SONAR WITH CYLINDRICAL ARRAY J. MARSZAL, W. LEŚNIAK, R. SALAMON A. JEDEL, K. ZACHARIASZ Gdańsk University of Technology Faculty of Electronics,

More information

Applying Multisensor Information Fusion Technology to Develop an UAV Aircraft with Collision Avoidance Model

Applying Multisensor Information Fusion Technology to Develop an UAV Aircraft with Collision Avoidance Model 1 Applying Multisensor Information Fusion Technology to Develop an UAV Aircraft with Collision Avoidance Model {Final Version with

More information

Smart antenna technology

Smart antenna technology Smart antenna technology In mobile communication systems, capacity and performance are usually limited by two major impairments. They are multipath and co-channel interference [5]. Multipath is a condition

More information

SURTASS Twinline ABSTRACT INTRODUCTION

SURTASS Twinline ABSTRACT INTRODUCTION SURTASS Twinline Robert F. Henrick ABSTRACT A historical article from the Johns Hopkins APL Technical Digest was selected to illustrate the methodology and contributions of Johns Hopkins University Applied

More information

Author s Name Name of the Paper Session. DYNAMIC POSITIONING CONFERENCE October 10-11, 2017 SENSORS SESSION. Sensing Autonomy.

Author s Name Name of the Paper Session. DYNAMIC POSITIONING CONFERENCE October 10-11, 2017 SENSORS SESSION. Sensing Autonomy. Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 10-11, 2017 SENSORS SESSION Sensing Autonomy By Arne Rinnan Kongsberg Seatex AS Abstract A certain level of autonomy is already

More information

Adaptive CFAR Performance Prediction in an Uncertain Environment

Adaptive CFAR Performance Prediction in an Uncertain Environment Adaptive CFAR Performance Prediction in an Uncertain Environment Jeffrey Krolik Department of Electrical and Computer Engineering Duke University Durham, NC 27708 phone: (99) 660-5274 fax: (99) 660-5293

More information

Phased Array Velocity Sensor Operational Advantages and Data Analysis

Phased Array Velocity Sensor Operational Advantages and Data Analysis Phased Array Velocity Sensor Operational Advantages and Data Analysis Matt Burdyny, Omer Poroy and Dr. Peter Spain Abstract - In recent years the underwater navigation industry has expanded into more diverse

More information

Indoor Location Detection

Indoor Location Detection Indoor Location Detection Arezou Pourmir Abstract: This project is a classification problem and tries to distinguish some specific places from each other. We use the acoustic waves sent from the speaker

More information

Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p.

Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p. Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p. 6 Electronic Warfare Support Measures (ESM) p. 6 Signals Intelligence (SIGINT)

More information

Implementation of Adaptive and Synthetic-Aperture Processing Schemes in Integrated Active Passive Sonar Systems

Implementation of Adaptive and Synthetic-Aperture Processing Schemes in Integrated Active Passive Sonar Systems Implementation of Adaptive and Synthetic-Aperture Processing Schemes in Integrated Active Passive Sonar Systems STERGIOS STERGIOPOULOS, SENIOR MEMBER, IEEE Progress in the implementation of state-of-the-art

More information

Engtek SubSea Systems

Engtek SubSea Systems Engtek SubSea Systems A Division of Engtek Manoeuvra Systems Pte Ltd SubSea Propulsion Technology AUV Propulsion and Maneuvering Modules Engtek SubSea Systems A Division of Engtek Manoeuvra Systems Pte

More information

Progress in DAS Seismic Methods

Progress in DAS Seismic Methods Progress in DAS Seismic Methods A. Mateeva, J. Mestayer, Z. Yang, J. Lopez, P. Wills 1, H. Wu, W. Wong, Barbara Cox (Shell International Exploration and Production, Inc.), J. Roy, T. Bown ( OptaSense )

More information

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Journal of Academic and Applied Studies (JAAS) Vol. 2(1) Jan 2012, pp. 32-38 Available online @ www.academians.org ISSN1925-931X NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Sedigheh

More information

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table.

