Fuzzy-Heuristic Robot Navigation in a Simulated Environment

Size: px
Start display at page:

Download "Fuzzy-Heuristic Robot Navigation in a Simulated Environment"

Transcription

1 Fuzzy-Heuristic Robot Navigation in a Simulated Environment S. K. Deshpande, M. Blumenstein and B. Verma School of Information Technology, Griffith University-Gold Coast, PMB 50, GCMC, Bundall, QLD 9726, Australia {m.blumenstein, b.verma}@griffith.edu.au Abstract Computational intelligence techniques such as fuzzy logic and neural networks have been recently successful in enabling robots to cope with complex tasks, such as navigation in difficult environments. This paper proposes an intelligent navigation approach for mobile robots based on fuzzy logic in conjunction with heuristic rules. The Fuzzy-Heuristic approach attempts to tackle complicated situations such as two or more obstacles trapping the robot during navigation. Furthermore, the success of the approach is evaluated measuring the effect of the heuristic rules on robot navigation in a simulated environment for various scenarios. Simulation experiments show that the heuristic unit can improve robot navigation performance in difficult situations. 1. Introduction The goal of autonomous mobile robotics is to build physical systems that can move in unknown environments without human interference. The development of autonomous mobile robots with nontrivial navigation capabilities began as an interesting application domain for Artificial Intelligence researchers in the late 1960s, and it continues to present major challenges to researchers and system developers today. In the past four decades, a number of approaches for mobile robot navigation have been investigated including the classical AI approach [1], the behaviour-based approach [2], the hybrid approach [3] and many others. Behaviour-based control [4] in particular has been widely used for robot navigation. This is because it is an approach that does not require the building of an exact world model or complex reasoning processes. The common approach for implementing behavior control is artificial potential fields [5]. However, during preprogramming, much effort must be made to test and to adjust some thresholds regarding potential fields for different behaviors such as avoiding obstacles, moving to the target etc [6]. Most researchers have opted for approaches such as navigation based on global path planning and reaction based navigation. Among these, reaction based navigation has been considered more suitable for navigation in complex and dynamically changing environments, because it controls the mobile robot in an on-line manner utilizing instantaneous sensor measurements [7]. Researchers have also used mapbuilding approaches (grid-based free-space map and a feature-based map) for navigation [8]. Although they provide accurate maps, their complexity often prohibits efficient planning and problem solving in large-scale indoor environments [9]. Research has also been conducted applying fuzzy logic to behavior-based control of a mobile robot [10]. However, further research is still required to tackle complex situations. In this research, fuzzy rules are proposed for robot navigation in an unknown simulated environment. Various heuristic rules are used in conjunction with the fuzzy rules to deal with difficult situations i.e. obstacle avoidance. 2. Robot Navigation in a Simulated Environment The following sections describe the approach for robot navigation in a simulated environment. The environment, and the fuzzy-heuristic approach are described in detail The Simulated Environment A simulated environment is considered in order to test the proposed fuzzy and heuristic rules for robot navigation. The environment is a fixed size ( ), two-dimensional co-ordinate system. As may be seen in Figure 1, the target is denoted by a square at the topmost left corner. The position of the target can be changed. The remaining squares represent the obstacles while the white circular object represents the robot. The robot is assumed to have two sensors a left sensor and a right sensor. The orientation of robot sensors is organized according to the direction in which the robot is heading. The left sensor senses obstacles in the range 0-90 while the right sensor works in the range from Input signals are also modeled in the graphical simulation. These input signals are the sonar data acquired from the left/right sensors while the heading angle is calculated by means of the modeled beacon signal emitted by the target.

2 Figure 1 Structure of the simulated environment 2.2. The Proposed Approach information near, then the rules for avoiding the obstacle are activated checking whether the obstacle is very near. If this condition is true, then the rules are fired in order to avoid the obstacle. The robot may get into the range of an obstacle but the rules don t get fired unless the robot is close enough. The robot motion is defined by RMOV. The variables MOV_L and MOV_R are the specific directions of the robot motion RMOV. The robot moves with a constant speed except for a few cases where the robot's speed is reduced whilst following the boundary of an obstacle. The speed is controlled using threshold values whenever a new heading angle is calculated upon obstacle avoidance. These threshold values have been derived experimentally. Fuzzy-Heuristic Approach θ d FUZZY UNIT HEURISTIC UNIT output Description of the Fuzzy Rules A number of fuzzy rules are considered in this section along with their detailed analysis. For each example, the target is denoted as T while the robot and obstacles are denoted as R and ٱ respectively. The graphical representation of the boundaries near and very near associated with the obstacle is shown in Figure 3. Figure 2 Overview of fuzzy-heuristic approach As shown in Figure 2, two units define the proposed approach: a fuzzy unit and an heuristic unit. In the figure above, "θ" and "d" denote the heading angle towards the target and distance from the obstacle acquired by the left/right sensor respectively. The fuzzy unit is responsible for the activation of various fuzzy rules based on certain situations, whilst the heuristic rules are mainly used to deal with complicated situations. These are described in the next sections Fuzzy Unit The proposed approach is comprised of a single fuzzy unit. The inputs to the fuzzy unit are the distances between the robot and the obstacle boundaries detected by two sensors as well as the heading angle between the robot and the target denoted by ANG. The angle between the robot and target is calculated initially. The two sensors detect obstacle boundaries and the angle to the obstacle is also calculated. Depending on the location of the target with respect to the obstacle, a decision is taken to find an appropriate path to the target. The linguistic variables very near and near are chosen for a good reference motion of the robot. The robot checks for the distance to the obstacle. If the sensors yield the Figure 3 Diagrammatical representation of the obstacle and boundaries As may be seen above, a virtual region surrounds the obstacle. Whenever the robot gets into that region, the rules are activated to avoid that obstacle. The robot then checks for a boundary (very near) and avoids it, taking the appropriate path depending on the location of the target. Consider the following fuzzy rule: IF (OBSTACLE IN ROBOT'S PATH (near)) THEN (RMOV IS MOV_L) T R Figure 4 Obstacle on the path of the robot In Figure 4 the obstacle is near but it is not near enough in order to fire the rules, so the robot will simply

