Spectrum Collaboration Challenge (SC2)

Size: px
Start display at page:

Download "Spectrum Collaboration Challenge (SC2)"

Transcription

1 Spectrum Collaboration Challenge (SC2) Phase 1 Entrance Hurdles Revision 1 9/1/2016 Defense Advanced Research Projects Agency Microsystems Technology Office 675 North Randolph Street Arlington, VA

2 Document Change Summary Section Description Date 2 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

3 1 Introduction Participation in the Spectrum Collaboration Challenge (SC2) is open to most all interested parties. However, access to the Colosseum testbed requires DARPA to set limits on the number of teams that can participate in any phase of the program. DARPA also needs to ensure that participating teams have the necessary skillset to field competitive Collaborative Intelligent Radio (CIR) solutions that perform properly on the testbed and meet the objectives of the SC2. For Proposal Track teams, this is determined by the quality of their proposals. Open Track participants will be required to achieve a sufficiently high score across a series of hurdles to secure one of the available seats. Entrance Hurdles will evaluate a team s ability to develop software defined radios and demonstrate applicable machine learning techniques. Open Track teams may join at any phase of the competition. This document defines the Entrance Hurdles for Open Track teams for Phase 1 of the SC2. 2 Entrance Hurdle Rounds The SC2 Entrance Hurdles for the Open Track are organized in two rounds: Threshold and Ranking. The Threshold round will be held in November Problems are graded pass/fail based on whether a team s solution reaches a performance level specified in this document. A team must score a passing grade on all Threshold problems to proceed to the Ranking round. The Ranking round will be held in January Performance on each problem will be compared to give a team ranking for each problem. Team rankings for each problem will be combined using the Schulze voting algorithm with problem weights TBD to give an overall team ranking. 1 The overall ranking will determine the teams admitted to the competition. If the number of Open Track teams passing the Threshold round is small enough that all can be accommodated in the competition, the Ranking round will be canceled. The Threshold problems are designed to assess basic competence in the field. The Ranking problems are open-ended and are considerably more difficult. We recommend that teams start work on the Ranking problems as early as possible. The Ranking problems are designed to 1 Schulze, Marcus. A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent singlewinner election method. Social Choice and Welfare, Vol. 36. No. 2, Feb 2011, pp We apply the algorithm by treating each problem as a voter that rank orders the teams. The Schulze algorithm finds the overall ranking such that given the overall ranking for Team_k, for any pairwise comparison against another team Team_m (without loss of generality assuming the ranking for Team_k is higher than that of Team_m) then the sum of the weights of the tests in which the rank of Team_k is greater than that of Team_m is necessarily greater than the sum of the weights for the tests in which the ranking was reversed. 3 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

4 address issues that are relevant for the Competition. Therefore, work on them will be valuable even if the Ranking round is canceled. In each round, the problems cover 3 key areas of Collaborative Intelligent Radio technology: reconfigurable radio, RF environment understanding, and reasoning and contextualization. 3 Schedule The schedule for the Phase 1 Entrance Hurdles is as follows. 1 Sep 2016 Revision 1 of this hurdles document released Draft of Threshold problems Early Oct 2016 Revision 2 of this document released Final Threshold hurdle problems and logistics Draft Ranking hurdle problems Threshold hurdle software bundle released (see Section 4) Mid Oct 2016 DARPA notifies teams that submitted to the Proposal Track of the result of their proposal (selected or non selected) 1 Nov 2016 Threshold hurdle submission window opens 22 Nov 2016 Threshold hurdle submission window closes Early Dec 2016 DARPA announces whether Ranking round will occur. Revision 3 of this document released [if needed] Final Ranking hurdle problems and logistics Ranking hurdle software bundle released (see Section 4) 3 Jan 2017 Ranking hurdle submission window opens [if needed] 17 Jan 2017 Ranking hurdle submission window closes [if needed] 24 Jan 2017 DARPA releases list of teams joining the competition (both Open Track and Proposal Track) 4 Logistics for participation All interactions between teams and DARPA required to complete the Hurdles will occur remotely via and the SC2 website. No in-person meetings or webinars are planned. Details of the logistics for Threshold hurdles will be provided in Revision 2 of this document. At present, it is expected that: Hurdles will execute as a pair of Docker containers exchanging data over a (virtual) local network using Apache Thrift RPC. One container from DARPA, called the Test Infrastructure or TI container, contains the test sequencing and scoring processes, the 4 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