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table. Appendix C: Graphing One of the most powerful tools used for data presentation and analysis is the graph. Used properly, graphs are an important guide to understanding the results of an experiment. They

More information

Radar / ADS-B data fusion architecture for experimentation purpose

Radar / ADS-B data fusion architecture for experimentation purpose Radar / ADS-B data fusion architecture for experimentation purpose O. Baud THALES 19, rue de la Fontaine 93 BAGNEUX FRANCE olivier.baud@thalesatm.com N. Honore THALES 19, rue de la Fontaine 93 BAGNEUX

More information

ARCHIVED REPORT. Marine Technology - Archived 7/2005

ARCHIVED REPORT. Marine Technology - Archived 7/2005 Land & Sea-Based Electronics Forecast ARCHIVED REPORT For data and forecasts on current programs please visit www.forecastinternational.com or call +1 203.426.0800 Marine Technology - Archived 7/2005 Outlook

More information

TRINITY Standard configuration for littoral defence

TRINITY Standard configuration for littoral defence Standard configuration for littoral defence Member of the Thales Mission Solution family Unrivalled tracking and fire control solution for small manoeuvring targets Innovative approach and easy to install

More information

Fuzzy-Heuristic Robot Navigation in a Simulated Environment

Fuzzy-Heuristic Robot Navigation in a Simulated Environment Fuzzy-Heuristic Robot Navigation in a Simulated Environment S. K. Deshpande, M. Blumenstein and B. Verma School of Information Technology, Griffith University-Gold Coast, PMB 50, GCMC, Bundall, QLD 9726,

More information

New and Emerging Technologies

New and Emerging Technologies New and Emerging Technologies Edwin E. Herricks University of Illinois Center of Excellence for Airport Technology (CEAT) Airport Safety Management Program (ASMP) Reality Check! There are no new basic

More information

Analysis of Beam Sharpening Effectiveness in Broadband Radar on Inland Waters

Analysis of Beam Sharpening Effectiveness in Broadband Radar on Inland Waters Analysis of Beam Sharpening Effectiveness in Broadband Radar on Inland Waters Witold Kazimierski *, Andrzej Stateczny ** * Institute of Geoinformatics, Maritime University Szczecin, Waly Chrobrego 1-2,

More information

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing Arthur B. Baggeroer Massachusetts Institute of Technology Cambridge, MA 02139 Phone: 617 253 4336 Fax: 617 253 2350 Email: abb@boreas.mit.edu

More information

Design and Development of DOA Measurement PCB using FPGA

Design and Development of DOA Measurement PCB using FPGA Design and Development of DOA Measurement PCB using FPGA 1 B.Sabitha Rani 2 Ch.Viswandham 3 G.Sreelakshmi M.Tech Department of ECE D & ESDGM Associate Professor, Department of ECE Geethanjali College of

More information

Lecture 13: Requirements Analysis

Lecture 13: Requirements Analysis Lecture 13: Requirements Analysis 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1 Mars Polar Lander Launched 3 Jan

More information

Exploitation of frequency information in Continuous Active Sonar

Exploitation of frequency information in Continuous Active Sonar PROCEEDINGS of the 22 nd International Congress on Acoustics Underwater Acoustics : ICA2016-446 Exploitation of frequency information in Continuous Active Sonar Lisa Zurk (a), Daniel Rouseff (b), Scott

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE ARRAY

More information

Localization (Position Estimation) Problem in WSN

Localization (Position Estimation) Problem in WSN Localization (Position Estimation) Problem in WSN [1] Convex Position Estimation in Wireless Sensor Networks by L. Doherty, K.S.J. Pister, and L.E. Ghaoui [2] Semidefinite Programming for Ad Hoc Wireless

More information

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation Progress In Electromagnetics Research M, Vol. 48, 37 44, 216 A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation Jia-Bing Yan *, Ying Liang, Yong-An Chen, Qun Zhang, and Li

More information

Low-frequency signals detection and identification as a key point of software for surveillance and security applications

Low-frequency signals detection and identification as a key point of software for surveillance and security applications Low-frequency signals detection and identification as a key point of software for surveillance and security applications Alexander A. Pakhomov * Security&Defense Research, LLC, 576 Valley Ave, Yonkers,

More information

Passive Radars as Sources of Information for Air Defence Systems

Passive Radars as Sources of Information for Air Defence Systems Passive Radars as Sources of Information for Air Defence Systems Wiesław Klembowski *, Adam Kawalec **, Waldemar Wizner *Saab Technologies Poland, Ostrobramska 101, 04 041 Warszawa, POLAND wieslaw.klembowski@saabgroup.com