3 move according to the calculated heading angle. When such conditions occur, the robot moves in the left direction neglecting the presence of the boundaries of the obstacle. However, when the robot gets very near to the obstacle, the rules are fired depending on the particular boundary the robot senses. Consider the following scenario: determine the exact direction when obstacles are being avoided (discussed in the previous section - Figure 5). The speed is also maintained by using an x-component and a y-component since these components get calculated every time the robot avoids the obstacle. Figure 5 Robot s decisive direction In Figure 5 above, points a and b indicate the points in the very near region. When the robot gets close to the right boundary it would consider the heading angle towards the target and move along the path shown (a). If the robot gets close to the lower boundary it will not move along the right boundary and will instead take the path shown depending on the location of the target (b). The main idea behind this concept is the use of the angle calculated with respect to the obstacle. When the robot gets near to the obstacle, the angle with respect to the obstacle is calculated and it is compared to the heading angle towards the target. Depending on this angle, a decision is taken to avoid the obstacle in an appropriate way, which ultimately saves time to get to the target. Occasionally, the robot must make a decision to move in a particular direction when certain sets of criteria are met. Consider the following situation: T R Figure 6 Case where priority is important In Figure 6 above, the robot is very near to the obstacle but there are no obstacles on the path towards the target. Here, the robot has two options that are to move towards the target and avoid the obstacle. In this case, the robot moves in the direction of the target instead of avoiding the obstacle Robot Navigation The heading angle towards the target is calculated initially at the starting position and is calculated each time after an obstacle is avoided. The heading angle is defined in terms of an x-component and a y-component, which are ultimately used in the robot motion direction. There are factors defined in terms of x and y which Figure 7 Robot motion direction In Figure 7, the current angle (θ) towards the target can be easily calculated by using the slope given the current co-ordinates of the robot and the target. By using this angle and keeping one component constant (x or y), the second component may easily be obtained by using the following formula: tan θ = (y-component)/(x-component) These components are then used to influence the robot motion along with the direction. In the simulation, the y-component has been kept constant, as we have considered the fourth quadrant from the user s perspective. Whilst navigating near any four-sided obstacles, the "sensors" check for the edge that is very near the robot triggering a corresponding behavior to avoid that particular edge which ultimately avoids the obstacle. The following algorithm makes this concept clear. AVOID: Avoid the obstacles Calculate the angle towards the obstacle Check for a particular border of the obstacle sensed by robot IF they are "very near" Condition is true SET a range in terms of x and y-coordinates for which the method should stay activated IF absolute value of (obstacle angle) > (heading angle) Set the values of x and y factors to 1 ELSE Set the values of x and y factors to -1 ENDIF ENDSET ELSE Calculate the angle towards the target when robot moves away from obstacle ENDIF ENDAVOID Heuristic Unit Figure 8 Avoidance algorithm There are a number of situations where the fuzzy rules alone were not sufficient to deal with certain

4 situations. Additional rules were added in order to cope with such situations. These rules are called heuristic rules. boundaries have been set based on observations of robot success in the simulated environment. In the simulation, these distances are measured in terms of pixels. µ(x) = very near if x <0 2> = near if x <3 24> Here µ(x) is the membership function related to distance. 3. Experimental Results Figure 9 Fuzzy-heuristic simulation Consider the above scenario taken from the simulation. In this case, the robot is surrounded by two obstacles, which obstruct its path. The robot senses the rightmost obstacle and based on the heading angle avoids it but finds another obstacle and tries to avoid it as well. It then finds the same obstacle again and this leads to a repetitive state. In such cases, there is a need for rules that will draw the robot out of this situation. These heuristic rules are fired instead of the fuzzy rules and will lead the robot away from the obstruction. To summarise, the heuristic rules ensure that previous situations are remembered. Upon occurrence of such difficult situations, the algorithm first calculates the distance between the two obstacles. The algorithm also checks for a timer, which gets set when such situations occur and is again initialized to zero whenever the robot comes out of the situation. The timers ensure that the heuristic rule does not get activated if the robot tries to avoid the same obstacle. The calculated distance between the two obstructing obstacles is always checked with a threshold value. It stores the positions of the obstacles, provided the distance between them is not greater than the aforementioned threshold. If the condition is true, the heuristic behavior of reversing a certain number of steps is fired and the robot moves in an adjusted direction. The algorithm ensures that the robot does not arrive at the same situation again by making changes to the x and y factors that influence robot motion Linguistic Variable Settings As far as the distance parameter was concerned, a linguistic variable near was defined in the range from 3 to 24 while very near was considered when the robot gets in the range under 2. This means that the obstacles that lie in the range of 2 from the robot are treated as very near while those lying beyond 3 are treated as near. The upper limit for near is 24. The This section presents the experimental results obtained following the investigation of the proposed approach. To evaluate the effectiveness of the heuristic rules in conjunction with the fuzzy unit, experiments were conducted based on (1) the Fuzzy unit alone (fuzzy approach) and (2) the Fuzzy unit in conjunction with the heuristic rules (fuzzy-heuristic approach). Various simulation results obtained in different scenarios (with different obstacle configurations) are presented Experimentation of Control Schemes This section deals with the parameter settings used for experimentation. An important parameter considered here is csteps which is the number of steps calculated to reach the target. The greater the number of csteps, the longer the path taken to get to the target. Using this parameter the comparison of two behaviors (fuzzy and fuzzy-heuristic) may be performed. Two sets of obstacle configurations are also considered random and fixed. These configurations are investigated in the following two ways 1) introducing more obstacles in the environment, 2) checking the response of each behavior (fuzzy and fuzzy-heuristic) and observing whether the robot successfully reaches the target. The complexity of the obstacle configuration for both fuzzy (without heuristic rules) and fuzzy-heuristic approaches was considered and the results obtained were compared. The obstacles were positioned in a random as well as fixed manner. The number of obstacles varied from 10 to 30. The environment becomes more complicated as the number of obstacles increase. For the random configuration, the x and y co-ordinates of obstacles were selected in a random way and the algorithm ensured that all obstacles were visible and placed within the environment. Although complicated situations were obtained using the random obstacle configuration, there was a need to create more challenging situations. For this purpose, a fixed obstacle configuration was considered. The obstacles were manually placed in the environment in a complicated manner in order to test the performance of the robot.