5 DARPA agents specified in the problems, and the test data. The other container implemented by the team provides the solution to the problem. DARPA will provide the teams a software bundle containing an executable instance of the Test Infrastructure Docker container along with source code and sample test data, to enable local testing. DARPA will specify a cloud service with which its TI container is known to be compatible (e.g. an AWS Instance and a specific Linux AMI) although teams are free to run the TI container wherever desired. For submission, teams will deliver their executable Docker container to DARPA SC2 Team, who will execute it on the specified cloud service in conjunction with a clean copy of the TI container containing new test data. Teams may only submit once. Failure due to a bug or platform compatibility issue is treated the same as poor performance the team will not pass the Hurdles. This models what will happen in the competition. Teams are encouraged to follow careful software engineering practices and perform pre-submission testing. DARPA will return the resulting score to the team as soon as the test has completed, but no log files or other internal information. After the submission window has closed, DARPA will distribute the TI container used for the submission tests so teams can execute it locally and assess why their software performed as it did. 5 Threshold Round Hurdles 5.1 Reconfigurable radio All teams will need some comfortability with radio design, even if that is not a team s strongest skillset. A large collection of open source tools are at your disposal to help with radio design. This hurdle is meant to ensure a team has an understanding of radio concepts, and can leverage available tools to solve radio problems. Problem: Develop a receiver for the following waveform. Channel bandwidth: Modulation: Symbol rate: Max timing offset: Max frequency offset: Channel: Inter-packet gap: 4 MHz QPSK 10 6 symbols per second ± 20 ppm ± 100 khz Flat fading, no multipath random duration, no carrier signal during gap 5 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

6 Packet format: There is a fixed 12 byte packet header at the start of each packet. The packet length is variable. The packet length field consists of four copies of an 8 bit packet length. The packet length includes the length of the header. Packet fields will be in big endian format. Bytes 0-3 Bytes 4-7 Bytes 8-11 Bytes 12-Packet Len Preamble (4 bytes) Sync Marker (4 bytes) Length (4 bytes) Payload (N bytes) The preamble and Sync Marker fields will have fixed contents as shown below First transmitted bit (Bit 0) Last transmitted bit (Bit 63) Preamble: 0x Sync Marker: 0x1ACFFC1D DARPA will distribute a transmitter for this waveform as part of the sample Test Infrastructure container. Any questions about the waveform specification can be answered by studying the transmitter code. Success condition: the receiver achieves a bit error rate (uncoded) better than 1x10-5 at a receiver Eb/No of 12.6 db. Testing: The Test Infrastructure container will send a stream of I/Q data representing 4x10 6 complex samples per second (4 samples per QPSK symbol) containing encoded packets plus inter-packet gaps and noise. The team s container should return the decoded packets to the TI container. This is not a real-time test: the receiver may take arbitrary execution time. 2 The bits in the preamble and sync marker fields should be included in the decoded packets sent to the TI container. However, those bits will not be considered when computing the achieved bit error rate. 5.2 RF Environment Understanding Teams will need to be able to apply AI pattern matching capabilities in the domain of radio signals. This threshold hurdle is meant to assess basic radio signal recognition. The Ranking version of the problem will extend to incorporate clustering challenges. Problem: Develop a classifier that can identify the occupied range and type of six simultaneous non-overlapping signals within a 3 MHz bandwidth channel. Each signal will be continuous in time and fixed in frequency for the duration of the test vector. The signals that may be present 2 Execution time must be reasonable. The test will be halted and declared a failure if the team s container has not returned a result approximately 10 minutes after receiving the last I/Q sample, or after the execution time exceeds 100x of real time, whichever is longest. 6 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

7 are: analog FM, QPSK, and GMSK. Multiple or no instances of a particular signal type may be present. Each signal is present at the same total power as each of the others. AWGN is present in the 3 MHz channel. The SNR seen by any individual signal type will be greater than or equal to 15 db. The scoring metric is as follows: Divide the band into 30 bins of 100 khz each The classifier identifies which bins are occupied by signals and which ones are just noise. The Probability of Detection PD is the number of occupied bins that the classifier reported as occupied, divided by the number of occupied bins. The Probability of False Alarm PFA is the number of unoccupied bins that the classifier reported as occupied, divided by the number of unoccupied bins. The classifier should additionally report the type for each bin that it believes is occupied. PT is the fraction of type reports that are correct. 3 The score is S = PD * (1 PFA) * PT. Success condition: S 0.68 Testing: The evaluation server will send the team s container an I/Q trace sampled at 2x Nyquist representing at least 40 msec worth of samples. The container will return a vector where each entry corresponds to a 100 khz bin and contains one of (empty, FM, QPSK, GMSK). DARPA will distribute sample I/Q traces as part of the TI container. The symbol rate and other aspects of the embedded signals may change from the sample I/Q trace to the one used in the submission test. 5.3 Reasoning and contextualization Teams will need to be able to build CIR networks that coexist gracefully in the spectrum with other networks. This requires the ability to learn and predict other networks spectrum access behavior. This hurdle assesses basic AI learning capability in the context of avoiding collisions with other spectrum users. Problem: Build an agent that plays a simplified spectrum sharing game with an agent provided by DARPA. Your agent is called the Player agent A; the DARPA agent is called D. The game consists of many turns in which each agent will vie for spectrum resources (e.g., channels) represented by integers. In each turn, two things happen simultaneously: 3 False alarms are thus penalized twice, since they increase PFA and decrease PT. This is intentional: false outputs from a classifier tend to harm downstream learning algorithms more than missed detects do. 7 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