More information

Ocean Ambient Noise Studies for Shallow and Deep Water Environments

Ocean Ambient Noise Studies for Shallow and Deep Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Ambient Noise Studies for Shallow and Deep Water Environments Martin Siderius Portland State University Electrical

More information

A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS

A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS Evren Terzi, Hasan B. Celebi, and Huseyin Arslan Department of Electrical Engineering, University of South Florida

More information

A New Scheme for Acoustical Tomography of the Ocean

A New Scheme for Acoustical Tomography of the Ocean A New Scheme for Acoustical Tomography of the Ocean Alexander G. Voronovich NOAA/ERL/ETL, R/E/ET1 325 Broadway Boulder, CO 80303 phone (303)-497-6464 fax (303)-497-3577 email agv@etl.noaa.gov E.C. Shang

More information

ASM(AR) Demonstration Engagements Anti-Ship Missile Active Radar Homing

ASM(AR) Demonstration Engagements Anti-Ship Missile Active Radar Homing ASM(AR) Demonstration Engagements Anti-Ship Missile Active Radar Homing The demonstration scenarios are: 1) Demo_1: Anti-Ship missile versus target ship executing an evasive maneuver 2) Demo_2: Anti-Ship

More information

Hydroacoustic Aided Inertial Navigation System - HAIN A New Reference for DP

Hydroacoustic Aided Inertial Navigation System - HAIN A New Reference for DP Return to Session Directory Return to Session Directory Doug Phillips Failure is an Option DYNAMIC POSITIONING CONFERENCE October 9-10, 2007 Sensors Hydroacoustic Aided Inertial Navigation System - HAIN

More information

Phantom Dome - Advanced Drone Detection and jamming system

Phantom Dome - Advanced Drone Detection and jamming system Phantom Dome - Advanced Drone Detection and jamming system *Picture for illustration only 1 1. The emanating threat of drones In recent years the threat of drones has become increasingly vivid to many

More information

Acoustic Communications 2011 Experiment: Deployment Support and Post Experiment Data Handling and Analysis

Acoustic Communications 2011 Experiment: Deployment Support and Post Experiment Data Handling and Analysis DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Acoustic Communications 2011 Experiment: Deployment Support and Post Experiment Data Handling and Analysis

More information

The Gaussian Mixture Cardinalized PHD Tracker on MSTWG and SEABAR 07 Datasets

The Gaussian Mixture Cardinalized PHD Tracker on MSTWG and SEABAR 07 Datasets 1791 The Gaussian Mixture Cardinalized PHD Tracker on MSTWG and SEABAR 7 Datasets O. Erdinc, P. Willett ECE Department University of Connecticut ozgur, willett @engr.uconn.edu S. Coraluppi NATO Undersea

More information

Effectiveness Analysis of Anti-torpedo Warfare Simulation for Evaluating Mix Strategies of Decoys and Jammers

Effectiveness Analysis of Anti-torpedo Warfare Simulation for Evaluating Mix Strategies of Decoys and Jammers Effectiveness Analysis of Anti-torpedo Warfare Simulation for Evaluating Mix Strategies of Decoys and Jammers Se Jung Kwon 1, Kyung-Min Seo 1, Byeong-soo Kim 1, Tag Gon Kim 1 1 Department of Electrical

More information

Sonar imaging of structured sparse scene using template compressed sensing

Sonar imaging of structured sparse scene using template compressed sensing Sonar imaging of structured sparse scene using template compressed sensing Huichen Yan, Xudong Zhang, Shibao Peng Tsinghua University, Beijing, China Jia Xu Beijing Institute of Technology, Beijing, China

More information

ASO 713/723 Hull-Mounted Active Sonar

ASO 713/723 Hull-Mounted Active Sonar ASO 713/723 Hull-Mounted Active Sonar ASO Anti-Submarine Warfare... a sound decision ATLAS ELEKTRONIK Naval Underwater Theatre ASO The ATLAS ELEKTRONIK Hull-Mounted Sonar (HMS) systems ASO 713/723 belong

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION In maritime surveillance, radar echoes which clutter the radar and challenge small target detection. Clutter is unwanted echoes that can make target detection of wanted targets

More information

Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT)

Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT) Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT) Ahmad T. Abawi, Paul Hursky, Michael B. Porter, Chris Tiemann and Stephen Martin Center for Ocean Research, Science Applications International