5 3.2. Experiments with Random Obstacle Configurations (ROCs) Three different positions of the robot and target were considered for experimentation. Thus, the three sets of experiments were conducted keeping these three positions constant throughout. The number of obstacles (N) varies from 10 to 30. Fifteen random obstacle configurations were taken into account for each set of experiments ( 10,20,30). Thus, 45 random obstacle configurations were considered for comparison of the two approaches (Figure 10). These obstacle configurations were considered to be very complicated for the robot to navigate. Number of Trials Number Of Obstacles 30 FUZZY Fuzzyheuristic FUZZY- HEURISTIC Figure 11 Comparison of successful trials based on a fixed obstacle configuration Table 2 Comparison of "csteps" performance (FOCs) Number of Trials Number Of Obstacles FUZZY FUZZY- HEURISTIC Figure 10 Comparison of successful trials based on a random obstacle configuration Table 1 Comparison of "csteps" performance (ROCs) "csteps" performance over successful trials # Obstacles Fuzzy Equal Total Trials N= N= N= Experiments with Fixed Obstacle Configurations (FOCs) This section presents the experimental results using fixed obstacle configurations. Different positions of the robot and target were considered for experimentation; in total 15 complicated situations were investigated. The number of obstacles (N) varied from 10 to 30. The obstacle configuration in these experiments was considered to be complex. The graphical representation of the performance of the two approaches based on fixed obstacle configurations is displayed in Figure 11. "csteps" performance over successful trials # Obstacles Fuzzy Fuzzyheuristic Equal Total Trials N= N= N= Discussion and Comparison of Results The experimental results for the fuzzy and fuzzyheuristic approaches have been compared on the basis of successful trials and csteps, keeping the environmental parameters constant. By keeping the positions of the robot and target constant for a particular set of experiments and increasing the complexity of the environment by adding more obstacles to it, the robot's behavior is observed in detail in order to verify the effectiveness of the proposed approach Comparison based on the Number of ful Trials In Figure 10, for the random obstacle configuration, it can be seen that the fuzzy-heuristic approach performed better than the fuzzy approach in terms of successfully navigating to the target. However, as the obstacle configuration became more complex i.e. the number of obstacles increased, the performance of both approaches was reduced. For the fixed obstacle configuration, it can be seen that the performance of the fuzzy approach is reduced as the environment becomes more complex. The fuzzyheuristic approach performs well in most of the complicated situations ( 20,30). In Figure 11, it can be noted that when the number of obstacles (N) was set to 10, the fuzzy approach performed slightly better than the fuzzy-heuristic approach. This is in part due to the

6 unnecessary firing of heuristic rules in certain situations that resulted in the robot being involved in a repeated cycle whereby it was unable to reach the target. However, in the case of the fuzzy approach, the robot successfully navigated through the same environment Comparison of Results based on csteps It was observed that out of a total of 26 simulations for random obstacle configurations where both fuzzy and fuzzy-heuristic approaches reached the target, in 19 cases, the fuzzy-heuristic approach took slightly longer (in terms of csteps ) to complete the simulation than the fuzzy approach. Whereas in 7 cases, both approaches reached the target successfully, taking the same number of csteps (Table 1). It must be noted that in most cases the additional "csteps" taken by the fuzzy-heuristic approach were nominal. In the case of the fixed obstacle configurations, out of a total of 5 simulations where both fuzzy and fuzzyheuristic approaches reached the target, in 2 cases, the fuzzy-heuristic approach took slightly longer to complete the simulation than the fuzzy approach. However, it was observed that there were 3 cases where both approaches reached the target successfully taking the same number of csteps (Table 2) Comparison with other Researchers It is difficult to compare the performance of robot navigation amongst researchers, as there have been little or no benchmarks for comparison in the literature. Other problems that arise are differences in experimental settings and in scenarios used for testing. A number of scenarios have been taken from [11][12][13] in order to test the effectiveness of the proposed approach and a reasonable success rate for navigation was observed (including in complicated situations). In most cases, other researchers have not measured the number of steps involved in reaching a specific target. This research has included a comparison of two approaches based on the steps required to reach a target. 5. Conclusions and Future Research In this research, a novel approach for mobile robot navigation based on fuzzy and heuristic rules has been presented and discussed. The addition of heuristic rules proves to be very useful when the robot gets trapped in complicated situations. It was observed that the fuzzyheuristic approach took slightly longer to reach the target in 73% of cases for the random obstacle configuration and 40% of cases for the fixed obstacle configuration (where both fuzzy and fuzzy-heuristic approaches reached the target). However, it can be noted that the fuzzy-heuristic approach reaches the target successfully in a higher proportion of cases compared to the fuzzy approach alone. In future, the fuzzy-heuristic approach will be tested in a real environment. A back sensor will also be taken into account for moving and sensing objects in the reverse direction. Finally, more fuzzy and heuristic rules will be added in order to enhance navigation performance. References [1] H. Moyarec, Robot: mere machine to transcendent mind, Oxford University Press, New York, NY, USA, [2] R. A. Brooks, Intelligence without reason, A.I. Memo No. 1293, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, [3] R. A. Brooks, New approaches to robotics, Science, Vol. 253, pp , [4] R. C. Arkin and R.R. Murphy, Autonomous navigation in a manufacturing environment, IEEE Trans. Robotics Automation, Vol. 6, pp , [5] X. Feng, Potential field based behavior control of mobile robot, Technical Report, Department of Computer Science, Tsinghua University, [6] W. Li, Fuzzy logic based robot navigation in uncertain environments by multisensor integration, Proceedings of IEEE Conf. On Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, Nevada, pp , [7] Autonomous mobile robot navigation, Available as a hypertext document at (last accessed July 2003). [8] D. C. Lee, The map-building and exploration strategies of a simple sonar-equipped mobile robot, Cambridge University Press, [9] S. Thrun and A. Brucken, Integrating grid-based and topological maps for mobile robot navigation, American Association for Artificial Intelligence, Vol. 2, [10] W. Li, Fuzzy logic-based perception-action behavior control of an mobile robot in uncertain environments, IEEE World Congress on Computational Intelligence, Vol. 3, pp , [11] S. X. Yang and M. Meng, An efficient neural network approach to dynamic robot motion planning, Neural Networks, Vol. 13, pp , [12] N. Tschichold-Gurman, The neural network model RuleNet and its application to mobile robot navigation, Fuzzy Sets and Systems, Vol. 85, pp , [13] W. Li, C. Ma and F. M. Wahl, A neuro-fuzzy system architecture for behavior-based control of a mobile robot in unknown environments, Fuzzy Sets and Systems, Vol. 87, pp , 1997.