8 The DARPA agent makes its choice of spectrum resource by choosing an integer between 1 and M: its output DO. The Player agent emits a pair of integers: its output AO (its choice of spectrum resource) and its prediction of the DARPA output DD OO, both between 1 and M. After these actions, A gets a payoff for avoiding a spectrum resource collision (AO DO). A increases its payoff if it predicts D s exact selection (DD OO =DO) since successful prediction enables optimal spectrum sharing. This is repeated over many turns. For A to do well, it must observe the history of D s behavior and improve its ability to predict D s actions. The DARPA agent D models a network whose spectrum access decisions depend, in some undisclosed way, on what it sees in the environment (e.g., the actions taken by A). D is an automaton with a finite number of states N. For each state qq 1.. qq nn in D, there is a state transition matrix giving the probability of the next state as a function of the player agent s output: Transitions from state q Player output AO Next state for D 1 2 N 1 p11 p12 p1n 2 p21 p22 p2n... M PM1 PM2 PMN All the pij 0. The sum of each row of the matrix is 1. One state of D is designated as the initial state, where D starts round 1. Associated with each state q is an integer O(q) [1..M] that specifies the output from D. Note that multiple distinct states may output the same integer, and there are no accepting or final states the automaton never restarts during the game. The sequence of events in each turn is as follows. 1. D starts the turn in some state q 2. A sends AO and PDO to D 3. D sends O(q) to A 4. A s score is increased according to the payoffs described below. 5. D transitions to a new state, with probabilities determined by the row for AO from the state transition matrix for q. 8 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

9 The payoff for A for each turn is as follows. +1 point if AO DO -12 points if AO = DO +3 points if PDO = DO These payoffs were chosen for M=10. They are likely to be adjusted if the final version of this problem uses a different value of M. Success condition: Total payoff > X after Y turns played against a DARPA agent of Z states. One set of parameters under consideration is (X,Y,Z) = (3000, 10000, 20). Testing: In each turn, the team s container sends its prediction and its output to the TI container, then the TI container sends what the DARPA agent s output was for that turn. The metric is computed across all turns starting from the first. 6 Ranking Round Hurdles DARPA will release a draft of the Ranking problems as part of a future revision of this document. At present the problems are expected to cover: Reconfigurable Radio: Develop a waterfilling waveform with error correction and implement a transmitter and receiver for it. The waveform should operate correctly despite sharing the channel with a time varying interfering signal. RF Environment Understanding: Develop a classifier that can identify the PHY type and MAC type, and cluster observed signals by network ID, for a spectrum trace containing packets sent by different networks that may collide with each other. Reasoning and Contextualization: The game of section 5.3 is expanded in the following ways: there are more than 2 agents in the environment, and the automaton periodically changes in ways that preserves portions of the prior transition matrices. 9 Spectrum Collaboration Challenge Phase 1 Entrance Hurdles Revision 1

Spectrum Collaboration Challenge (SC2)

Spectrum Collaboration Challenge (SC2) Spectrum Collaboration Challenge (SC2) www.spectrumcollaborationchallenge.com Phase 1 Entrance Hurdles Problem Description Revision 4 11/22/2016 Defense Advanced Research Projects Agency Microsystems Technology

More information

Spectrum Collaboration Challenge

Spectrum Collaboration Challenge Spectrum Collaboration Challenge Frequently Asked Questions (FAQ) November 22, 2017 Defense Advanced Research Projects Agency 675 North Randolph Street Arlington, VA 22203 Revision Summary Section Revision

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

March, 2003 IEEE P /131r0. IEEE P Wireless Personal Area Networks

March, 2003 IEEE P /131r0. IEEE P Wireless Personal Area Networks Project Title IEEE P802.15 Wireless Personal rea Networks IEEE P802.15 Working Group for Wireless Personal rea Networks (WPNs) PHY Proposal Using Dual Independent Single Sideband, Non-coherent M and Defined

More information

CDMA Principle and Measurement

CDMA Principle and Measurement CDMA Principle and Measurement Concepts of CDMA CDMA Key Technologies CDMA Air Interface CDMA Measurement Basic Agilent Restricted Page 1 Cellular Access Methods Power Time Power Time FDMA Frequency Power

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Getting Started Guide

Getting Started Guide MaxEye IEEE 0.15.4 UWB Measurement Suite Version 1.0.0 Getting Started Guide 1 Table of Contents 1. Introduction... 3. Installed File Location... 3 3. Programming Examples... 4 3.1. 0.15.4 UWB Signal Generation...