More information

Navigation of an Autonomous Underwater Vehicle in a Mobile Network

Navigation of an Autonomous Underwater Vehicle in a Mobile Network Navigation of an Autonomous Underwater Vehicle in a Mobile Network Nuno Santos, Aníbal Matos and Nuno Cruz Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas e Robótica - Porto Rua

More information

AE4-393: Avionics Exam Solutions

AE4-393: Avionics Exam Solutions AE4-393: Avionics Exam Solutions 2008-01-30 1. AVIONICS GENERAL a) WAAS: Wide Area Augmentation System: an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning

More information

A Miniaturized Identification System for the Dismounted Warrior

A Miniaturized Identification System for the Dismounted Warrior Hristos T. Anastassiu and Evangelos G. Ladis Communications & Networks Design & Development Dept. Hellenic Aerospace Industry PO Box 23, GR-32009 Schimatari - Tanagra / Viotia GREECE Tel.: +30 22620 46547

More information

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc.

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc. Leddar optical time-of-flight sensing technology, originally discovered by the National Optics Institute (INO) in Quebec City and developed and commercialized by LeddarTech, is a unique LiDAR technology

More information

Effects of snaking for a towed sonar array on an AUV

Effects of snaking for a towed sonar array on an AUV Lorentzen, Ole J., Effects of snaking for a towed sonar array on an AUV, Proceedings of the 38 th Scandinavian Symposium on Physical Acoustics, Geilo February 1-4, 2015. Editor: Rolf J. Korneliussen, ISBN

More information

The Swedish Armed Forces Sensor Study

The Swedish Armed Forces Sensor Study The Swedish Armed Forces Sensor Study 2013-14 Requirements for Air surveillance and Sea surface surveillance beyond 2025 (2040) The Swedish Armed Forces sensor study 2013-14 Chaired by SwAF HQ Plans And

More information

Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization

Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization Kent Scarbrough Advanced Technology Laboratory Applied Research Laboratories The University of Texas

More information

Chapter 4 Results. 4.1 Pattern recognition algorithm performance

Chapter 4 Results. 4.1 Pattern recognition algorithm performance 94 Chapter 4 Results 4.1 Pattern recognition algorithm performance The results of analyzing PERES data using the pattern recognition algorithm described in Chapter 3 are presented here in Chapter 4 to

More information

Underwater Wideband Source Localization Using the Interference Pattern Matching

Underwater Wideband Source Localization Using the Interference Pattern Matching Underwater Wideband Source Localization Using the Interference Pattern Matching Seung-Yong Chun, Se-Young Kim, Ki-Man Kim Agency for Defense Development, # Hyun-dong, 645-06 Jinhae, Korea Dept. of Radio

More information

A COMPREHENSIVE MULTIDISCIPLINARY PROGRAM FOR SPACE-TIME ADAPTIVE PROCESSING (STAP)

A COMPREHENSIVE MULTIDISCIPLINARY PROGRAM FOR SPACE-TIME ADAPTIVE PROCESSING (STAP) AFRL-SN-RS-TN-2005-2 Final Technical Report March 2005 A COMPREHENSIVE MULTIDISCIPLINARY PROGRAM FOR SPACE-TIME ADAPTIVE PROCESSING (STAP) Syracuse University APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

More information

Attorney Docket No Date: 9 July 2007

Attorney Docket No Date: 9 July 2007 DEPARTMENT OF THE NAVY NAVAL UNDERSEA WARFARE CENTER DIDMSION NEWPORT OFFICE OF COUNSEL PHONE: (401) 832-3653 FAX: (401) 832-4432 NEWPORT DSN: 432-3653 Date: 9 July 2007 The below identified patent application

More information

IMAGE FORMATION THROUGH WALLS USING A DISTRIBUTED RADAR SENSOR NETWORK. CIS Industrial Associates Meeting 12 May, 2004 AKELA

IMAGE FORMATION THROUGH WALLS USING A DISTRIBUTED RADAR SENSOR NETWORK. CIS Industrial Associates Meeting 12 May, 2004 AKELA IMAGE FORMATION THROUGH WALLS USING A DISTRIBUTED RADAR SENSOR NETWORK CIS Industrial Associates Meeting 12 May, 2004 THROUGH THE WALL SURVEILLANCE IS AN IMPORTANT PROBLEM Domestic law enforcement and

More information