Fuzzy Logic Based Robot Navigation In Uncertain Environments By Multisensor Integration

Fuzzy Logic Based Robot Navigation In Uncertain Environments By Multisensor Integration Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MF1 94) Las Vega, NV Oct. 2-5, 1994 Fuzzy Logic Based Robot Navigation In Uncertain

More information

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders Fuzzy Behaviour Based Navigation of a Mobile Robot for Tracking Multiple Targets in an Unstructured Environment NASIR RAHMAN, ALI RAZA JAFRI, M. USMAN KEERIO School of Mechatronics Engineering Beijing

More information

Behaviour-Based Control. IAR Lecture 5 Barbara Webb

Behaviour-Based Control. IAR Lecture 5 Barbara Webb Behaviour-Based Control IAR Lecture 5 Barbara Webb Traditional sense-plan-act approach suggests a vertical (serial) task decomposition Sensors Actuators perception modelling planning task execution motor

More information

Hybrid Neuro-Fuzzy System for Mobile Robot Reactive Navigation

Hybrid Neuro-Fuzzy System for Mobile Robot Reactive Navigation Hybrid Neuro-Fuzzy ystem for Mobile Robot Reactive Navigation Ayman A. AbuBaker Assistance Prof. at Faculty of Information Technology, Applied cience University, Amman- Jordan, a_abubaker@asu.edu.jo. ABTRACT

More information

Development of a Sensor-Based Approach for Local Minima Recovery in Unknown Environments

Development of a Sensor-Based Approach for Local Minima Recovery in Unknown Environments Development of a Sensor-Based Approach for Local Minima Recovery in Unknown Environments Danial Nakhaeinia 1, Tang Sai Hong 2 and Pierre Payeur 1 1 School of Electrical Engineering and Computer Science,

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

Keywords Multi-Agent, Distributed, Cooperation, Fuzzy, Multi-Robot, Communication Protocol. Fig. 1. Architecture of the Robots.

Keywords Multi-Agent, Distributed, Cooperation, Fuzzy, Multi-Robot, Communication Protocol. Fig. 1. Architecture of the Robots. 1 José Manuel Molina, Vicente Matellán, Lorenzo Sommaruga Laboratorio de Agentes Inteligentes (LAI) Departamento de Informática Avd. Butarque 15, Leganés-Madrid, SPAIN Phone: +34 1 624 94 31 Fax +34 1

More information

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015 Subsumption Architecture in Swarm Robotics Cuong Nguyen Viet 16/11/2015 1 Table of content Motivation Subsumption Architecture Background Architecture decomposition Implementation Swarm robotics Swarm

More information

A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments

A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments Tang S. H. and C. K. Ang Universiti Putra Malaysia (UPM), Malaysia Email: saihong@eng.upm.edu.my, ack_kit@hotmail.com D.

More information

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures D.M. Rojas Castro, A. Revel and M. Ménard * Laboratory of Informatics, Image and Interaction (L3I)

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

Creating a 3D environment map from 2D camera images in robotics

Creating a 3D environment map from 2D camera images in robotics Creating a 3D environment map from 2D camera images in robotics J.P. Niemantsverdriet jelle@niemantsverdriet.nl 4th June 2003 Timorstraat 6A 9715 LE Groningen student number: 0919462 internal advisor:

More information

A Robotic Simulator Tool for Mobile Robots

A Robotic Simulator Tool for Mobile Robots 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) A Robotic Simulator Tool for Mobile Robots 1 Mehmet

More information

Developing Frogger Player Intelligence Using NEAT and a Score Driven Fitness Function

Developing Frogger Player Intelligence Using NEAT and a Score Driven Fitness Function Developing Frogger Player Intelligence Using NEAT and a Score Driven Fitness Function Davis Ancona and Jake Weiner Abstract In this report, we examine the plausibility of implementing a NEAT-based solution

More information

Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path

Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path Taichi Yamada 1, Yeow Li Sa 1 and Akihisa Ohya 1 1 Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1,

More information

Keywords Fuzzy Logic, ANN, Histogram Equalization, Spatial Averaging, High Boost filtering, MSE, RMSE, SNR, PSNR.

Keywords Fuzzy Logic, ANN, Histogram Equalization, Spatial Averaging, High Boost filtering, MSE, RMSE, SNR, PSNR. Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Image Enhancement

More information

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors In: M.H. Hamza (ed.), Proceedings of the 21st IASTED Conference on Applied Informatics, pp. 1278-128. Held February, 1-1, 2, Insbruck, Austria Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors

More information

An Improved Path Planning Method Based on Artificial Potential Field for a Mobile Robot

An Improved Path Planning Method Based on Artificial Potential Field for a Mobile Robot BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No Sofia 015 Print ISSN: 1311-970; Online ISSN: 1314-4081 DOI: 10.1515/cait-015-0037 An Improved Path Planning Method Based

More information

A Novel Fuzzy Neural Network Based Distance Relaying Scheme

A Novel Fuzzy Neural Network Based Distance Relaying Scheme 902 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 3, JULY 2000 A Novel Fuzzy Neural Network Based Distance Relaying Scheme P. K. Dash, A. K. Pradhan, and G. Panda Abstract This paper presents a new