More information

September, Submission. September, 1998

September, Submission. September, 1998 Summary The CCK MBps Modulation for IEEE 802. 2.4 GHz WLANs Mark Webster and Carl Andren Harris Semiconductor CCK modulation will enable MBps operation in the 2.4 GHz ISM band An interoperable preamble

More information

Cognitive Ultra Wideband Radio

Cognitive Ultra Wideband Radio Cognitive Ultra Wideband Radio Soodeh Amiri M.S student of the communication engineering The Electrical & Computer Department of Isfahan University of Technology, IUT E-Mail : s.amiridoomari@ec.iut.ac.ir

More information

PROPOSAL FOR PHY SIGNALING PRESENTED BY AVI KLIGER, BROADCOM

PROPOSAL FOR PHY SIGNALING PRESENTED BY AVI KLIGER, BROADCOM PROPOSAL FOR PHY SIGNALING PRESENTED BY AVI KLIGER, BROADCOM IEEE 802.3bn EPoC, Phoenix, Jan 2013 1 THREE TYPES OF PHY SIGNALING: PHY Link Channel (PLC) Contains: Information required for PHY link up,

More information

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades

More information

D1.26B VDES Training Sequence Performance Characteristics (v.1.2)

D1.26B VDES Training Sequence Performance Characteristics (v.1.2) D1.26B VDES Training Sequence Performance Characteristics (v.1.2) Dr Arunas Macikunas Waves in Space Corp., Canada Presented by Dr Jan Šafář General Lighthouse Authorities of the UK & Ireland IALA ENAV

More information

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum CIS 632 / EEC 687 Mobile Computing Mobile Communications (for Dummies) Chansu Yu Contents Modulation Propagation Spread spectrum 2 1 Digital Communication 1 0 digital signal t Want to transform to since

More information

SV3C CPTX MIPI C-PHY Generator. Data Sheet

SV3C CPTX MIPI C-PHY Generator. Data Sheet SV3C CPTX MIPI C-PHY Generator Data Sheet Table of Contents Table of Contents Table of Contents... 1 List of Figures... 2 List of Tables... 2 Introduction... 3 Overview... 3 Key Benefits... 3 Applications...

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P80.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Direct Chaotic Communications Technology] Date Submitted: [15 November, 004] Source: [(1) Y. Kim, C.

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Payload measurements with digital signals. Markus Lörner, Product Management Signal Generation Dr. Susanne Hirschmann, Signal Processing Development

Payload measurements with digital signals. Markus Lörner, Product Management Signal Generation Dr. Susanne Hirschmann, Signal Processing Development Payload measurements with digital signals Markus Lörner, Product Management Signal Generation Dr. Susanne Hirschmann, Signal Processing Development Agenda ı Why test with modulated signals? ı Test environment

More information

CDMA is used to a limited extent on the 800-MHz band, but is much more common in the 1900-MHz PCS band. It uses code-division multiple access by

CDMA is used to a limited extent on the 800-MHz band, but is much more common in the 1900-MHz PCS band. It uses code-division multiple access by IS-95 CDMA PCS CDMA Frequency Use CDMA Channels Forward Channel Reverse Channel Voice Coding Mobile Power Control Rake Receivers and Soft handoffs CDMA Security CDMA is used to a limited extent on the

More information

LeCroy. SDA-UWB Software Option. Operator s Manual

LeCroy. SDA-UWB Software Option. Operator s Manual LeCroy SDA-UWB Software Option Operator s Manual August 2006 LeCroy Corporation 700 Chestnut Ridge Road Chestnut Ridge, NY 10977 6499 Tel: (845) 578 6020, Fax: (845) 578 5985 Internet: www.lecroy.com 2006

More information

PXI WiMAX Measurement Suite Data Sheet

PXI WiMAX Measurement Suite Data Sheet PXI WiMAX Measurement Suite Data Sheet The most important thing we build is trust Transmit power Spectral mask Occupied bandwidth EVM (all, data only, pilots only) Frequency error Gain imbalance, Skew

More information

Department of Computer Science and Engineering. CSE 3213: Communication Networks (Fall 2015) Instructor: N. Vlajic Date: Dec 13, 2015

Department of Computer Science and Engineering. CSE 3213: Communication Networks (Fall 2015) Instructor: N. Vlajic Date: Dec 13, 2015 Department of Computer Science and Engineering CSE 3213: Communication Networks (Fall 2015) Instructor: N. Vlajic Date: Dec 13, 2015 Final Examination Instructions: Examination time: 180 min. Print your

More information

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report UNH InterOperability Laboratory 121 Technology Drive, Suite 2 Durham, NH 03824 (603) 862-0090 Jason Contact Network Switch, Inc 3245 Fantasy

More information

Testing Upstream and Downstream DOCSIS 3.1 Devices

Testing Upstream and Downstream DOCSIS 3.1 Devices Testing Upstream and Downstream DOCSIS 3.1 Devices April 2015 Steve Hall DOCSIS 3.1 Business Development Manager Agenda 1. Decoding and demodulating a real downstream DOCSIS 3.1 signal and reporting key

More information

The world s first collaborative machine-intelligence competition to overcome spectrum scarcity

The world s first collaborative machine-intelligence competition to overcome spectrum scarcity The world s first collaborative machine-intelligence competition to overcome spectrum scarcity Paul Tilghman Program Manager, DARPA/MTO 8/11/16 1 This slide intentionally left blank 2 This slide intentionally

More information

ISO/IEC INTERNATIONAL STANDARD

ISO/IEC INTERNATIONAL STANDARD INTERNATIONAL STANDARD This is a preview - click here to buy the full publication ISO/IEC 24769-5 First edition 2012-12-15 Corrected version 2012-12-15 Information technology Automatic identification and

More information

Department of Computer Science and Engineering. CSE 3213: Computer Networks I (Fall 2009) Instructor: N. Vlajic Date: Dec 11, 2009.