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press,   ISSN Application of artificial neural networks to the robot path planning problem P. Martin & A.P. del Pobil Department of Computer Science, Jaume I University, Campus de Penyeta Roja, 207 Castellon, Spain

More information

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER World Automation Congress 21 TSI Press. USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER Department of Computer Science Connecticut College New London, CT {ahubley,

More information

Key-Words: - Neural Networks, Cerebellum, Cerebellar Model Articulation Controller (CMAC), Auto-pilot

Key-Words: - Neural Networks, Cerebellum, Cerebellar Model Articulation Controller (CMAC), Auto-pilot erebellum Based ar Auto-Pilot System B. HSIEH,.QUEK and A.WAHAB Intelligent Systems Laboratory, School of omputer Engineering Nanyang Technological University, Blk N4 #2A-32 Nanyang Avenue, Singapore 639798

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

Simulation of a mobile robot navigation system

Simulation of a mobile robot navigation system Edith Cowan University Research Online ECU Publications 2011 2011 Simulation of a mobile robot navigation system Ahmed Khusheef Edith Cowan University Ganesh Kothapalli Edith Cowan University Majid Tolouei

More information

Path Planning for Mobile Robots Based on Hybrid Architecture Platform

Path Planning for Mobile Robots Based on Hybrid Architecture Platform Path Planning for Mobile Robots Based on Hybrid Architecture Platform Ting Zhou, Xiaoping Fan & Shengyue Yang Laboratory of Networked Systems, Central South University, Changsha 410075, China Zhihua Qu

More information

Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots

Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots Philippe Lucidarme, Alain Liégeois LIRMM, University Montpellier II, France, lucidarm@lirmm.fr Abstract This paper presents

More information

Correcting Odometry Errors for Mobile Robots Using Image Processing

Correcting Odometry Errors for Mobile Robots Using Image Processing Correcting Odometry Errors for Mobile Robots Using Image Processing Adrian Korodi, Toma L. Dragomir Abstract - The mobile robots that are moving in partially known environments have a low availability,

More information

An Integrated HMM-Based Intelligent Robotic Assembly System

An Integrated HMM-Based Intelligent Robotic Assembly System An Integrated HMM-Based Intelligent Robotic Assembly System H.Y.K. Lau, K.L. Mak and M.C.C. Ngan Department of Industrial & Manufacturing Systems Engineering The University of Hong Kong, Pokfulam Road,

More information

A Comparative Study on different AI Techniques towards Performance Evaluation in RRM(Radar Resource Management)

A Comparative Study on different AI Techniques towards Performance Evaluation in RRM(Radar Resource Management) A Comparative Study on different AI Techniques towards Performance Evaluation in RRM(Radar Resource Management) Madhusudhan H.S, Assistant Professor, Department of Information Science & Engineering, VVIET,

More information

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Journal of Academic and Applied Studies (JAAS) Vol. 2(1) Jan 2012, pp. 32-38 Available online @ www.academians.org ISSN1925-931X NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Sedigheh

More information

The Behavior Evolving Model and Application of Virtual Robots

The Behavior Evolving Model and Application of Virtual Robots The Behavior Evolving Model and Application of Virtual Robots Suchul Hwang Kyungdal Cho V. Scott Gordon Inha Tech. College Inha Tech College CSUS, Sacramento 253 Yonghyundong Namku 253 Yonghyundong Namku

More information

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors In the 2001 International Symposium on Computational Intelligence in Robotics and Automation pp. 206-211, Banff, Alberta, Canada, July 29 - August 1, 2001. Cooperative Tracking using Mobile Robots and

More information

Adaptive Neuro-Fuzzy Controler With Genetic Training For Mobile Robot Control

Adaptive Neuro-Fuzzy Controler With Genetic Training For Mobile Robot Control Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. VII (2012), No. 1 (March), pp. 135-146 Adaptive Neuro-Fuzzy Controler With Genetic Training For Mobile Robot Control

More information

Curiosity as a Survival Technique

Curiosity as a Survival Technique Curiosity as a Survival Technique Amber Viescas Department of Computer Science Swarthmore College Swarthmore, PA 19081 aviesca1@cs.swarthmore.edu Anne-Marie Frassica Department of Computer Science Swarthmore

More information

Improvement of Robot Path Planning Using Particle. Swarm Optimization in Dynamic Environments. with Mobile Obstacles and Target

Improvement of Robot Path Planning Using Particle. Swarm Optimization in Dynamic Environments. with Mobile Obstacles and Target Advanced Studies in Biology, Vol. 3, 2011, no. 1, 43-53 Improvement of Robot Path Planning Using Particle Swarm Optimization in Dynamic Environments with Mobile Obstacles and Target Maryam Yarmohamadi

More information

Obstacle Avoidance in Collective Robotic Search Using Particle Swarm Optimization

Obstacle Avoidance in Collective Robotic Search Using Particle Swarm Optimization Avoidance in Collective Robotic Search Using Particle Swarm Optimization Lisa L. Smith, Student Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE, Phillip G. Holloway Real-Time Power and Intelligent

More information

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of Table of Contents Game Mechanics...2 Game Play...3 Game Strategy...4 Truth...4 Contrapositive... 5 Exhaustion...6 Burnout...8 Game Difficulty... 10 Experiment One... 12 Experiment Two...14 Experiment Three...16

More information

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes.

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. Artificial Intelligence A branch of Computer Science. Examines how we can achieve intelligent

More information

Obstacle avoidance based on fuzzy logic method for mobile robots in Cluttered Environment

Obstacle avoidance based on fuzzy logic method for mobile robots in Cluttered Environment Obstacle avoidance based on fuzzy logic method for mobile robots in Cluttered Environment Fatma Boufera 1, Fatima Debbat 2 1,2 Mustapha Stambouli University, Math and Computer Science Department Faculty

More information

Journal Title ISSN 5. MIS QUARTERLY BRIEFINGS IN BIOINFORMATICS

Journal Title ISSN 5. MIS QUARTERLY BRIEFINGS IN BIOINFORMATICS List of Journals with impact factors Date retrieved: 1 August 2009 Journal Title ISSN Impact Factor 5-Year Impact Factor 1. ACM SURVEYS 0360-0300 9.920 14.672 2. VLDB JOURNAL 1066-8888 6.800 9.164 3. IEEE

More information

Towards Quantification of the need to Cooperate between Robots

Towards Quantification of the need to Cooperate between Robots PERMIS 003 Towards Quantification of the need to Cooperate between Robots K. Madhava Krishna and Henry Hexmoor CSCE Dept., University of Arkansas Fayetteville AR 770 Abstract: Collaborative technologies

More information

Why Is It So Difficult For A Robot To Pass Through A Doorway Using UltraSonic Sensors?

Why Is It So Difficult For A Robot To Pass Through A Doorway Using UltraSonic Sensors? Why Is It So Difficult For A Robot To Pass Through A Doorway Using UltraSonic Sensors? John Budenske and Maria Gini Department of Computer Science University of Minnesota Minneapolis, MN 55455 Abstract

More information

Using Reactive and Adaptive Behaviors to Play Soccer

Using Reactive and Adaptive Behaviors to Play Soccer AI Magazine Volume 21 Number 3 (2000) ( AAAI) Articles Using Reactive and Adaptive Behaviors to Play Soccer Vincent Hugel, Patrick Bonnin, and Pierre Blazevic This work deals with designing simple behaviors

More information

Incorporating a Connectionist Vision Module into a Fuzzy, Behavior-Based Robot Controller

Incorporating a Connectionist Vision Module into a Fuzzy, Behavior-Based Robot Controller From:MAICS-97 Proceedings. Copyright 1997, AAAI (www.aaai.org). All rights reserved. Incorporating a Connectionist Vision Module into a Fuzzy, Behavior-Based Robot Controller Douglas S. Blank and J. Oliver

More information

II. ROBOT SYSTEMS ENGINEERING

II. ROBOT SYSTEMS ENGINEERING Mobile Robots: Successes and Challenges in Artificial Intelligence Jitendra Joshi (Research Scholar), Keshav Dev Gupta (Assistant Professor), Nidhi Sharma (Assistant Professor), Kinnari Jangid (Assistant

More information

An Intuitional Method for Mobile Robot Path-planning in a Dynamic Environment

An Intuitional Method for Mobile Robot Path-planning in a Dynamic Environment An Intuitional Method for Mobile Robot Path-planning in a Dynamic Environment Ching-Chang Wong, Hung-Ren Lai, and Hui-Chieh Hou Department of Electrical Engineering, Tamkang University Tamshui, Taipei

More information

Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots

Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots Mousa AL-Akhras, Maha Saadeh, Emad AL Mashakbeh Computer Information Systems Department King Abdullah II School for Information

More information

Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot

Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 36(2), 2009, Pages 131 140 ISSN: 1223-6934 Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot Bassant Mohamed El-Bagoury,

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots

An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots Maren Bennewitz Wolfram Burgard Department of Computer Science, University of Freiburg, 7911 Freiburg, Germany maren,burgard

More information

Learning to Avoid Objects and Dock with a Mobile Robot

Learning to Avoid Objects and Dock with a Mobile Robot Learning to Avoid Objects and Dock with a Mobile Robot Koren Ward 1 Alexander Zelinsky 2 Phillip McKerrow 1 1 School of Information Technology and Computer Science The University of Wollongong Wollongong,

More information

Relying on an Electronic Nose for Odor Localization

Relying on an Electronic Nose for Odor Localization IEEE Instrumentation and Measurement Technology Conference Anchorage, USA, May 19 20, 2002 Relying on an Electronic Nose for Odor Localization Amy Loutfi and Silvia Coradeschi Center for Applied Autonomous

More information

Sensor Data Fusion Using Kalman Filter

Sensor Data Fusion Using Kalman Filter Sensor Data Fusion Using Kalman Filter J.Z. Sasiade and P. Hartana Department of Mechanical & Aerospace Engineering arleton University 115 olonel By Drive Ottawa, Ontario, K1S 5B6, anada e-mail: jsas@ccs.carleton.ca

More information

Learning Behaviors for Environment Modeling by Genetic Algorithm

Learning Behaviors for Environment Modeling by Genetic Algorithm Learning Behaviors for Environment Modeling by Genetic Algorithm Seiji Yamada Department of Computational Intelligence and Systems Science Interdisciplinary Graduate School of Science and Engineering Tokyo

More information

Term Paper: Robot Arm Modeling

Term Paper: Robot Arm Modeling Term Paper: Robot Arm Modeling Akul Penugonda December 10, 2014 1 Abstract This project attempts to model and verify the motion of a robot arm. The two joints used in robot arms - prismatic and rotational.

More information

Mobile Robot Exploration and Map-]Building with Continuous Localization

Mobile Robot Exploration and Map-]Building with Continuous Localization Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Belgium May 1998 Mobile Robot Exploration and Map-]Building with Continuous Localization Brian Yamauchi, Alan Schultz,

More information

FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMIC LOCAL VISUAL MODEL

FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMIC LOCAL VISUAL MODEL FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMIC LOCAL VISUAL MODEL Juan Fasola jfasola@andrew.cmu.edu Manuela M. Veloso veloso@cs.cmu.edu School of Computer Science Carnegie Mellon University

More information

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup?