Department of Computer Science and Engineering. CSE 3213: Computer Networks I (Fall 2009) Instructor: N. Vlajic Date: Dec 11, 2009. Department of Computer Science and Engineering CSE 3213: Computer Networks I (Fall 2009) Instructor: N. Vlajic Date: Dec 11, 2009 Final Examination Instructions: Examination time: 180 min. Print your name

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Exercise 3-2. Digital Modulation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. PSK digital modulation

Exercise 3-2. Digital Modulation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. PSK digital modulation Exercise 3-2 Digital Modulation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with PSK digital modulation and with a typical QPSK modulator and demodulator. DISCUSSION

More information

I-Q transmission. Lecture 17

I-Q transmission. Lecture 17 I-Q Transmission Lecture 7 I-Q transmission i Sending Digital Data Binary Phase Shift Keying (BPSK): sending binary data over a single frequency band Quadrature Phase Shift Keying (QPSK): sending twice

More information

LeCroy UWBSpekChek WiMedia Compliance Test Suite User Guide. Introduction

LeCroy UWBSpekChek WiMedia Compliance Test Suite User Guide. Introduction LeCroy UWBSpekChek WiMedia Compliance Test Suite User Guide Version 3.10 March, 2008 Introduction LeCroy UWBSpekChek Application The UWBSpekChek application operates in conjunction with the UWBTracer/Trainer

More information

Interference Direction Analysis. Communication Signals

Interference Direction Analysis. Communication Signals 1 PLC Power Line Communications I/Q Analyzer-Magnitude: The display here captures the entire signal in the time domain over a bandwidth of almost 27 MHz, making precise triggering easier. I/Q Analyzer-HiRes

More information

Ultra Wideband Transceiver Design

Ultra Wideband Transceiver Design Ultra Wideband Transceiver Design By: Wafula Wanjala George For: Bachelor Of Science In Electrical & Electronic Engineering University Of Nairobi SUPERVISOR: Dr. Vitalice Oduol EXAMINER: Dr. M.K. Gakuru

More information

Improved PHR coding of the MR-O-QPSK PHY

Improved PHR coding of the MR-O-QPSK PHY Improved PHR coding of the MR-O-QPSK PHY Michael Schmidt- ATMEL July 12, 2010 1/ 48 IEEE P802.15 Wireless Personal Area Networks Title: Improved PHR coding of the MR-O-QPSK PHY Date Submitted: July 12,

More information

Channel Characteristics and Impairments

Channel Characteristics and Impairments ELEX 3525 : Data Communications 2013 Winter Session Channel Characteristics and Impairments is lecture describes some of the most common channel characteristics and impairments. A er this lecture you should

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

Editor: this header only appears here to set number 100 and is not to be included.

Editor: this header only appears here to set number 100 and is not to be included. 100 LEVEL 1 Editor: this header only appears here to set number 100 and is not to be included. 100.2 Level two Editor: this header only appears here to set number 2 and is not to be included. Change Subclause

More information

SYSTEM LEVEL DESIGN CONSIDERATIONS FOR HSUPA USER EQUIPMENT

SYSTEM LEVEL DESIGN CONSIDERATIONS FOR HSUPA USER EQUIPMENT SYSTEM LEVEL DESIGN CONSIDERATIONS FOR HSUPA USER EQUIPMENT Moritz Harteneck UbiNetics Test Solutions An Aeroflex Company Cambridge Technology Center, Royston, Herts, SG8 6DP, United Kingdom email: moritz.harteneck@aeroflex.com

More information

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication 2. Diversity 1 Main story Communication over a flat fading channel has poor performance due to significant probability that channel is in a deep fade. Reliability is increased by providing more resolvable

More information

Measuring Frequency Settling Time for Synthesizers and Transmitters

Measuring Frequency Settling Time for Synthesizers and Transmitters Products: FSE Measuring Frequency Settling Time for Synthesizers and Transmitters An FSE Spectrum Analyser equipped with the Vector Signal Analysis option (FSE-B7) can measure oscillator settling time

More information

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi 802.11ac Signals Introduction The European Telecommunications Standards Institute (ETSI) have recently introduced a revised set

More information

IEEE Wireless Access Method and Physical Layer Specification. Proposal For the Use of Packet Detection in Clear Channel Assessment

IEEE Wireless Access Method and Physical Layer Specification. Proposal For the Use of Packet Detection in Clear Channel Assessment IEEE 802.11 Wireless Access Method and Physical Layer Specification Title: Author: Proposal For the Use of Packet Detection in Clear Channel Assessment Jim McDonald Motorola, Inc. 50 E. Commerce Drive

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

RPI TEAM: Number Munchers CSAW 2008

RPI TEAM: Number Munchers CSAW 2008 RPI TEAM: Number Munchers CSAW 2008 Andrew Tamoney Dane Kouttron Alex Radocea Contents Introduction:... 3 Tactics Implemented:... 3 Attacking the Compiler... 3 Low power RF transmission... 4 General Overview...

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

C802.16a-02/76. IEEE Broadband Wireless Access Working Group <

C802.16a-02/76. IEEE Broadband Wireless Access Working Group < Project IEEE 802.16 Broadband Wireless Access Working Group Title Convolutional Turbo Codes for 802.16 Date Submitted 2002-07-02 Source(s) Re: Brian Edmonston icoding Technology

More information

Multipath signal Detection in CDMA System

Multipath signal Detection in CDMA System Chapter 4 Multipath signal Detection in CDMA System Chapter 3 presented the implementation of CDMA test bed for wireless communication link. This test bed simulates a Code Division Multiple Access (CDMA)

More information

A New Data Conjugate ICI Self Cancellation for OFDM System

A New Data Conjugate ICI Self Cancellation for OFDM System A New Data Conjugate ICI Self Cancellation for OFDM System Abhijeet Bishnu Anjana Jain Anurag Shrivastava Department of Electronics and Telecommunication SGSITS Indore-452003 India abhijeet.bishnu87@gmail.com

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks Cognitive Wireless Network 15-744: Computer Networking L-19 Cognitive Wireless Networks Optimize wireless networks based context information Assigned reading White spaces Online Estimation of Interference

More information

Time Synchronization and Distributed Modulation in Large-Scale Sensor Networks

Time Synchronization and Distributed Modulation in Large-Scale Sensor Networks Time Synchronization and Distributed Modulation in Large-Scale Sensor Networks Sergio D. Servetto School of Electrical and Computer Engineering Cornell University http://cn.ece.cornell.edu/ RPI Workshop

More information

Project in Wireless Communication Lecture 7: Software Defined Radio

Project in Wireless Communication Lecture 7: Software Defined Radio Project in Wireless Communication Lecture 7: Software Defined Radio FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Tufvesson, EITN21, PWC lecture 7, Nov. 2018 1 Project overview, part one: the

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

AN IMPROVED WINDOW BLOCK CORRELATION ALGORITHM FOR CODE TRACKING IN W-CDMA

AN IMPROVED WINDOW BLOCK CORRELATION ALGORITHM FOR CODE TRACKING IN W-CDMA Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 367-376, Year 01 AN IMPROVED WINDOW BLOCK CORRELATION ALGORITHM FOR CODE TRACKING IN W-CDMA Hassan A. Nasir, Department of Electrical Engineering,

More information

PLC2 FPGA Days Software Defined Radio

PLC2 FPGA Days Software Defined Radio PLC2 FPGA Days 2011 - Software Defined Radio 17 May 2011 Welcome to this presentation of Software Defined Radio as seen from the FPGA engineer s perspective! As FPGA designers, we find SDR a very exciting

More information

Error! No text of specified style in document. Table Error! No text of specified style in document.-1 - CNU transmitter output signal characteristics

Error! No text of specified style in document. Table Error! No text of specified style in document.-1 - CNU transmitter output signal characteristics 1.1.1 CNU Transmitter Output Requirements The CNU shall output an RF Modulated signal with characteristics delineated in Table Error! No text of specified style in document.-1. Table -1 - CNU transmitter

More information

MODULE IV. End Sem. Exam Marks. Syllabus

MODULE IV. End Sem. Exam Marks. Syllabus MODULE IV Syllabus Multiplexing- Space Division Multiplexing, Frequency Division Multiplexing, Wave length Division Multiplexing - Time Division multiplexing: Characteristics, Digital Carrier system, SONET/SDH,

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Band Class Specification for cdma2000 Spread Spectrum Systems

Band Class Specification for cdma2000 Spread Spectrum Systems GPP C.S00-B Version.0 Date: August, 00 Band Class Specification for cdma000 Spread Spectrum Systems Revision B COPYRIGHT GPP and its Organizational Partners claim copyright in this document and individual

More information

VDSL2 radiation and its signal characterisation

VDSL2 radiation and its signal characterisation VDSL2 radiation and its signal characterisation Overview The EMC committee of the Radio Society of Great Britain has been monitoring sources of RFI for many years. A particular problem for HF communications

More information

CH 4. Air Interface of the IS-95A CDMA System

CH 4. Air Interface of the IS-95A CDMA System CH 4. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

5 GHz, U-NII Band, L-PPM. Physical Layer Specification

5 GHz, U-NII Band, L-PPM. Physical Layer Specification 5 GHz, U-NII Band, L-PPM Physical Layer Specification 1.1 Introduction This document describes the physical layer proposed by RadioLAN Inc. for the 5 GHz, U-NII, L-PPM wireless LAN system. 1.1.1 Physical