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup? The Soccer Robots of Freie Universität Berlin We have been building autonomous mobile robots since 1998. Our team, composed of students and researchers from the Mathematics and Computer Science Department,

More information

A Comparative Study of Quality of Service Routing Schemes That Tolerate Imprecise State Information

A Comparative Study of Quality of Service Routing Schemes That Tolerate Imprecise State Information A Comparative Study of Quality of Service Routing Schemes That Tolerate Imprecise State Information Xin Yuan Wei Zheng Department of Computer Science, Florida State University, Tallahassee, FL 330 {xyuan,zheng}@cs.fsu.edu

More information

A Novel Hybrid Fuzzy A* Robot Navigation System for Target Pursuit and Obstacle Avoidance

A Novel Hybrid Fuzzy A* Robot Navigation System for Target Pursuit and Obstacle Avoidance A Novel Hybrid Fuzzy A* Robot Navigation System for Target Pursuit and Obstacle Avoidance Antony P. Gerdelan Computer Science Institute of Information and Mathematical Sciences Massey University, Albany

More information

Unit 1: Introduction to Autonomous Robotics

Unit 1: Introduction to Autonomous Robotics Unit 1: Introduction to Autonomous Robotics Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2009 COMP 4766/6778 (MUN) Course Introduction January

More information

A hybrid control architecture for autonomous mobile robot navigation in unknown dynamic environment

A hybrid control architecture for autonomous mobile robot navigation in unknown dynamic environment 2015 IEEE International Conference on Automation Science and Engineering (CASE) Aug 24-28, 2015. Gothenburg, Sweden A hybrid control architecture for autonomous mobile robot navigation in unknown dynamic

More information

Analog Implementation of Neo-Fuzzy Neuron and Its On-board Learning

Analog Implementation of Neo-Fuzzy Neuron and Its On-board Learning Analog Implementation of Neo-Fuzzy Neuron and Its On-board Learning TSUTOMU MIKI and TAKESHI YAMAKAWA Department of Control Engineering and Science Kyushu Institute of Technology 68-4 Kawazu, Iizuka, Fukuoka

More information

Randomized Motion Planning for Groups of Nonholonomic Robots

Randomized Motion Planning for Groups of Nonholonomic Robots Randomized Motion Planning for Groups of Nonholonomic Robots Christopher M Clark chrisc@sun-valleystanfordedu Stephen Rock rock@sun-valleystanfordedu Department of Aeronautics & Astronautics Stanford University

More information

Automated Detection of Early Lung Cancer and Tuberculosis Based on X- Ray Image Analysis

Automated Detection of Early Lung Cancer and Tuberculosis Based on X- Ray Image Analysis Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 110 Automated Detection of Early Lung Cancer and Tuberculosis Based

More information

Swarm Robotics. Clustering and Sorting

Swarm Robotics. Clustering and Sorting Swarm Robotics Clustering and Sorting By Andrew Vardy Associate Professor Computer Science / Engineering Memorial University of Newfoundland St. John s, Canada Deneubourg JL, Goss S, Franks N, Sendova-Franks

More information

Transactions on Information and Communications Technologies vol 1, 1993 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 1, 1993 WIT Press,   ISSN Combining multi-layer perceptrons with heuristics for reliable control chart pattern classification D.T. Pham & E. Oztemel Intelligent Systems Research Laboratory, School of Electrical, Electronic and

More information

MOBILE ROBOT WALL-FOLLOWING CONTROL USING A BEHAVIOR-BASED FUZZY CONTROLLER IN UNKNOWN ENVIRONMENTS

MOBILE ROBOT WALL-FOLLOWING CONTROL USING A BEHAVIOR-BASED FUZZY CONTROLLER IN UNKNOWN ENVIRONMENTS Iranian Journal of Fuzzy Systems Vol. *, No. *, (****) pp. 1-17 1 MOBILE ROBOT WALL-FOLLOWING CONTROL USING A BEHAVIOR-BASED FUZZY CONTROLLER IN UNKNOWN ENVIRONMENTS T. C. LIN, H. Y. LIN, C. J. LIN AND

More information

This list supersedes the one published in the November 2002 issue of CR.

This list supersedes the one published in the November 2002 issue of CR. PERIODICALS RECEIVED This is the current list of periodicals received for review in Reviews. International standard serial numbers (ISSNs) are provided to facilitate obtaining copies of articles or subscriptions.

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation

Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation Hiroshi Ishiguro Department of Information Science, Kyoto University Sakyo-ku, Kyoto 606-01, Japan E-mail: ishiguro@kuis.kyoto-u.ac.jp

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

Frequency Domain Median-like Filter for Periodic and Quasi-Periodic Noise Removal

Frequency Domain Median-like Filter for Periodic and Quasi-Periodic Noise Removal Header for SPIE use Frequency Domain Median-like Filter for Periodic and Quasi-Periodic Noise Removal Igor Aizenberg and Constantine Butakoff Neural Networks Technologies Ltd. (Israel) ABSTRACT Removal

More information

Decision Science Letters

Decision Science Letters Decision Science Letters 3 (2014) 121 130 Contents lists available at GrowingScience Decision Science Letters homepage: www.growingscience.com/dsl A new effective algorithm for on-line robot motion planning

More information

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Klaus Buchegger 1, George Todoran 1, and Markus Bader 1 Vienna University of Technology, Karlsplatz 13, Vienna 1040,

More information

Extracting Navigation States from a Hand-Drawn Map

Extracting Navigation States from a Hand-Drawn Map Extracting Navigation States from a Hand-Drawn Map Marjorie Skubic, Pascal Matsakis, Benjamin Forrester and George Chronis Dept. of Computer Engineering and Computer Science, University of Missouri-Columbia,

More information

Modelling and Simulation of Tactile Sensing System of Fingers for Intelligent Robotic Manipulation Control

Modelling and Simulation of Tactile Sensing System of Fingers for Intelligent Robotic Manipulation Control 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Modelling and Simulation of Tactile Sensing System of Fingers for Intelligent

More information

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Masaki Ogino 1, Masaaki Kikuchi 1, Jun ichiro Ooga 1, Masahiro Aono 1 and Minoru Asada 1,2 1 Dept. of Adaptive Machine

More information

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Institutue for Robotics and Intelligent Systems (IRIS) Technical Report IRIS-01-404 University of Southern California, 2001 Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Boyoon

More information

FSR99, International Conference on Field and Service Robotics 1999 (to appear) 1. Andrew Howard and Les Kitchen