More information

Image transfer and Software Defined Radio using USRP and GNU Radio

Image transfer and Software Defined Radio using USRP and GNU Radio Steve Jordan, Bhaumil Patel 2481843, 2651785 CIS632 Project Final Report Image transfer and Software Defined Radio using USRP and GNU Radio Overview: Software Defined Radio (SDR) refers to the process

More information

Performance Evaluation of Energy Detector for Cognitive Radio Network

Performance Evaluation of Energy Detector for Cognitive Radio Network IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 8, Issue 5 (Nov. - Dec. 2013), PP 46-51 Performance Evaluation of Energy Detector for Cognitive

More information

Band Class Specification for cdma2000 Spread Spectrum Systems

Band Class Specification for cdma2000 Spread Spectrum Systems GPP C.S00 Version.0 Date: February, 00 Band Class Specification for cdma000 Spread Spectrum Systems Revision 0 COPYRIGHT GPP and its Organizational Partners claim copyright in this document and individual

More information

A study of Signal Detection for Road-to-Vehicle Communications in ITS

A study of Signal Detection for Road-to-Vehicle Communications in ITS A study of Signal Detection for Road-to-Vehicle Communications in ITS MASUO UMEMOTO Yokosuka ITS Research Center Telecommunication Advancement Organization of Japan Hikarino-oka 3-2-1, Yokosuka, Kanagawa

More information

WiMAX: , e, WiBRO Introduction to WiMAX Measurements

WiMAX: , e, WiBRO Introduction to WiMAX Measurements Products: R&S FSQ, R&S SMU, R&S SMJ, R&S SMATE WiMAX: 802.16-2004, 802.16e, WiBRO Introduction to WiMAX Measurements Application Note 1EF57 The new WiMAX radio technology worldwide interoperability for

More information

Interoperability of FM Composite Multiplex Signals in an IP Based STL

Interoperability of FM Composite Multiplex Signals in an IP Based STL Interoperability of FM Composite Multiplex Signals in an IP Based STL Featuring GatesAir s April 23, 2017 NAB Show 2017 Junius Kim Hardware Engineer Keyur Parikh Director, Intraplex Copyright 2017 GatesAir,

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Evaluation of HF ALE Linking Protection

Evaluation of HF ALE Linking Protection Evaluation of HF Linking Protection Dr. Eric E. ohnson, Roy S. Moore New Mexico State University Abstract The resurgence of interest in high frequency (HF) radio may be largely attributed to the success

More information

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Outline 18-452/18-750 Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Multi-Way Diversity Reception for Digital Microwave Systems

Multi-Way Diversity Reception for Digital Microwave Systems Multi-Way Diversity Reception for Digital Microwave Systems White paper Table of Contents 1. GENERAL INFORMATION 3 1.1 About this document 3 1.2 Acknowledgements 3 2. THE NEED FOR DIVERSITY RECEPTION 3

More information

Road to High Speed WLAN. Xiaowen Wang

Road to High Speed WLAN. Xiaowen Wang Road to High Speed WLAN Xiaowen Wang Introduction 802.11n standardization process. Technologies enhanced throughput Raw data rate enhancement Overhead management Final remarks LSI Confidential 2 Background

More information

DMR Tx Test Solution. Signal Analyzer MS2830A. Reference Specifications

DMR Tx Test Solution. Signal Analyzer MS2830A. Reference Specifications Product Introduction DMR Tx Test Solution Signal Analyzer MS2830A Reference Specifications ETSI EN 300 113 Version 2.1.1 (2016-08) / Technical characteristics of the transmitter ETSI TS 102 361-1 Version

More information

Encoding and Framing

Encoding and Framing Encoding and Framing EECS 489 Computer Networks http://www.eecs.umich.edu/~zmao/eecs489 Z. Morley Mao Tuesday Nov 2, 2004 Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica 1 Questions

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game.

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game. CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25 Homework #1 ( Due: Oct 10 ) Figure 1: The laser game. Task 1. [ 60 Points ] Laser Game Consider the following game played on an n n board,

More information

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

Communication with FCC s Office of Engineering Technology Regarding ISM Compliance of Power-Optimized Waveforms

Communication with FCC s Office of Engineering Technology Regarding ISM Compliance of Power-Optimized Waveforms Communication with FCC s Office of Engineering Technology Regarding ISM Compliance of Power-Optimized Waveforms Document ID: PG-TR-081120-GDD Date: 11 November 2008 Prof. Gregory D. Durgin 777 Atlantic

More information

Encoding and Framing. Questions. Signals: Analog vs. Digital. Signals: Periodic vs. Aperiodic. Attenuation. Data vs. Signal

Encoding and Framing. Questions. Signals: Analog vs. Digital. Signals: Periodic vs. Aperiodic. Attenuation. Data vs. Signal Questions Encoding and Framing Why are some links faster than others? What limits the amount of information we can send on a link? How can we increase the capacity of a link? EECS 489 Computer Networks