FSR99, International Conference on Field and Service Robotics 1999 (to appear) 1. Andrew Howard and Les Kitchen FSR99, International Conference on Field and Service Robotics 1999 (to appear) 1 Cooperative Localisation and Mapping Andrew Howard and Les Kitchen Department of Computer Science and Software Engineering

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 181 A NOVEL RANGE FREE LOCALIZATION METHOD FOR MOBILE SENSOR NETWORKS Anju Thomas 1, Remya Ramachandran 2 1

More information

Knowledge Enhanced Electronic Logic for Embedded Intelligence

Knowledge Enhanced Electronic Logic for Embedded Intelligence The Problem Knowledge Enhanced Electronic Logic for Embedded Intelligence Systems (military, network, security, medical, transportation ) are getting more and more complex. In future systems, assets will

More information

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR International Journal of Science, Environment and Technology, Vol. 3, No 5, 2014, 1713 1720 ISSN 2278-3687 (O) A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR 1 P. Sweety

More information

Target Tracking in Mobile Robot under Uncertain Environment using Fuzzy Logic Controller

Target Tracking in Mobile Robot under Uncertain Environment using Fuzzy Logic Controller Target Tracking in Mobile Robot under Uncertain Environment using Fuzzy Logic Controller Ade Silvia Handayani ade_silvia@polsri.co.id Tresna Dewi tresna_dewi@polsri.ac.id Nyayu Latifah Husni nyayu_latifah@polsri.ac.id

More information

Autonomous navigation with deadlock detection and avoidance

Autonomous navigation with deadlock detection and avoidance Autonomous navigation with deadlock detection and avoidance Sanchez, Guido 1,2 and Giovanini, Leonardo 1,2 1 Center for Signals, Systems and Computational Intelligence, Faculty of Engineering and Water

More information

Neural Networks for Real-time Pathfinding in Computer Games

Neural Networks for Real-time Pathfinding in Computer Games Neural Networks for Real-time Pathfinding in Computer Games Ross Graham 1, Hugh McCabe 1 & Stephen Sheridan 1 1 School of Informatics and Engineering, Institute of Technology at Blanchardstown, Dublin

More information

The Robot Olympics: A competition for Tribot s and their humans

The Robot Olympics: A competition for Tribot s and their humans The Robot Olympics: A Competition for Tribot s and their humans 1 The Robot Olympics: A competition for Tribot s and their humans Xinjian Mo Faculty of Computer Science Dalhousie University, Canada xmo@cs.dal.ca

More information

Fuzzy Logic Controller on DC/DC Boost Converter

Fuzzy Logic Controller on DC/DC Boost Converter 21 IEEE International Conference on Power and Energy (PECon21), Nov 29 - Dec 1, 21, Kuala Lumpur, Malaysia Fuzzy Logic Controller on DC/DC Boost Converter N.F Nik Ismail, Member IEEE,Email: nikfasdi@yahoo.com

More information

Prof. Emil M. Petriu 17 January 2005 CEG 4392 Computer Systems Design Project (Winter 2005)

Prof. Emil M. Petriu 17 January 2005 CEG 4392 Computer Systems Design Project (Winter 2005) Project title: Optical Path Tracking Mobile Robot with Object Picking Project number: 1 A mobile robot controlled by the Altera UP -2 board and/or the HC12 microprocessor will have to pick up and drop

More information

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Shigueo Nomura and José Ricardo Gonçalves Manzan Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG,

More information

Mobile Robots Exploration and Mapping in 2D

Mobile Robots Exploration and Mapping in 2D ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. Mobile Robots Exploration and Mapping in 2D Sithisone Kalaya Robotics, Intelligent Sensing & Control (RISC)

More information

FUZZY LOGIC BASED NAVIGATION SAFETY SYSTEM FOR A REMOTE CONTROLLED ORTHOPAEDIC ROBOT (OTOROB)

FUZZY LOGIC BASED NAVIGATION SAFETY SYSTEM FOR A REMOTE CONTROLLED ORTHOPAEDIC ROBOT (OTOROB) International Journal of Robotics Research and Development (IJRRD) Vol.1, Issue 1 Dec 2011 21-41 TJPRC Pvt. Ltd., FUZZY LOGIC BASED NAVIGATION SAFETY SYSTEM FOR A REMOTE CONTROLLED ORTHOPAEDIC ROBOT (OTOROB)

More information

AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS

AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS Eva Cipi, PhD in Computer Engineering University of Vlora, Albania Abstract This paper is focused on presenting

More information

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit)

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit) Vishnu Nath Usage of computer vision and humanoid robotics to create autonomous robots (Ximea Currera RL04C Camera Kit) Acknowledgements Firstly, I would like to thank Ivan Klimkovic of Ximea Corporation,

More information

USING VIRTUAL REALITY SIMULATION FOR SAFE HUMAN-ROBOT INTERACTION 1. INTRODUCTION

USING VIRTUAL REALITY SIMULATION FOR SAFE HUMAN-ROBOT INTERACTION 1. INTRODUCTION USING VIRTUAL REALITY SIMULATION FOR SAFE HUMAN-ROBOT INTERACTION Brad Armstrong 1, Dana Gronau 2, Pavel Ikonomov 3, Alamgir Choudhury 4, Betsy Aller 5 1 Western Michigan University, Kalamazoo, Michigan;

More information

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Sensors and Materials, Vol. 28, No. 6 (2016) 695 705 MYU Tokyo 695 S & M 1227 Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Chun-Chi Lai and Kuo-Lan Su * Department

More information

Evolution of Sensor Suites for Complex Environments

Evolution of Sensor Suites for Complex Environments Evolution of Sensor Suites for Complex Environments Annie S. Wu, Ayse S. Yilmaz, and John C. Sciortino, Jr. Abstract We present a genetic algorithm (GA) based decision tool for the design and configuration

More information

International Journal of Informative & Futuristic Research ISSN (Online):

International Journal of Informative & Futuristic Research ISSN (Online): Reviewed Paper Volume 2 Issue 4 December 2014 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 A Survey On Simultaneous Localization And Mapping Paper ID IJIFR/ V2/ E4/

More information