More information

Wireless Communication Systems: Implementation perspective

Wireless Communication Systems: Implementation perspective Wireless Communication Systems: Implementation perspective Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Keysight Technologies Making G Transmitter Measurements. Application Note

Keysight Technologies Making G Transmitter Measurements. Application Note Keysight Technologies Making 802.11G Transmitter Measurements Application Note Introduction 802.11g is the latest standard in wireless computer networking. It follows on the developments of 802.11a and

More information

Homeworx Lessons? What can we learn from the first deployment of OFDMA on HFC? Hal Roberts, Calix

Homeworx Lessons? What can we learn from the first deployment of OFDMA on HFC? Hal Roberts, Calix Homeworx Lessons? What can we learn from the first deployment of OFDMA on HFC? Hal Roberts, Calix The information contained in this presentation is not a commitment, promise, or legal obligation to deliver

More information

Interleaved PC-OFDM to reduce the peak-to-average power ratio

Interleaved PC-OFDM to reduce the peak-to-average power ratio 1 Interleaved PC-OFDM to reduce the peak-to-average power ratio A D S Jayalath and C Tellambura School of Computer Science and Software Engineering Monash University, Clayton, VIC, 3800 e-mail:jayalath@cssemonasheduau

More information

UWB for Sensor Networks:

UWB for Sensor Networks: IEEE-UBC Symposium on future wireless systems March 10 th 2006, Vancouver UWB for Sensor Networks: The 15.4a standard Andreas F. Molisch Mitsubishi Electric Research Labs, and also at Department of Electroscience,

More information

IEEE abc-01/23. IEEE Broadband Wireless Access Working Group <http://ieee802.org/16>

IEEE abc-01/23. IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Ranging Process Analysis And Improvement Recommendations 2001-08-28 Source(s) Chin-Chen Lee Radia

More information

Design and Implementation of an Underlay Control Channel for NC-OFDM-Based Networks

Design and Implementation of an Underlay Control Channel for NC-OFDM-Based Networks Design and Implementation of an Underlay Control Channel for NC-OFDM-Based Networks Ratnesh Kumbhkar, Gokul Sridharan, Narayan B. Mandayam, Ivan Seskar (, Rutgers, The State University of New Jersey) and

More information

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Chapter 2 Overview. Duplexing, Multiple Access - 1 - Chapter 2 Overview Part 1 (2 weeks ago) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (last week) Modulation, Coding, Error Correction Part 3

More information

Living with Interference in Unmanaged Wireless. Environments. Intel Research & University of Washington

Living with Interference in Unmanaged Wireless. Environments. Intel Research & University of Washington Living with Interference in Unmanaged Wireless Environments David Wetherall, Daniel Halperin and Tom Anderson Intel Research & University of Washington This talk 1. The problem: inefficient spectrum scheduling

More information

CSE 461 Bits and Links. David Wetherall

CSE 461 Bits and Links. David Wetherall CSE 461 Bits and Links David Wetherall djw@cs.washington.edu Topic How do we send a message across a wire or wireless link? The physical/link layers: 1. Different kinds of media 2. Fundamental limits 3.

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Wireless Communication in Embedded System. Prof. Prabhat Ranjan

Wireless Communication in Embedded System. Prof. Prabhat Ranjan Wireless Communication in Embedded System Prof. Prabhat Ranjan Material based on White papers from www.radiotronix.com Networked embedded devices In the past embedded devices were standalone Typically

More information

CHAPTER 3 MIMO-OFDM DETECTION

CHAPTER 3 MIMO-OFDM DETECTION 63 CHAPTER 3 MIMO-OFDM DETECTION 3.1 INTRODUCTION This chapter discusses various MIMO detection methods and their performance with CE errors. Based on the fact that the IEEE 80.11n channel models have

More information

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur (Refer Slide Time: 00:17) Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 32 MIMO-OFDM (Contd.)

More information

Module 3: Physical Layer

Module 3: Physical Layer Module 3: Physical Layer Dr. Associate Professor of Computer Science Jackson State University Jackson, MS 39217 Phone: 601-979-3661 E-mail: natarajan.meghanathan@jsums.edu 1 Topics 3.1 Signal Levels: Baud

More information

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet PXI LTE FDD and LTE TDD Measurement Suites Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification UE Tx output power Transmit

More information

Lab/Project Error Control Coding using LDPC Codes and HARQ

Lab/Project Error Control Coding using LDPC Codes and HARQ Linköping University Campus Norrköping Department of Science and Technology Erik Bergfeldt TNE066 Telecommunications Lab/Project Error Control Coding using LDPC Codes and HARQ Error control coding is an

More information

filter, followed by a second mixerdownconverter,

filter, followed by a second mixerdownconverter, G DECT Receiver for Frequency Selective Channels G. Ramesh Kumar K.Giridhar Telecommunications and Computer Networks (TeNeT) Group Department of Electrical Engineering Indian Institute of Technology, Madras

More information